首页 > 最新文献

Journal of Biomaterials Science, Polymer Edition最新文献

英文 中文
Enhanced mucoadhesive properties of ionically cross-linked thiolated gellan gum films. 增强离子交联硫醇化胶凝胶薄膜的粘液粘附性能。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-02 DOI: 10.1080/09205063.2024.2397199
Ankita Modi, Reshma Sanal, Ashika Suresh, Manju Saraswathy

Localized oral drug delivery offers several advantages for treating various disease conditions. However, drug retention at the disease site within the oral cavity is indeed a significant challenge due to the dynamic oral environment. The present study aimed to develop a mucoadhesive inner layer for a three-layer mucoadhesive bandage suitable for localized oral drug delivery. using gellan gum (GG) biopolymer. Gellan gum (GG) was modified using L-cysteine moieties via carbodiimide chemistry. Subsequently, gellan gum solution at different extents of thiolation was ionically cross-linked using aluminum ammonium sulfate. Thiolated gellan gum films of uniform thickness were prepared using a solvent casting method. The thickness of bare gellan gum film was 0.035 ± 0.0043 mm, whereas the thiolated gellan gum films, GG 1S and GG 2S showed a thickness of 0.0191 ± 0.0011 mm and 0.0188 ± 0.0004 mm respectively. A high work of adhesion was noted for thiolated gellan gum (GG 2S) with a value of 10 N.mm while using porcine buccal mucosa. An average tensile strength of 48.2 ± 2.46 MPa was measured for thiolated gellan gum films irrespective of the extent of thiolation. The high work of adhesion, favorable cytocompatibility, desirable mechanical properties, and free swell capacity in saline confirmed the suitability of ionically cross-linked thiolated gellan gum films as an inner mucoadhesive layer for the mucoadhesive bandage.

局部口服给药在治疗各种疾病方面具有多种优势。然而,由于口腔环境的动态变化,药物在口腔内疾病部位的保留确实是一项重大挑战。本研究旨在利用结冷胶(GG)生物聚合物,为适合局部口腔给药的三层粘胶绷带开发一种粘胶内层。通过碳二亚胺化学方法,使用 L-半胱氨酸分子对结冷胶(GG)进行改性。随后,使用硫酸铝铵对不同硫醇化程度的结冷胶溶液进行离子交联。采用溶剂浇铸法制备出厚度均匀的硫醇化结冷胶薄膜。裸露的结冷胶薄膜厚度为 0.035 ± 0.0043 毫米,而硫醇化结冷胶薄膜 GG 1S 和 GG 2S 的厚度分别为 0.0191 ± 0.0011 毫米和 0.0188 ± 0.0004 毫米。在使用猪口腔粘膜时,硫醇化结冷胶(GG 2S)的粘附力值高达 10 N.mm。无论硫醇化程度如何,硫醇化结冷胶薄膜的平均拉伸强度为 48.2 ± 2.46 兆帕。高粘附力、良好的细胞相容性、理想的机械性能以及在生理盐水中的自由膨胀能力证实了离子交联硫醇化结冷胶薄膜适合用作粘液绷带的粘液粘附内层。
{"title":"Enhanced mucoadhesive properties of ionically cross-linked thiolated gellan gum films.","authors":"Ankita Modi, Reshma Sanal, Ashika Suresh, Manju Saraswathy","doi":"10.1080/09205063.2024.2397199","DOIUrl":"https://doi.org/10.1080/09205063.2024.2397199","url":null,"abstract":"<p><p>Localized oral drug delivery offers several advantages for treating various disease conditions. However, drug retention at the disease site within the oral cavity is indeed a significant challenge due to the dynamic oral environment. The present study aimed to develop a mucoadhesive inner layer for a three-layer mucoadhesive bandage suitable for localized oral drug delivery. using gellan gum (GG) biopolymer. Gellan gum (GG) was modified using L-cysteine moieties <i>via</i> carbodiimide chemistry. Subsequently, gellan gum solution at different extents of thiolation was ionically cross-linked using aluminum ammonium sulfate. Thiolated gellan gum films of uniform thickness were prepared using a solvent casting method. The thickness of bare gellan gum film was 0.035 ± 0.0043 mm, whereas the thiolated gellan gum films, GG 1S and GG 2S showed a thickness of 0.0191 ± 0.0011 mm and 0.0188 ± 0.0004 mm respectively. A high work of adhesion was noted for thiolated gellan gum (GG 2S) with a value of 10 N.mm while using porcine buccal mucosa. An average tensile strength of 48.2 ± 2.46 MPa was measured for thiolated gellan gum films irrespective of the extent of thiolation. The high work of adhesion, favorable cytocompatibility, desirable mechanical properties, and free swell capacity in saline confirmed the suitability of ionically cross-linked thiolated gellan gum films as an inner mucoadhesive layer for the mucoadhesive bandage.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-15"},"PeriodicalIF":3.6,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of MgO nanoparticle on PVA/PEG-based membranes for potential application in wound healing. 氧化镁纳米粒子对 PVA/PEG 基膜的影响在伤口愈合中的潜在应用。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-01 Epub Date: 2024-07-01 DOI: 10.1080/09205063.2024.2364526
Massar Najim Obaid, Ohood Hmaizah Sabr, Ban Jawad Kadhim

The interest in wound dressings increased ten years ago. Wound care practitioners can now use interactive/bioactive dressings and tissue-engineered skin substitutes. Several bandages can heal burns, but none can treat all chronic wounds. This study formulates a composite material from 70% polyvinyl alcohol (PVA) and 30% polyethylene glycol (PEG) with 0.2, 0.4, and 0.6 wt% magnesium oxide nanoparticles. This study aims to create a biodegradable wound dressing. A Fourier Transform Infrared (FTIR) study shows that PVA, PEG, and MgO create hydrogen bonding interactions. Hydrophilic characteristics are shown by the polymeric blend's 56.289° contact angle. MgO also lowers the contact angle, making the film more hydrophilic. Hydrophilicity improves film biocompatibility, live cell adhesion, wound healing, and wound dressing degradability. Differential Scanning Calorimeter (DSC) findings suggest the PVA/PEG combination melted at 53.16 °C. However, adding different weight fractions of MgO nanoparticles increased the nanocomposite's melting temperature (Tm). These nanoparticles improve the film's thermal stability, increasing Tm. In addition, MgO nanoparticles in the polymer blend increased tensile strength and elastic modulus. This is due to the blend's strong adherence to the reinforcing phase and MgO nanoparticles' ceramic material which has a great mechanical strength. The combination of 70% PVA + 30% PEG exhibited good antibacterial spatially at 0.2% MgO, according to antibacterial test results.

十年前,人们对伤口敷料的兴趣与日俱增。现在,伤口护理医师可以使用交互式/生物活性敷料和组织工程皮肤替代物。有几种绷带可以治疗烧伤,但没有一种可以治疗所有慢性伤口。本研究将 70% 的聚乙烯醇 (PVA) 和 30% 的聚乙二醇 (PEG) 与 0.2、0.4 和 0.6 wt% 的氧化镁纳米粒子配制成一种复合材料。本研究旨在制作一种可生物降解的伤口敷料。傅立叶变换红外线(FTIR)研究表明,PVA、PEG 和氧化镁会产生氢键相互作用。聚合物混合物 56.289°的接触角显示了其亲水特性。氧化镁也降低了接触角,使薄膜更具亲水性。亲水性提高了薄膜的生物相容性、活细胞粘附性、伤口愈合性和伤口敷料的降解性。差示扫描量热仪(DSC)的研究结果表明,PVA/PEG 组合在 53.16 °C 时熔化。然而,添加不同重量分数的氧化镁纳米粒子可提高纳米复合材料的熔化温度(Tm)。这些纳米颗粒改善了薄膜的热稳定性,提高了 Tm。此外,聚合物混合物中的氧化镁纳米粒子还提高了拉伸强度和弹性模量。这是由于共混物与增强相的强粘附性以及氧化镁纳米粒子的陶瓷材料具有很高的机械强度。根据抗菌测试结果,70% PVA + 30% PEG 的组合在 0.2% MgO 的条件下表现出良好的空间抗菌性。
{"title":"The effect of MgO nanoparticle on PVA/PEG-based membranes for potential application in wound healing.","authors":"Massar Najim Obaid, Ohood Hmaizah Sabr, Ban Jawad Kadhim","doi":"10.1080/09205063.2024.2364526","DOIUrl":"10.1080/09205063.2024.2364526","url":null,"abstract":"<p><p>The interest in wound dressings increased ten years ago. Wound care practitioners can now use interactive/bioactive dressings and tissue-engineered skin substitutes. Several bandages can heal burns, but none can treat all chronic wounds. This study formulates a composite material from 70% polyvinyl alcohol (PVA) and 30% polyethylene glycol (PEG) with 0.2, 0.4, and 0.6 wt% magnesium oxide nanoparticles. This study aims to create a biodegradable wound dressing. A Fourier Transform Infrared (FTIR) study shows that PVA, PEG, and MgO create hydrogen bonding interactions. Hydrophilic characteristics are shown by the polymeric blend's 56.289° contact angle. MgO also lowers the contact angle, making the film more hydrophilic. Hydrophilicity improves film biocompatibility, live cell adhesion, wound healing, and wound dressing degradability. Differential Scanning Calorimeter (DSC) findings suggest the PVA/PEG combination melted at 53.16 °C. However, adding different weight fractions of MgO nanoparticles increased the nanocomposite's melting temperature (T<sub>m</sub>). These nanoparticles improve the film's thermal stability, increasing Tm. In addition, MgO nanoparticles in the polymer blend increased tensile strength and elastic modulus. This is due to the blend's strong adherence to the reinforcing phase and MgO nanoparticles' ceramic material which has a great mechanical strength. The combination of 70% PVA + 30% PEG exhibited good antibacterial spatially at 0.2% MgO, according to antibacterial test results.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1963-1977"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141468221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted polymeric primaquine nanoparticles: optimization, evaluation, and in-vivo liver uptake for improved malaria treatment. 靶向聚合伯氨喹纳米粒子:优化、评估和体内肝脏吸收,以改善疟疾治疗。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-01 DOI: 10.1080/09205063.2024.2391225
Sarvesh Bhargava, Hitesh Kumar Dewangan, Rohitas Deshmukh

Primaquine (PQ) is a widely used antimalarial drug, but its high dosage requirements can lead to significant tissue damage and adverse gastrointestinal and hematological effects. Recent studies have shown that nanoformulations can enhance the bioavailability of pharmaceuticals, thereby increasing efficacy, reducing dosing frequency, and minimizing toxicity. In this study, PQ-loaded PLGA nanoparticles (PQ-NPs) were prepared using a modified double emulsion solvent evaporation technique (w/o/w). The PQ-NPs exhibited a mean particle size of 228 ± 2.6 nm, a zeta potential of +27.4 mV, and an encapsulation efficiency of 81.3 ± 3.5%. Scanning electron microscopy (SEM) confirmed their spherical morphology, and the in vitro release profile demonstrated continuous drug release over 72 h. Differential scanning calorimetry (DSC) thermograms indicated that the drug was present in the nanoparticles, with improved physical stability. Fourier-transform infrared spectroscopy (FTIR) analysis showed no interactions between the various substances in the NPs. In vivo studies in Swiss albino mice infected with Plasmodium berghei revealed that the nanoformulated PQ was 20% more effective than the standard oral dose. Biodistribution studies indicated that 80% of the NPs accumulated in the liver, highlighting their potential for targeted drug delivery. This research demonstrates the successful development of a nanomedicine delivery system for antimalarial drugs, offering a promising strategy to enhance treatment efficacy while reducing adverse effects.

普利马喹(Primaquine,PQ)是一种广泛使用的抗疟药物,但其高剂量要求会导致严重的组织损伤,并对胃肠道和血液系统产生不良影响。最近的研究表明,纳米制剂可以提高药物的生物利用度,从而提高疗效、减少给药次数并将毒性降至最低。本研究采用改良的双乳液溶剂蒸发技术(w/o/w)制备了负载 PQ 的 PLGA 纳米粒子(PQ-NPs)。PQ-NPs 的平均粒径为 228 ± 2.6 nm,zeta 电位为 +27.4 mV,封装效率为 81.3 ± 3.5%。扫描电子显微镜(SEM)证实了它们的球形形态,体外释放曲线显示药物在 72 小时内持续释放。差示扫描量热法(DSC)热图显示药物存在于纳米颗粒中,并提高了物理稳定性。傅立叶变换红外光谱(FTIR)分析表明,纳米粒子中的各种物质之间没有相互作用。在感染了贝氏疟原虫的瑞士白化小鼠体内进行的研究表明,纳米化的 PQ 比标准口服剂量的效果高出 20%。生物分布研究表明,80% 的 NPs 聚集在肝脏中,突出了其靶向给药的潜力。这项研究表明,抗疟药物纳米药物递送系统的成功开发,为提高疗效、减少不良反应提供了一种前景广阔的策略。
{"title":"Targeted polymeric primaquine nanoparticles: optimization, evaluation, and in-vivo liver uptake for improved malaria treatment.","authors":"Sarvesh Bhargava, Hitesh Kumar Dewangan, Rohitas Deshmukh","doi":"10.1080/09205063.2024.2391225","DOIUrl":"https://doi.org/10.1080/09205063.2024.2391225","url":null,"abstract":"<p><p>Primaquine (PQ) is a widely used antimalarial drug, but its high dosage requirements can lead to significant tissue damage and adverse gastrointestinal and hematological effects. Recent studies have shown that nanoformulations can enhance the bioavailability of pharmaceuticals, thereby increasing efficacy, reducing dosing frequency, and minimizing toxicity. In this study, PQ-loaded PLGA nanoparticles (PQ-NPs) were prepared using a modified double emulsion solvent evaporation technique (w/o/w). The PQ-NPs exhibited a mean particle size of 228 ± 2.6 nm, a zeta potential of +27.4 mV, and an encapsulation efficiency of 81.3 ± 3.5%. Scanning electron microscopy (SEM) confirmed their spherical morphology, and the <i>in vitro</i> release profile demonstrated continuous drug release over 72 h. Differential scanning calorimetry (DSC) thermograms indicated that the drug was present in the nanoparticles, with improved physical stability. Fourier-transform infrared spectroscopy (FTIR) analysis showed no interactions between the various substances in the NPs. <i>In vivo</i> studies in Swiss albino mice infected with <i>Plasmodium berghei</i> revealed that the nanoformulated PQ was 20% more effective than the standard oral dose. Biodistribution studies indicated that 80% of the NPs accumulated in the liver, highlighting their potential for targeted drug delivery. This research demonstrates the successful development of a nanomedicine delivery system for antimalarial drugs, offering a promising strategy to enhance treatment efficacy while reducing adverse effects.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-17"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of ibuprofen/naringenin-coloaded into zein/sodium caseinate nanoparticles: evaluation of antiproliferative activity and apoptosis induction in liver cancer cells. 将布洛芬/柚皮苷复合到玉米蛋白/酪蛋白酸钠纳米颗粒中的制备方法:对肝癌细胞抗增殖活性和凋亡诱导的评估。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-01 DOI: 10.1080/09205063.2024.2391653
Hesham S Almoallim, Hossam M Aljawdah, Muruganantham Bharathi, Raja Manickam, Suha Mujahed Abudoleh, Samer Hasan Hussein-Al-Ali, Parthasarathy Surya

Nowadays, liver cancer is one of the most disturbing types of cancer that can affect either sex. Nanoparticles (NPs) of zein/sodium caseinate incorporating ibuprofen (IBU) and naringenin (NAR) have improved bioavailability and a high encapsulation efficiency (EE%). These nanoparticles are uniformly spherical. In vitro, cytotoxicity analysis on HepG2 cell lines, which are used to study human liver cancer, shows that encapsulated drugs (86.49% ± 1.90, and 78.52% ± 1.98 for NAR and IBU, respectively) have significantly lower IC50 values than individual drugs or their combined free form. In addition, the combination indices of 0.623 and 0.155 for IBU and NAR, respectively, show that the two have joint beneficial effects. The scratch wound healing assay results also show that the free drugs and the engineered NPs have a more significant anti-migratory effect than the untreated cells. The designed nanoparticles also reduce angiogenesis and proliferation while inducing apoptosis, according to in vitro results. In conclusion, a new approach to treating liver cancer may lie in the nanoencapsulation of numerous drugs within nanoparticles.

目前,肝癌是最令人不安的癌症类型之一,男女均可患病。含有布洛芬(IBU)和柚皮苷(NAR)的玉米蛋白/酪蛋白酸钠纳米颗粒(NPs)具有更高的生物利用度和封装效率(EE%)。这些纳米颗粒呈均匀球形。对用于研究人类肝癌的 HepG2 细胞系进行的体外细胞毒性分析表明,封装药物(NAR 和 IBU 分别为 86.49% ± 1.90 和 78.52% ± 1.98)的 IC50 值明显低于单个药物或其游离形式的组合。此外,IBU 和 NAR 的组合指数分别为 0.623 和 0.155,表明这两种药物具有共同的益处。划痕伤口愈合试验结果也表明,游离药物和工程纳米粒子比未经处理的细胞具有更显著的抗迁移效果。体外实验结果表明,设计的纳米粒子还能减少血管生成和增殖,同时诱导细胞凋亡。总之,治疗肝癌的新方法可能在于将多种药物纳米封装在纳米颗粒中。
{"title":"Fabrication of ibuprofen/naringenin-coloaded into zein/sodium caseinate nanoparticles: evaluation of antiproliferative activity and apoptosis induction in liver cancer cells.","authors":"Hesham S Almoallim, Hossam M Aljawdah, Muruganantham Bharathi, Raja Manickam, Suha Mujahed Abudoleh, Samer Hasan Hussein-Al-Ali, Parthasarathy Surya","doi":"10.1080/09205063.2024.2391653","DOIUrl":"https://doi.org/10.1080/09205063.2024.2391653","url":null,"abstract":"<p><p>Nowadays, liver cancer is one of the most disturbing types of cancer that can affect either sex. Nanoparticles (NPs) of zein/sodium caseinate incorporating ibuprofen (IBU) and naringenin (NAR) have improved bioavailability and a high encapsulation efficiency (EE%). These nanoparticles are uniformly spherical. <i>In vitro</i>, cytotoxicity analysis on HepG2 cell lines, which are used to study human liver cancer, shows that encapsulated drugs (86.49% ± 1.90, and 78.52% ± 1.98 for NAR and IBU, respectively) have significantly lower IC<sub>50</sub> values than individual drugs or their combined free form. In addition, the combination indices of 0.623 and 0.155 for IBU and NAR, respectively, show that the two have joint beneficial effects. The scratch wound healing assay results also show that the free drugs and the engineered NPs have a more significant anti-migratory effect than the untreated cells. The designed nanoparticles also reduce angiogenesis and proliferation while inducing apoptosis, according to <i>in vitro</i> results. In conclusion, a new approach to treating liver cancer may lie in the nanoencapsulation of numerous drugs within nanoparticles.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-20"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of novel hybrid nanomaterials with potential application in bone/dental tissue engineering: design, fabrication and characterization enriched-SAPO-34/CS/PANI scaffold. 开发具有骨/牙组织工程应用潜力的新型混合纳米材料:富集-SAPO-34/CS/PANI 支架的设计、制造和表征。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-01 Epub Date: 2024-07-02 DOI: 10.1080/09205063.2024.2366638
Golnaz Navidi, Saeideh Same, Maryam Allahvirdinesbat, Parvaneh Nakhostin Panahi, Kazem Dindar Safa

Fe-Ca-SAPO-34/CS/PANI, a novel hybrid bio-composite scaffold with potential application in dental tissue engineering, was prepared by freeze drying technique. The scaffold was characterized using FT-IR and SEM methods. The effects of PANI on the physicochemical properties of the Fe-Ca-SAPO-34/CS scaffold were investigated, including changes in swelling ratio, mechanical behavior, density, porosity, biodegradation, and biomineralization. Compared to the Fe-Ca-SAPO-34/CS scaffold, adding PANI decreased the pore size, porosity, swelling ratio, and biodegradation, while increasing the mechanical strength and biomineralization. Cell viability, cytotoxicity, and adhesion of human dental pulp stem cells (hDPSCs) on the scaffolds were investigated by MTT assay and SEM. The Fe-Ca-SAPO-34/CS/PANI scaffold promoted hDPSC proliferation and osteogenic differentiation compared to the Fe-Ca-SAPO-34/CS scaffold. Alizarin red staining, alkaline phosphatase activity, and qRT-PCR results revealed that Fe-Ca-SAPO-34/CS/PANI triggered osteoblast/odontoblast differentiation in hDPSCs through the up-regulation of osteogenic marker genes BGLAP, RUNX2, and SPARC. The significance of this study lies in developing a novel scaffold that synergistically combines the beneficial properties of Fe-Ca-SAPO-34, chitosan, and PANI to create an optimized microenvironment for dental tissue regeneration. These findings highlight the potential of the Fe-Ca-SAPO-34/CS/PANI scaffold as a promising biomaterial for dental tissue engineering applications, paving the way for future research and clinical translation in regenerative dentistry.

通过冷冻干燥技术制备了一种新型混合生物复合材料支架--Fe-Ca-SAPO-34/CS/PANI,该支架有望应用于牙科组织工程。使用傅立叶变换红外光谱和扫描电镜方法对该支架进行了表征。研究了 PANI 对 Fe-Ca-SAPO-34/CS 支架理化性质的影响,包括膨胀率、力学行为、密度、孔隙率、生物降解和生物矿化的变化。与 Fe-Ca-SAPO-34/CS 支架相比,添加 PANI 会减小孔径、孔隙率、膨胀率和生物降解,同时增加机械强度和生物矿化。通过 MTT 试验和扫描电镜研究了人牙髓干细胞(hDPSCs)在支架上的细胞活力、细胞毒性和粘附性。与 Fe-Ca-SAPO-34/CS 支架相比,Fe-Ca-SAPO-34/CS/PANI 支架促进了 hDPSC 的增殖和成骨分化。茜素红染色、碱性磷酸酶活性和 qRT-PCR 结果表明,Fe-Ca-SAPO-34/CS/PANI 通过上调成骨标志基因 BGLAP、RUNX2 和 SPARC 触发了 hDPSC 的成骨细胞/骨细胞分化。本研究的意义在于开发了一种新型支架,它能协同结合 Fe-Ca-SAPO-34、壳聚糖和 PANI 的有益特性,为牙科组织再生创造优化的微环境。这些发现凸显了 Fe-Ca-SAPO-34/CS/PANI 支架作为一种有前途的生物材料在牙科组织工程应用中的潜力,为再生牙科的未来研究和临床转化铺平了道路。
{"title":"Development of novel hybrid nanomaterials with potential application in bone/dental tissue engineering: design, fabrication and characterization enriched-SAPO-34/CS/PANI scaffold.","authors":"Golnaz Navidi, Saeideh Same, Maryam Allahvirdinesbat, Parvaneh Nakhostin Panahi, Kazem Dindar Safa","doi":"10.1080/09205063.2024.2366638","DOIUrl":"10.1080/09205063.2024.2366638","url":null,"abstract":"<p><p>Fe-Ca-SAPO-34/CS/PANI, a novel hybrid bio-composite scaffold with potential application in dental tissue engineering, was prepared by freeze drying technique. The scaffold was characterized using FT-IR and SEM methods. The effects of PANI on the physicochemical properties of the Fe-Ca-SAPO-34/CS scaffold were investigated, including changes in swelling ratio, mechanical behavior, density, porosity, biodegradation, and biomineralization. Compared to the Fe-Ca-SAPO-34/CS scaffold, adding PANI decreased the pore size, porosity, swelling ratio, and biodegradation, while increasing the mechanical strength and biomineralization. Cell viability, cytotoxicity, and adhesion of human dental pulp stem cells (hDPSCs) on the scaffolds were investigated by MTT assay and SEM. The Fe-Ca-SAPO-34/CS/PANI scaffold promoted hDPSC proliferation and osteogenic differentiation compared to the Fe-Ca-SAPO-34/CS scaffold. Alizarin red staining, alkaline phosphatase activity, and qRT-PCR results revealed that Fe-Ca-SAPO-34/CS/PANI triggered osteoblast/odontoblast differentiation in hDPSCs through the up-regulation of osteogenic marker genes BGLAP, RUNX2, and SPARC. The significance of this study lies in developing a novel scaffold that synergistically combines the beneficial properties of Fe-Ca-SAPO-34, chitosan, and PANI to create an optimized microenvironment for dental tissue regeneration. These findings highlight the potential of the Fe-Ca-SAPO-34/CS/PANI scaffold as a promising biomaterial for dental tissue engineering applications, paving the way for future research and clinical translation in regenerative dentistry.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2090-2114"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal modulation of inflammation and chondrogenesis through dendritic nanoparticle-mediated therapy with diclofenac surface modification and strontium ion encapsulation. 通过树突状纳米粒子介导的双氯芬酸表面修饰和锶离子封装疗法,对炎症和软骨生成进行时间调节。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-01 Epub Date: 2024-07-12 DOI: 10.1080/09205063.2024.2366080
Peng Cheng, Jun Yang, Song Wu, Linlin Xie, Yong Xu, Nanjian Xu, Yafeng Xu

Cartilage tissue engineering holds great promise for efficient cartilage regeneration. However, early inflammatory reactions to seed cells and/or scaffolds impede this process. Consequently, managing inflammation is of paramount importance. Moreover, due to the body's restricted chondrogenic capacity, inducing cartilage regeneration becomes imperative. Thus, a controlled platform is essential to establish an anti-inflammatory microenvironment before initiating the cartilage regeneration process. In this study, we utilized fifth-generation polyamidoamine dendrimers (G5) as a vehicle for drugs to create composite nanoparticles known as G5-Dic/Sr. These nanoparticles were generated by surface modification with diclofenac (Dic), known for its potent anti-inflammatory effects, and encapsulating strontium (Sr), which effectively induces chondrogenesis, within the core. Our findings indicated that the G5-Dic/Sr nanoparticle exhibited selective Dic release during the initial 9 days and gradual Sr release from days 3 to 15. Subsequently, these nanoparticles were incorporated into a gelatin methacryloyl (GelMA) hydrogel, resulting in GelMA@G5-Dic/Sr. In vitro assessments demonstrated GelMA@G5-Dic/Sr's biocompatibility with bone marrow stem cells (BMSCs). The enclosed nanoparticles effectively mitigated inflammation in lipopolysaccharide-induced RAW264.7 macrophages and significantly augmented chondrogenesis in BMSCs cocultures. Implanting BMSCs-loaded GelMA@G5-Dic/Sr hydrogels in immunocompetent rabbits for 2 and 6 weeks revealed diminished inflammation and enhanced cartilage formation compared to GelMA, GelMA@G5, GelMA@G5-Dic, and GelMA@G5/Sr hydrogels. Collectively, this study introduces an innovative strategy to advance cartilage regeneration by temporally modulating inflammation and chondrogenesis in immunocompetent animals. Through the development of a platform addressing the temporal modulation of inflammation and the limited chondrogenic capacity, we offer valuable insights to the field of cartilage tissue engineering.

软骨组织工程为高效软骨再生带来了巨大希望。然而,种子细胞和/或支架的早期炎症反应阻碍了这一进程。因此,控制炎症至关重要。此外,由于人体的软骨生成能力有限,诱导软骨再生变得势在必行。因此,在启动软骨再生过程之前,建立一个抗炎微环境的可控平台至关重要。在这项研究中,我们利用第五代聚氨基胺树枝状聚合物(G5)作为药物载体,创建了名为 G5-Dic/Sr 的复合纳米粒子。 这些纳米粒子是用双氯芬酸(Dic)进行表面修饰后生成的,双氯芬酸具有强大的抗炎作用,而锶(Sr)则能有效诱导软骨生成。我们的研究结果表明,G5-Dic/Sr 纳米粒子在最初的 9 天内会选择性地释放 Dic,而在第 3 到 15 天内会逐渐释放 Sr。体外评估表明,GelMA@G5-Dic/Sr 与骨髓干细胞(BMSCs)具有生物相容性。封闭的纳米颗粒有效减轻了脂多糖诱导的 RAW264.7 巨噬细胞的炎症反应,并显著促进了骨髓干细胞共培养的软骨生成。与 GelMA、GelMA@G5、GelMA@G5-Dic 和 GelMA@G5/Sr 水凝胶相比,将负载 BMSCs 的 GelMA@G5-Dic/Sr 水凝胶植入免疫功能正常的兔子体内 2 周和 6 周后,发现炎症减轻,软骨形成增强。总之,这项研究提出了一种创新策略,通过在免疫功能健全的动物体内对炎症和软骨生成进行时间调节来促进软骨再生。通过开发一个平台来解决炎症的时间调节和有限的软骨生成能力问题,我们为软骨组织工程领域提供了宝贵的见解。
{"title":"Temporal modulation of inflammation and chondrogenesis through dendritic nanoparticle-mediated therapy with diclofenac surface modification and strontium ion encapsulation.","authors":"Peng Cheng, Jun Yang, Song Wu, Linlin Xie, Yong Xu, Nanjian Xu, Yafeng Xu","doi":"10.1080/09205063.2024.2366080","DOIUrl":"10.1080/09205063.2024.2366080","url":null,"abstract":"<p><p>Cartilage tissue engineering holds great promise for efficient cartilage regeneration. However, early inflammatory reactions to seed cells and/or scaffolds impede this process. Consequently, managing inflammation is of paramount importance. Moreover, due to the body's restricted chondrogenic capacity, inducing cartilage regeneration becomes imperative. Thus, a controlled platform is essential to establish an anti-inflammatory microenvironment before initiating the cartilage regeneration process. In this study, we utilized fifth-generation polyamidoamine dendrimers (G5) as a vehicle for drugs to create composite nanoparticles known as G5-Dic/Sr. These nanoparticles were generated by surface modification with diclofenac (Dic), known for its potent anti-inflammatory effects, and encapsulating strontium (Sr), which effectively induces chondrogenesis, within the core. Our findings indicated that the G5-Dic/Sr nanoparticle exhibited selective Dic release during the initial 9 days and gradual Sr release from days 3 to 15. Subsequently, these nanoparticles were incorporated into a gelatin methacryloyl (GelMA) hydrogel, resulting in GelMA@G5-Dic/Sr. <i>In vitro</i> assessments demonstrated GelMA@G5-Dic/Sr's biocompatibility with bone marrow stem cells (BMSCs). The enclosed nanoparticles effectively mitigated inflammation in lipopolysaccharide-induced RAW264.7 macrophages and significantly augmented chondrogenesis in BMSCs cocultures. Implanting BMSCs-loaded GelMA@G5-Dic/Sr hydrogels in immunocompetent rabbits for 2 and 6 weeks revealed diminished inflammation and enhanced cartilage formation compared to GelMA, GelMA@G5, GelMA@G5-Dic, and GelMA@G5/Sr hydrogels. Collectively, this study introduces an innovative strategy to advance cartilage regeneration by temporally modulating inflammation and chondrogenesis in immunocompetent animals. Through the development of a platform addressing the temporal modulation of inflammation and the limited chondrogenic capacity, we offer valuable insights to the field of cartilage tissue engineering.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2049-2067"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design, optimization, and evaluation of methotrexate loaded and albumin coated polymeric nanoparticles. 甲氨蝶呤负载和白蛋白涂层聚合物纳米粒子的设计、优化和评估。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-01 Epub Date: 2024-06-18 DOI: 10.1080/09205063.2024.2366619
Gaurav Tiwari, Anasuya Patil, Pranshul Sethi, Ankur Agrawal, Vaseem A Ansari, Mahesh Kumar Posa, Vaibhav Dagaji Aher

Methotrexate is a potent anticancer drug whose strong efflux is facilitated by the brain's efflux transporter. As an efflux transporter blocker, albumin increased the drug's concentration in the brain. Methotrexate-loaded nanoparticles were produced by evaporating the emulsification fluid. Improvements and analyses were made to the following aspects of the generated nanoparticles: size, polydispersity, zeta potential, entrapment efficiency, percentage yield, scanning electron microscopy, in vitro drug release studies, and sterilization. The particle size was determined to be in the nano range, and homogeneity of particle size was suggested by a low polydispersity index result. Particle diameters of 168 nm were observed in the F5 preparation, and zeta potential values of -1.5 mV suggested that the preparation produced adequate repulsive interactions between the nanoparticles. Albumin and dopamine HCl were employed to coat the methotrexate-loaded nanoparticles to guarantee that the brain received an adequate amount of them. The homogeneity of albumin coated nanoparticles was demonstrated by the low% PDI values of 0.129 and 0.122 for albumin coated nanoparticles (MNPs-Alb) and polymerized dopamine HCl and albumin coated nanoparticles (MNPs-PMD-Alb), respectively. After 48 h of incubation, the cell viability measured at the same drug concentration (5 mg) decreased for the F5, albumin coated nanoparticles, polymerized dopamine HCl coated nanoparticles, and polymerized dopamine HCl and albumin coated nanoparticles, respectively. Our primary findings demonstrate that the albumin nanoparticles containing methotrexate are designed to deliver the drug gradually. With minimal cytotoxicity, the intended preparation might give the brain an appropriate dosage of methotrexate.

甲氨蝶呤是一种强效抗癌药物,大脑的外排转运体可促进其大量外排。作为一种外排转运体阻断剂,白蛋白可增加药物在大脑中的浓度。通过蒸发乳化液,生产出了载甲氨蝶呤的纳米颗粒。对生成的纳米颗粒的以下方面进行了改进和分析:粒度、多分散性、ZETA电位、夹带效率、产量百分比、扫描电子显微镜、体外药物释放研究和灭菌。粒度被确定为纳米级,低多分散指数结果表明粒度均匀。在 F5 制剂中观察到的颗粒直径为 168 nm,Zeta 电位值为-1.5 mV,表明该制剂在纳米颗粒之间产生了充分的排斥作用。白蛋白和盐酸多巴胺被用来包覆甲氨蝶呤负载的纳米颗粒,以保证大脑获得足量的甲氨蝶呤负载。白蛋白包覆纳米粒子(MNPs-Alb)和盐酸多巴胺与白蛋白聚合纳米粒子(MNPs-PMD-Alb)的 PDI 值分别为 0.129 和 0.122,较低的 PDI 值证明了白蛋白包覆纳米粒子的均匀性。培养 48 小时后,在相同的药物浓度(5 毫克)下,F5、白蛋白包覆纳米粒子、盐酸聚合多巴胺包覆纳米粒子以及盐酸聚合多巴胺和白蛋白包覆纳米粒子的细胞活力分别下降。我们的主要研究结果表明,含有甲氨蝶呤的白蛋白纳米粒子可逐步递送药物。在细胞毒性最小的情况下,预期的制剂可为大脑提供适当剂量的甲氨蝶呤。
{"title":"Design, optimization, and evaluation of methotrexate loaded and albumin coated polymeric nanoparticles.","authors":"Gaurav Tiwari, Anasuya Patil, Pranshul Sethi, Ankur Agrawal, Vaseem A Ansari, Mahesh Kumar Posa, Vaibhav Dagaji Aher","doi":"10.1080/09205063.2024.2366619","DOIUrl":"10.1080/09205063.2024.2366619","url":null,"abstract":"<p><p>Methotrexate is a potent anticancer drug whose strong efflux is facilitated by the brain's efflux transporter. As an efflux transporter blocker, albumin increased the drug's concentration in the brain. Methotrexate-loaded nanoparticles were produced by evaporating the emulsification fluid. Improvements and analyses were made to the following aspects of the generated nanoparticles: size, polydispersity, zeta potential, entrapment efficiency, percentage yield, scanning electron microscopy, <i>in vitro</i> drug release studies, and sterilization. The particle size was determined to be in the nano range, and homogeneity of particle size was suggested by a low polydispersity index result. Particle diameters of 168 nm were observed in the F5 preparation, and zeta potential values of -1.5 mV suggested that the preparation produced adequate repulsive interactions between the nanoparticles. Albumin and dopamine HCl were employed to coat the methotrexate-loaded nanoparticles to guarantee that the brain received an adequate amount of them. The homogeneity of albumin coated nanoparticles was demonstrated by the low% PDI values of 0.129 and 0.122 for albumin coated nanoparticles (MNPs-Alb) and polymerized dopamine HCl and albumin coated nanoparticles (MNPs-PMD-Alb), respectively. After 48 h of incubation, the cell viability measured at the same drug concentration (5 mg) decreased for the F5, albumin coated nanoparticles, polymerized dopamine HCl coated nanoparticles, and polymerized dopamine HCl and albumin coated nanoparticles, respectively. Our primary findings demonstrate that the albumin nanoparticles containing methotrexate are designed to deliver the drug gradually. With minimal cytotoxicity, the intended preparation might give the brain an appropriate dosage of methotrexate.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2068-2089"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141419218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of pH-responsive temozolomide (TMZ)-clacked tannic acid-altered zeolite imidazole nanoframeworks (ZIF-8) enhance anticancer activity and apoptosis induction in glioma cancer cells. 制备具有 pH 响应性的替莫唑胺(TMZ)-叠层单宁酸改性沸石咪唑纳米框架(ZIF-8),增强抗癌活性并诱导胶质瘤癌细胞凋亡。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-01 Epub Date: 2024-07-02 DOI: 10.1080/09205063.2024.2364533
Chongwen Ren, Qingqing Tu, Jinchao He

Glioma cancer is the primary cause of cancer-related fatalities globally for both men and women. Traditional chemotherapy treatments for this condition frequently result in reduced efficacy and significant adverse effects. This investigation developed a new drug delivery system for the chemotherapeutic drug temozolomide (TMZ) using pH-sensitive drug delivery zeolitic imidazolate frameworks (ZIF-8). These nanoplatforms demonstrate excellent biocompatibility and hold potential for cancer therapy. Utilizing the favorable reaction milieu offered by ZIFs, a 'one-pot method' was employed for the fabrication and loading of drugs, leading to a good capacity for loading. TMZ@TA@ZIF-8 NPs exhibit a notable response to an acidic milieu, resulting in an enhanced drug release pattern characterized by a controlled release outcome. The effectiveness of TMZ@TA@ZIF-8 NPs in inhibiting the migration and invasion of U251 glioma cancer cells, as well as promoting apoptosis, was confirmed through various tests, including MTT (3-(4,5)-dimethylthiahiazo(-z-y1)) assay, DAPI/PI dual staining, and cell scratch assay. The biochemical fluorescent staining assays showed that TMZ@TA@ZIF-8 NPs potentially improved ROS, reduced MMP, and triggered apoptosis in U251 cells. In U251 cells treated with NPs, the p53, Bax, Cyt-C, caspase-3, -8, and -9 expressions were significantly enhanced, while Bcl-2 expression was diminished. These outcomes show the potential of TMZ@TA@ZIF-8 NPs as a therapeutic agent with anti-glioma properties. Overall, the pH-responsive drug delivery systems we fabricated using TMZ@TA@ZIF-8 NPs show great potential for cancer treatment. This approach has the potential to make significant contributions to the improvement of cancer therapy by overcoming the problems associated with TMZ-based treatments.

胶质瘤癌症是导致全球男性和女性癌症相关死亡的主要原因。传统的化疗方法常常导致疗效降低和严重的不良反应。这项研究利用对 pH 值敏感的给药沸石咪唑盐酸盐框架(ZIF-8),为化疗药物替莫唑胺(TMZ)开发了一种新的给药系统。这些纳米平台具有良好的生物相容性,有望用于癌症治疗。利用 ZIF 提供的有利反应环境,我们采用了 "一锅法 "来制造和装载药物,从而获得了良好的装载能力。TMZ@TA@ZIF-8 NPs 对酸性环境有明显的反应,从而增强了药物释放模式,达到了控释的效果。通过 MTT(3-(4,5)-dimethylthiahiazo(-z-y1))试验、DAPI/PI 双染色和细胞划痕试验等多种试验,证实了 TMZ@TA@ZIF-8 NPs 在抑制 U251 脑胶质瘤癌细胞迁移和侵袭以及促进细胞凋亡方面的有效性。生化荧光染色检测结果表明,TMZ@TA@ZIF-8 NPs可改善ROS,降低MMP,并诱导U251细胞凋亡。经 NPs 处理的 U251 细胞中,p53、Bax、Cyt-C、caspase-3、-8 和 -9 的表达明显增强,而 Bcl-2 的表达则有所降低。这些结果表明,TMZ@TA@ZIF-8 NPs 具有作为抗胶质瘤治疗药物的潜力。总之,我们利用 TMZ@TA@ZIF-8 NPs 制作的 pH 值响应型给药系统在癌症治疗方面显示出巨大的潜力。这种方法有望克服基于 TMZ 治疗的相关问题,为改善癌症治疗做出重大贡献。
{"title":"Fabrication of pH-responsive temozolomide (TMZ)-clacked tannic acid-altered zeolite imidazole nanoframeworks (ZIF-8) enhance anticancer activity and apoptosis induction in glioma cancer cells.","authors":"Chongwen Ren, Qingqing Tu, Jinchao He","doi":"10.1080/09205063.2024.2364533","DOIUrl":"10.1080/09205063.2024.2364533","url":null,"abstract":"<p><p>Glioma cancer is the primary cause of cancer-related fatalities globally for both men and women. Traditional chemotherapy treatments for this condition frequently result in reduced efficacy and significant adverse effects. This investigation developed a new drug delivery system for the chemotherapeutic drug temozolomide (TMZ) using pH-sensitive drug delivery zeolitic imidazolate frameworks (ZIF-8). These nanoplatforms demonstrate excellent biocompatibility and hold potential for cancer therapy. Utilizing the favorable reaction milieu offered by ZIFs, a 'one-pot method' was employed for the fabrication and loading of drugs, leading to a good capacity for loading. TMZ@TA@ZIF-8 NPs exhibit a notable response to an acidic milieu, resulting in an enhanced drug release pattern characterized by a controlled release outcome. The effectiveness of TMZ@TA@ZIF-8 NPs in inhibiting the migration and invasion of U251 glioma cancer cells, as well as promoting apoptosis, was confirmed through various tests, including MTT (3-(4,5)-dimethylthiahiazo(-z-y1)) assay, DAPI/PI dual staining, and cell scratch assay. The biochemical fluorescent staining assays showed that TMZ@TA@ZIF-8 NPs potentially improved ROS, reduced MMP, and triggered apoptosis in U251 cells. In U251 cells treated with NPs, the p53, Bax, Cyt-C, caspase-3, -8, and -9 expressions were significantly enhanced, while Bcl-2 expression was diminished. These outcomes show the potential of TMZ@TA@ZIF-8 NPs as a therapeutic agent with anti-glioma properties. Overall, the pH-responsive drug delivery systems we fabricated using TMZ@TA@ZIF-8 NPs show great potential for cancer treatment. This approach has the potential to make significant contributions to the improvement of cancer therapy by overcoming the problems associated with TMZ-based treatments.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1978-1998"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of PTFE + TiO2/Ag coatings on 316L/polydopamine with advanced mechanical, bio-corrosion, and antibacterial properties for stainless steel Catheters. 在 316L/聚多巴胺上制造具有先进机械、生物防腐和抗菌性能的聚四氟乙烯+二氧化钛/银涂层,用于不锈钢导管。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-01 Epub Date: 2024-06-16 DOI: 10.1080/09205063.2024.2365047
Mohammad Sajjad Sheikhzadeh, Reza Ahmadi, Niloufar Ghamari, Abdollah Afshar

This study explores the corrosion resistance and antibacterial properties of a PTFE + TiO2/Ag coating applied to 316 L stainless steel. To enhance adhesion, a polydopamine interlayer was chemically deposited onto the steel surface. The PTFE + TiO2 coating was subsequently applied through immersion, followed by the deposition of silver nanoparticles using a chemical method. Optimization of the polydopamine interlayer involved varying temperature, time, stirring speed, and drying parameters. The optimal conditions for the polydopamine interlayer were determined to be 60 °C for 1 h, 300 rpm stirring, and 24-h drying in a freeze dryer. Analytical results demonstrated that both the PTFE + TiO2 and PTFE/PTFE + TiO2/Ag coatings exhibited exceptional corrosion resistance, with corrosion currents of 3.3 × 10-5 and 3.2 × 10-4 μA/cm2, respectively. Antibacterial assessments showcased the remarkable ability of the PTFE/PTFE + TiO2/Ag coating, containing 5% silver content, to effectively inhibit bacterial penetration within a 6.5 mm radius. Furthermore, this coating displayed a water contact angle of 143°, classifying it as a hydrophobic coating. The photocatalytic efficiency (Rs) was determined to be 3.18 × 10-3 A/W, a performance level comparable to that of a standard UV sensor. These findings underscore the substantial enhancements in corrosion resistance, antibacterial performance, and hydrophobic characteristics achieved with the PTFE + TiO2/Ag coating, particularly through the novel optimization of the polydopamine interlayer. This coating exhibits great promise for multifunctional protective applications in diverse fields, particularly demonstrating its suitability for implants and bio-coatings.

本研究探讨了应用于 316 L 不锈钢的 PTFE + TiO2/Ag 涂层的耐腐蚀性和抗菌性。为了增强附着力,在钢表面化学沉积了一层聚多巴胺中间膜。PTFE + TiO2 涂层随后通过浸泡进行涂敷,然后使用化学方法沉积银纳米粒子。聚多巴胺中间膜的优化包括改变温度、时间、搅拌速度和干燥参数。聚多巴胺中间膜的最佳条件被确定为 60 °C 1 小时、搅拌速度 300 rpm、在冷冻干燥机中干燥 24 小时。分析结果表明,PTFE + TiO2 和 PTFE/PTFE + TiO2/Ag 涂层都具有优异的耐腐蚀性,腐蚀电流分别为 3.3 × 10-5 和 3.2 × 10-4 μA/cm2。抗菌评估结果表明,含银量为 5%的 PTFE/PTFE + TiO2/Ag 涂层能够有效抑制半径为 6.5 mm 的细菌渗透。此外,这种涂层的水接触角为 143°,属于疏水涂层。光催化效率(Rs)被测定为 3.18 × 10-3 A/W,与标准紫外线传感器的性能水平相当。这些发现强调了聚四氟乙烯 + TiO2/Ag 涂层在耐腐蚀性、抗菌性能和疏水特性方面的显著提高,特别是通过对聚多巴胺中间膜的新颖优化。这种涂层在不同领域的多功能保护应用中大有可为,尤其适用于植入物和生物涂层。
{"title":"Fabrication of PTFE + TiO<sub>2</sub>/Ag coatings on 316L/polydopamine with advanced mechanical, bio-corrosion, and antibacterial properties for stainless steel Catheters.","authors":"Mohammad Sajjad Sheikhzadeh, Reza Ahmadi, Niloufar Ghamari, Abdollah Afshar","doi":"10.1080/09205063.2024.2365047","DOIUrl":"10.1080/09205063.2024.2365047","url":null,"abstract":"<p><p>This study explores the corrosion resistance and antibacterial properties of a PTFE + TiO<sub>2</sub>/Ag coating applied to 316 L stainless steel. To enhance adhesion, a polydopamine interlayer was chemically deposited onto the steel surface. The PTFE + TiO<sub>2</sub> coating was subsequently applied through immersion, followed by the deposition of silver nanoparticles using a chemical method. Optimization of the polydopamine interlayer involved varying temperature, time, stirring speed, and drying parameters. The optimal conditions for the polydopamine interlayer were determined to be 60 °C for 1 h, 300 rpm stirring, and 24-h drying in a freeze dryer. Analytical results demonstrated that both the PTFE + TiO<sub>2</sub> and PTFE/PTFE + TiO<sub>2</sub>/Ag coatings exhibited exceptional corrosion resistance, with corrosion currents of 3.3 × 10<sup>-5</sup> and 3.2 × 10<sup>-4</sup> μA/cm<sup>2</sup>, respectively. Antibacterial assessments showcased the remarkable ability of the PTFE/PTFE + TiO<sub>2</sub>/Ag coating, containing 5% silver content, to effectively inhibit bacterial penetration within a 6.5 mm radius. Furthermore, this coating displayed a water contact angle of 143°, classifying it as a hydrophobic coating. The photocatalytic efficiency (Rs) was determined to be 3.18 × 10<sup>-3</sup> A/W, a performance level comparable to that of a standard UV sensor. These findings underscore the substantial enhancements in corrosion resistance, antibacterial performance, and hydrophobic characteristics achieved with the PTFE + TiO<sub>2</sub>/Ag coating, particularly through the novel optimization of the polydopamine interlayer. This coating exhibits great promise for multifunctional protective applications in diverse fields, particularly demonstrating its suitability for implants and bio-coatings.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2020-2048"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and characterization of the injectable pH- and temperature-sensitive pentablock hydrogel containing human growth hormone-loaded chitosan nanoparticles via electrospraying. 通过电喷雾法制备含有载人生长激素壳聚糖纳米颗粒的可注射的 pH 和温度敏感的五嵌段水凝胶及其特性。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-01 Epub Date: 2024-07-07 DOI: 10.1080/09205063.2024.2365043
Dai Phu Huynh, Thien Anh Tran, Thi Thanh Hang Nguyen, Vu Viet Linh Nguyen

This research investigated the in vivo gelation, biodegradation, and drug release efficiency of a novel injectable sensitive drug delivery system for human growth hormone (HGh). This composite system comprises pH- and temperature-sensitive hydrogel, designated as oligomer serine-b-poly(lactide)-b-poly(ethylene glycol)-b-poly(lactide)-b-oligomer serine (OS-PLA-PEG-PLA-OS) pentablock copolymer, as matrix and electrosprayed HGh-loaded chitosan (HGh@CS) nanoparticles (NPs) as principal material. The proton nuclear magnetic resonance spectrum of the pH- and temperature-sensitive OS-PLA-PEG-PLA-OS pentablock copolymer hydrogel proved that this copolymer was successfully synthesized. The HGh was encapsulated in chitosan (CS) NPs by an electrospraying system in acetic acid with appropriate granulation parameters. The scanning electron microscopy images and size distribution showed that the HGh@CS NPs formed had an average diameter of 366.1 ± 214.5 nm with a discrete spherical shape and dispersed morphology. The sol-gel transition of complex gel based on HGh@CS NPs and OS-PLA-PEG-PLA-OS pentablock hydrogel was investigated at 15 °C and pH 7.8 in the sol state and gelled at 37 °C and pH 7.4, which is suitable for the physiological conditions of the human body. The HGh release experiment of the composite system was performed in an in vivo environment, which demonstrated the ability to release HGh, and underwent biodegradation within 32 days. The findings of the investigation revealed that the distribution of HGh@CS NPs into the hydrogel matrix not only improved the mechanical properties of the gel matrix but also controlled the drug release kinetics into the systematic bloodstream, which ultimately promotes the desired therapeutic body growth depending on the distinct concentration used.

本研究探讨了一种新型注射用人体生长激素(HGh)敏感给药系统的体内凝胶化、生物降解和药物释放效率。该复合系统由对pH和温度敏感的水凝胶(低聚丝氨酸-b-聚(乳酸)-b-聚(乙二醇)-b-聚(乳酸)-b-低聚丝氨酸(OS-PLA-PEG-PLA-OS)五嵌段共聚物)为基质,电喷载人生长激素壳聚糖(HGh@CS)纳米颗粒(NPs)为主要材料组成。pH和温度敏感的OS-PLA-PEG-PLA-OS五嵌段共聚物水凝胶的质子核磁共振谱证明了该共聚物的成功合成。在醋酸中采用电喷雾系统以适当的造粒参数将 HGh 包封在壳聚糖(CS)NPs 中。扫描电子显微镜图像和粒度分布显示,所形成的 HGh@CS NPs 平均直径为 366.1 ± 214.5 nm,呈离散球形,形态分散。研究了基于HGh@CS NPs和OS-PLA-PEG-PLA-OS五嵌段水凝胶的复合凝胶的溶胶-凝胶转变,溶胶状态下为15 °C、pH值为7.8,凝胶状态下为37 °C、pH值为7.4,适合人体生理条件。在体内环境中进行了该复合系统的 HGh 释放实验,结果表明其具有释放 HGh 的能力,并在 32 天内完成了生物降解。研究结果表明,HGh@CS NPs 在水凝胶基质中的分布不仅改善了凝胶基质的机械性能,还控制了药物在系统血液中的释放动力学,最终根据使用的不同浓度促进了理想的治疗体生长。
{"title":"Preparation and characterization of the injectable pH- and temperature-sensitive pentablock hydrogel containing human growth hormone-loaded chitosan nanoparticles via electrospraying.","authors":"Dai Phu Huynh, Thien Anh Tran, Thi Thanh Hang Nguyen, Vu Viet Linh Nguyen","doi":"10.1080/09205063.2024.2365043","DOIUrl":"10.1080/09205063.2024.2365043","url":null,"abstract":"<p><p>This research investigated the <i>in vivo</i> gelation, biodegradation, and drug release efficiency of a novel injectable sensitive drug delivery system for human growth hormone (HGh). This composite system comprises pH- and temperature-sensitive hydrogel, designated as oligomer serine-b-poly(lactide)-b-poly(ethylene glycol)-b-poly(lactide)-b-oligomer serine (OS-PLA-PEG-PLA-OS) pentablock copolymer, as matrix and electrosprayed HGh-loaded chitosan (HGh@CS) nanoparticles (NPs) as principal material. The proton nuclear magnetic resonance spectrum of the pH- and temperature-sensitive OS-PLA-PEG-PLA-OS pentablock copolymer hydrogel proved that this copolymer was successfully synthesized. The HGh was encapsulated in chitosan (CS) NPs by an electrospraying system in acetic acid with appropriate granulation parameters. The scanning electron microscopy images and size distribution showed that the HGh@CS NPs formed had an average diameter of 366.1 ± 214.5 nm with a discrete spherical shape and dispersed morphology. The sol-gel transition of complex gel based on HGh@CS NPs and OS-PLA-PEG-PLA-OS pentablock hydrogel was investigated at 15 °C and pH 7.8 in the sol state and gelled at 37 °C and pH 7.4, which is suitable for the physiological conditions of the human body. The HGh release experiment of the composite system was performed in an <i>in vivo</i> environment, which demonstrated the ability to release HGh, and underwent biodegradation within 32 days. The findings of the investigation revealed that the distribution of HGh@CS NPs into the hydrogel matrix not only improved the mechanical properties of the gel matrix but also controlled the drug release kinetics into the systematic bloodstream, which ultimately promotes the desired therapeutic body growth depending on the distinct concentration used.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1999-2019"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Biomaterials Science, Polymer Edition
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1