首页 > 最新文献

Journal of Biomaterials Science, Polymer Edition最新文献

英文 中文
Exploring the wound healing activity of phytosomal gel of Annona squamosa and Cinnamomum tamala leaves ethanolic extracts with antioxidant and antimicrobial activities in S aureus infected excision wound model. 在金黄色葡萄球菌感染的切除伤口模型中,探索植物体凝胶的抗氧化和抗菌活性。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-11-01 Epub Date: 2024-07-27 DOI: 10.1080/09205063.2024.2382540
Azhar Danish Khan, Mukesh Kr Singh, Pallavi Manish Lavhale, Mohd Yasir, Lubhan Singh

Wound healing is a natural process but it is impaired in certain conditions like age, stress, health, immunity status and microbial infection. Particularly in cases of chronic wounds, infection is nearly often the main and unavoidable obstacle to wound healing. For this purpose, leaves of Annona squamosa and Cinnamomum tamala were selected based on their ethnopharmacological uses and reported pharmacological activities. The ethanolic extracts of both plant parts i.e. ethanolic extracts of Annona squamosa (ASEE) and Cinnamomum tamala (CTEE) were evaluated for their antioxidant and antimicrobial activities individually as well as in 1:1 combination as Polyherbal Ethanolic extract (PHEE). In our previous work both these ethanolic extracts were combined and phytosomes were prepared by thin layer hydration method and optimized for vesicle size and entrapment efficiency. The phytosomes were then incorporated into Carbopol gel matrix. In this present study the selected phytosomal gel was tested in two different concentrations (2% and 5%) for in vivo wound healing activity using S. aureus infected excision wound model. The various parameters examined were percentage wound contraction, epithelization period, bacteriological quantification, biochemical parameters like Superoxide dismutase (SOD), Catalase and hydroxyproline. The PHEE exhibited synergistic antioxidant activity. The PHEE also showed enhanced antimicrobial activity against bacteria namely gram-positive S. aureus, gram-negative E. Coli. The phytosomal gel showed increased wound contraction, reduced time of epithelization, increased hydroxyproline content, increased levels of SOD and Catalase enzymes and reduced bacterial load when compared with Povidone iodine ointment as standard in S. aureus infected excision wound model.

伤口愈合是一个自然过程,但在某些情况下,如年龄、压力、健康状况、免疫状态和微生物感染等,伤口愈合会受到影响。特别是在慢性伤口的情况下,感染往往是伤口愈合不可避免的主要障碍。为此,根据其民族药理学用途和已报道的药理活性,我们选择了乌贼葵(Annona squamosa)和肉桂(Cinnamomum tamala)的叶子。我们对这两种植物部分的乙醇提取物,即蛇莓乙醇提取物(ASEE)和肉桂乙醇提取物(CTEE)的抗氧化和抗菌活性进行了单独评估,并以 1:1 的组合作为多草本乙醇提取物(PHEE)进行了评估。在我们之前的工作中,我们将这两种乙醇提取物结合在一起,采用薄层水合法制备了植物体,并优化了囊泡大小和包埋效率。然后将植物体纳入 Carbopol 凝胶基质中。本研究使用金黄色葡萄球菌感染的切除伤口模型,测试了两种不同浓度(2% 和 5%)的所选植物体凝胶的体内伤口愈合活性。检测的各种参数包括伤口收缩百分比、上皮化期、细菌定量、超氧化物歧化酶(SOD)、过氧化氢酶和羟脯氨酸等生化参数。PHEE 具有协同抗氧化活性。PHEE 对细菌(革兰氏阳性金黄色葡萄球菌和革兰氏阴性大肠杆菌)的抗菌活性也有所增强。在金黄色葡萄球菌感染的切除伤口模型中,与聚维酮碘软膏(标准品)相比,植物凝胶体显示伤口收缩增强、上皮形成时间缩短、羟脯氨酸含量增加、SOD 和过氧化氢酶水平提高,细菌量减少。
{"title":"Exploring the wound healing activity of phytosomal gel of <i>Annona squamosa</i> and <i>Cinnamomum tamala</i> leaves ethanolic extracts with antioxidant and antimicrobial activities in <i>S aureus</i> infected excision wound model.","authors":"Azhar Danish Khan, Mukesh Kr Singh, Pallavi Manish Lavhale, Mohd Yasir, Lubhan Singh","doi":"10.1080/09205063.2024.2382540","DOIUrl":"10.1080/09205063.2024.2382540","url":null,"abstract":"<p><p>Wound healing is a natural process but it is impaired in certain conditions like age, stress, health, immunity status and microbial infection. Particularly in cases of chronic wounds, infection is nearly often the main and unavoidable obstacle to wound healing. For this purpose, leaves of <i>Annona squamosa</i> and <i>Cinnamomum tamala</i> were selected based on their ethnopharmacological uses and reported pharmacological activities. The ethanolic extracts of both plant parts i.e. ethanolic extracts of <i>Annona squamosa</i> (ASEE) and <i>Cinnamomum tamala</i> (CTEE) were evaluated for their antioxidant and antimicrobial activities individually as well as in 1:1 combination as Polyherbal Ethanolic extract (PHEE). In our previous work both these ethanolic extracts were combined and phytosomes were prepared by thin layer hydration method and optimized for vesicle size and entrapment efficiency. The phytosomes were then incorporated into Carbopol gel matrix. In this present study the selected phytosomal gel was tested in two different concentrations (2% and 5%) for <i>in vivo</i> wound healing activity using <i>S. aureus</i> infected excision wound model. The various parameters examined were percentage wound contraction, epithelization period, bacteriological quantification, biochemical parameters like Superoxide dismutase (SOD), Catalase and hydroxyproline. The PHEE exhibited synergistic antioxidant activity. The PHEE also showed enhanced antimicrobial activity against bacteria namely gram-positive <i>S. aureus,</i> gram-negative <i>E. Coli.</i> The phytosomal gel showed increased wound contraction, reduced time of epithelization, increased hydroxyproline content, increased levels of SOD and Catalase enzymes and reduced bacterial load when compared with Povidone iodine ointment as standard in <i>S. aureus</i> infected excision wound model.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2447-2468"},"PeriodicalIF":3.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of an anticoagulant polyethersulfone membrane by immobilizing FXa inhibitors with a polydopamine coating. 通过在聚多巴胺涂层上固定 FXa 抑制剂制备抗凝聚醚砜膜。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-11-01 Epub Date: 2024-07-31 DOI: 10.1080/09205063.2024.2384275
Chengzhi Wang, Dayang Jiang, Huipeng Ge, Jianping Ning, Xia Li, Mingmei Liao, Xiangcheng Xiao

Anticoagulation treatment for patients with high bleeding risk during hemodialysis is challenging. Contact between the dialysis membrane and the blood leads to protein adsorption and activation of the coagulation cascade reaction. Activated coagulation Factor X (FXa) plays a central role in thrombogenesis, but anticoagulant modification of the dialysis membrane is rarely targeted at FXa. In this study, we constructed an anticoagulant membrane using the polydopamine coating method to graft FXa inhibitors (apixaban and rivaroxaban) on the membrane surface. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to characterize the membranes. The apixaban- and rivaroxaban-modified membranes showed lower water contact angles, decreased albumin protein adsorption, and suppressed platelet adhesion and activation compared to the unmodified PES membranes. Moreover, the modified membranes prolonged the blood clotting times in both the intrinsic and extrinsic coagulation pathways and inhibited FXa generation and complement activation, which suggested that the modified membrane enhanced biocompatibility and antithrombotic properties through the inhibition of FXa. Targeting FXa to design antithrombotic HD membranes or other blood contact materials might have great application potential.

对血液透析期间出血风险高的患者进行抗凝治疗具有挑战性。透析膜与血液接触会吸附蛋白质并激活凝血级联反应。活化的凝血因子 X(FXa)在血栓形成中起着核心作用,但透析膜的抗凝修饰很少针对 FXa。在这项研究中,我们采用聚多巴胺涂层法构建了一种抗凝膜,在膜表面接枝了 FXa 抑制剂(阿哌沙班和利伐沙班)。利用衰减全反射-傅立叶变换红外光谱(ATR-FTIR)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和原子力显微镜(AFM)对膜进行了表征。与未改性的 PES 膜相比,阿哌沙班和利伐沙班改性膜显示出较低的水接触角,减少了对白蛋白的吸附,抑制了血小板的粘附和活化。此外,改性膜延长了内在和外在凝血途径的凝血时间,抑制了FXa的生成和补体激活,这表明改性膜通过抑制FXa增强了生物相容性和抗血栓性能。以 FXa 为靶点设计抗血栓 HD 膜或其他血液接触材料可能具有巨大的应用潜力。
{"title":"Preparation of an anticoagulant polyethersulfone membrane by immobilizing FXa inhibitors with a polydopamine coating.","authors":"Chengzhi Wang, Dayang Jiang, Huipeng Ge, Jianping Ning, Xia Li, Mingmei Liao, Xiangcheng Xiao","doi":"10.1080/09205063.2024.2384275","DOIUrl":"10.1080/09205063.2024.2384275","url":null,"abstract":"<p><p>Anticoagulation treatment for patients with high bleeding risk during hemodialysis is challenging. Contact between the dialysis membrane and the blood leads to protein adsorption and activation of the coagulation cascade reaction. Activated coagulation Factor X (FXa) plays a central role in thrombogenesis, but anticoagulant modification of the dialysis membrane is rarely targeted at FXa. In this study, we constructed an anticoagulant membrane using the polydopamine coating method to graft FXa inhibitors (apixaban and rivaroxaban) on the membrane surface. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to characterize the membranes. The apixaban- and rivaroxaban<b>-</b>modified membranes showed lower water contact angles, decreased albumin protein adsorption, and suppressed platelet adhesion and activation compared to the unmodified PES membranes. Moreover, the modified membranes prolonged the blood clotting times in both the intrinsic and extrinsic coagulation pathways and inhibited FXa generation and complement activation, which suggested that the modified membrane enhanced biocompatibility and antithrombotic properties through the inhibition of FXa. Targeting FXa to design antithrombotic HD membranes or other blood contact materials might have great application potential.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2469-2483"},"PeriodicalIF":3.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving biological and mechanical properties of bioprinted PCL-alginate-chondrocyte scaffolds for patellofemoral cartilage tissue regeneration. 改善用于髌骨软骨组织再生的生物打印 PCL-精氨酸-软骨细胞支架的生物和机械性能。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-11-01 Epub Date: 2024-07-30 DOI: 10.1080/09205063.2024.2385182
Hosein Rostamani, Omid Fakhraei, Narges Kelidari, Fatemeh Toosizadeh Khorasani

In this study, polycaprolactone (PCL) scaffolds have been employed as structural framework scaffolds for patellofemoral cartilage tissue regeneration. The biomechanical and biological properties of different scaffolds were investigated by varying alginate concentrations and the number of scaffold layers. Patellofemoral cartilage defects result in knee pain and reduced mobility, and they are usually treated with conventional methods, often with limited success. Generally, tissue-engineered PCL-alginate scaffolds fabricated by bioprinting technology show promise for enhanced cartilage regeneration due to the biocompatibility and mechanical stability of PCL. In addition, alginate is known for its cell encapsulation capabilities and for promoting cell viability. Biological and morphological assessments, utilizing water contact angle, cell adhesion tests, MTT assays, and scanning electron microscopy (SEM), informed the selection of the optimized scaffold. Comparative analyses between the initial optimal scaffolds with the same chemical composition also included flexural and compression tests and fracture surface observations using SEM. The controlled integration of PCL and alginate offers a hybrid approach, that assembles the mechanical strength of PCL and the bioactive properties of alginate for tissue reconstruction potential. This study aims to identify the most effective scaffold composition for patellofemoral articular cartilage tissue engineering, emphasizing cell viability, structural morphology, and mechanical integrity. The results showed that the optimum biomechanical and biological properties of scaffolds were obtained with a 10% alginate concentration in the monolayer of PCL structure. The findings contribute to regenerative medicine by advancing the understanding of functional tissue constructs, bringing us closer to addressing articular cartilage defects and related clinical challenges.

本研究采用聚己内酯(PCL)支架作为髌骨软骨组织再生的结构框架支架。通过改变藻酸盐浓度和支架层数,研究了不同支架的生物力学和生物学特性。髌骨软骨缺损会导致膝关节疼痛和活动能力下降,通常采用传统方法治疗,但效果有限。一般来说,由于 PCL 的生物相容性和机械稳定性,通过生物打印技术制造的组织工程 PCL-海藻酸盐支架有望促进软骨再生。此外,海藻酸盐以其细胞包裹能力和促进细胞活力而著称。利用水接触角、细胞粘附测试、MTT 试验和扫描电子显微镜(SEM)进行的生物和形态学评估为优化支架的选择提供了依据。化学成分相同的初始优化支架之间的比较分析还包括挠曲和压缩试验以及利用扫描电子显微镜进行的断裂面观察。PCL 和海藻酸盐的可控整合提供了一种混合方法,它集合了 PCL 的机械强度和海藻酸盐的生物活性特性,具有组织重建的潜力。本研究旨在确定髌骨关节软骨组织工程最有效的支架成分,强调细胞活力、结构形态和机械完整性。结果表明,PCL 结构单层中海藻酸浓度为 10%时,支架的生物力学和生物学特性最佳。这些研究结果有助于再生医学的发展,加深了人们对功能性组织结构的理解,使我们更接近于解决关节软骨缺损和相关的临床难题。
{"title":"Improving biological and mechanical properties of bioprinted PCL-alginate-chondrocyte scaffolds for patellofemoral cartilage tissue regeneration.","authors":"Hosein Rostamani, Omid Fakhraei, Narges Kelidari, Fatemeh Toosizadeh Khorasani","doi":"10.1080/09205063.2024.2385182","DOIUrl":"10.1080/09205063.2024.2385182","url":null,"abstract":"<p><p>In this study, polycaprolactone (PCL) scaffolds have been employed as structural framework scaffolds for patellofemoral cartilage tissue regeneration. The biomechanical and biological properties of different scaffolds were investigated by varying alginate concentrations and the number of scaffold layers. Patellofemoral cartilage defects result in knee pain and reduced mobility, and they are usually treated with conventional methods, often with limited success. Generally, tissue-engineered PCL-alginate scaffolds fabricated by bioprinting technology show promise for enhanced cartilage regeneration due to the biocompatibility and mechanical stability of PCL. In addition, alginate is known for its cell encapsulation capabilities and for promoting cell viability. Biological and morphological assessments, utilizing water contact angle, cell adhesion tests, MTT assays, and scanning electron microscopy (SEM), informed the selection of the optimized scaffold. Comparative analyses between the initial optimal scaffolds with the same chemical composition also included flexural and compression tests and fracture surface observations using SEM. The controlled integration of PCL and alginate offers a hybrid approach, that assembles the mechanical strength of PCL and the bioactive properties of alginate for tissue reconstruction potential. This study aims to identify the most effective scaffold composition for patellofemoral articular cartilage tissue engineering, emphasizing cell viability, structural morphology, and mechanical integrity. The results showed that the optimum biomechanical and biological properties of scaffolds were obtained with a 10% alginate concentration in the monolayer of PCL structure. The findings contribute to regenerative medicine by advancing the understanding of functional tissue constructs, bringing us closer to addressing articular cartilage defects and related clinical challenges.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2549-2569"},"PeriodicalIF":3.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review on using injectable chitosan microgels for osteochondral tissue repair. 关于使用可注射壳聚糖微凝胶修复骨软骨组织的全面综述。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-26 DOI: 10.1080/09205063.2024.2419715
Sarah Salehi

Restoring cartilage to healthy state is challenging due to low cell density and hence low regenerative capacity. The current platforms are not compatible with clinical translation and require dedicated handling of trained personnel. However, by engineering and implanting cell microaggregates in higher concentrations, efficient formation of new cartilage can be achieved, even in the absence of exogenous growth factors. Therefore, one-step surgeries are preferable for novel treatments and we need cell laden microgels allowing the formation of microaggregaets in vivo. Injectability is a key parameter for in situ forming the shape and minimally invasive clinical applications. Hydrogels as bioinks can restore damaged tissues to their primary shape. Chitosan is a polysaccharide derived from chitin with abundant usage in tissue engineering. This review highlights the use of chitosan as an injectable hydrogel for osteochondral defects. Several studies focused on encapsulating mesenchymal stem cells within chitosan hydrogels have been categorized and incorporating microfluidic devices has been identified in the forefront to form microgels. Additionally, the printability is another convenience of chitosan for using in 3D printing for cartilage tissue engineering which is described in this review.

由于细胞密度低,因此再生能力也低,将软骨恢复到健康状态具有挑战性。目前的平台与临床转化不兼容,需要训练有素的人员专门处理。然而,通过设计和植入高浓度的细胞微聚集体,即使在没有外源性生长因子的情况下,也能有效地形成新软骨。因此,对于新疗法来说,一步到位的手术是更可取的,我们需要能在体内形成微聚集体的含细胞微凝胶。可注射性是原位成形和微创临床应用的关键参数。水凝胶作为生物墨水,可使受损组织恢复原形。壳聚糖是一种从甲壳素中提取的多糖,在组织工程中应用广泛。本综述重点介绍壳聚糖作为可注射水凝胶在骨软骨缺损中的应用。几项研究的重点是将间充质干细胞封装在壳聚糖水凝胶中,并将微流体设备纳入形成微凝胶的最前沿。此外,可打印性也是壳聚糖用于软骨组织工程三维打印的另一个便利之处,本综述将对此进行介绍。
{"title":"A comprehensive review on using injectable chitosan microgels for osteochondral tissue repair.","authors":"Sarah Salehi","doi":"10.1080/09205063.2024.2419715","DOIUrl":"https://doi.org/10.1080/09205063.2024.2419715","url":null,"abstract":"<p><p>Restoring cartilage to healthy state is challenging due to low cell density and hence low regenerative capacity. The current platforms are not compatible with clinical translation and require dedicated handling of trained personnel. However, by engineering and implanting cell microaggregates in higher concentrations, efficient formation of new cartilage can be achieved, even in the absence of exogenous growth factors. Therefore, one-step surgeries are preferable for novel treatments and we need cell laden microgels allowing the formation of microaggregaets <i>in vivo</i>. Injectability is a key parameter for <i>in situ</i> forming the shape and minimally invasive clinical applications. Hydrogels as bioinks can restore damaged tissues to their primary shape. Chitosan is a polysaccharide derived from chitin with abundant usage in tissue engineering. This review highlights the use of chitosan as an injectable hydrogel for osteochondral defects. Several studies focused on encapsulating mesenchymal stem cells within chitosan hydrogels have been categorized and incorporating microfluidic devices has been identified in the forefront to form microgels. Additionally, the printability is another convenience of chitosan for using in 3D printing for cartilage tissue engineering which is described in this review.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-16"},"PeriodicalIF":3.6,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lecithin-based mixed polymeric micelles for activity improvement of curcumin against Staphylococcus aureus. 基于卵磷脂的混合聚合物胶束用于提高姜黄素对金黄色葡萄球菌的活性。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-26 DOI: 10.1080/09205063.2024.2421089
Yunjing Jia, Yuli Li, Mingzhu Wang, Fuyou Wang, Qingmin Liu, Zhimei Song

Considering cellular uptake promotion of lecithin and high expression of phospholipase in S. aureus, we designed curcumin (Cur)-loaded soy lecithin-based mPEG-PVL copolymer micelles (MPPC). The effect of soy lecithin on the anti-S. aureus activity of the formulation was studied with cur-loaded mPEG-PVL micelles (MPC without soy lecithin) as control. It was found that MPPC enhanced the water-solubility of Cur, and showed slow and sustained release behavior of Cur. Although MPPC had the same anti-S. aureus activity as Cur, its activity was significantly higher than MPC due to the cellular uptake promotion of soybean lecithin. It was noted that MPPC had good inhibition or destruction effect on biofilm, significant cell membrane damage, strong inhibition effect on protease or lipase production, and obvious induction effect on ROS expression when compared with Cur and MPC. So, the introduction of soy lecithin could improve the antibacterial activity of Cur. The lecithin-based micelles would offer potential to deliver antibacterial drugs for improved therapeutic action.

考虑到卵磷脂对细胞吸收的促进作用以及金黄色葡萄球菌磷脂酶的高表达,我们设计了姜黄素(Cur)负载大豆卵磷脂的 mPEG-PVL 共聚物胶束(MPPC)。以姜黄素负载的 mPEG-PVL 胶束(不含大豆卵磷脂的 MPC)为对照,研究了大豆卵磷脂对制剂抗金黄色葡萄球菌活性的影响。结果发现,MPPC 提高了 Cur 的水溶性,并显示出 Cur 的缓释和持续释放行为。虽然 MPPC 与 Cur 具有相同的抗金黄色葡萄球菌活性,但由于大豆卵磷脂促进了细胞吸收,其活性明显高于 MPC。研究指出,与 Cur 和 MPC 相比,MPPC 对生物膜有良好的抑制或破坏作用,对细胞膜有明显的破坏作用,对蛋白酶或脂肪酶的产生有较强的抑制作用,对 ROS 的表达有明显的诱导作用。因此,引入大豆卵磷脂可以提高 Cur 的抗菌活性。以卵磷脂为基础的胶束有可能输送抗菌药物,提高治疗效果。
{"title":"Lecithin-based mixed polymeric micelles for activity improvement of curcumin against <i>Staphylococcus aureus</i>.","authors":"Yunjing Jia, Yuli Li, Mingzhu Wang, Fuyou Wang, Qingmin Liu, Zhimei Song","doi":"10.1080/09205063.2024.2421089","DOIUrl":"https://doi.org/10.1080/09205063.2024.2421089","url":null,"abstract":"<p><p>Considering cellular uptake promotion of lecithin and high expression of phospholipase in <i>S. aureus</i>, we designed curcumin (Cur)-loaded soy lecithin-based mPEG-PVL copolymer micelles (MPPC). The effect of soy lecithin on the anti<i>-S. aureus</i> activity of the formulation was studied with cur-loaded mPEG-PVL micelles (MPC without soy lecithin) as control. It was found that MPPC enhanced the water-solubility of Cur, and showed slow and sustained release behavior of Cur. Although MPPC had the same anti-<i>S. aureus</i> activity as Cur, its activity was significantly higher than MPC due to the cellular uptake promotion of soybean lecithin. It was noted that MPPC had good inhibition or destruction effect on biofilm, significant cell membrane damage, strong inhibition effect on protease or lipase production, and obvious induction effect on ROS expression when compared with Cur and MPC. So, the introduction of soy lecithin could improve the antibacterial activity of Cur. The lecithin-based micelles would offer potential to deliver antibacterial drugs for improved therapeutic action.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-18"},"PeriodicalIF":3.6,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A systematic review on hyaluronic acid coated nanoparticles: recent strategy in breast cancer management. 透明质酸涂层纳米粒子系统综述:乳腺癌治疗的最新策略
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-21 DOI: 10.1080/09205063.2024.2416293
Seema S Rathore, J Josephine Leno Jenita, Manjula Dotherabandi

Hyaluronic acid, a non-sulphated glycosaminoglycan has attracted its usage in the management of breast cancer. Drug-loaded nanoparticles with hyaluronic acid surface modifications show potential as a promising method for targeting and delivering drugs to the tumor site. The aim of this study was to conduct a systematic review of articles and assess the impact of hyaluronic acid coated nanoparticles on breast cancer. The various database were used for this comprehensive review. The inclusion and exclusion criteria were selected according to the PRISMA guidelines. Studies associated with characterization, in vitro, and in vivo studies were collected and subjected for further analysis. According to the inclusion criteria, 41 literature were selected for analysis. From all the studies, it was observed that the nanoparticles coated with hyaluronic acid produced better particle size, shape, zeta potential, increased in vitro cytotoxicity, cellular uptake, cell apoptosis, and anti-tumor effect in vivo. Research has shown that hyaluronic acid exhibits a higher affinity for CD44 receptors, resulting in enhanced targeted nanoparticle activity on cancer cells while sparing normal cells.

透明质酸是一种非硫酸化的糖胺聚糖,已被广泛用于乳腺癌的治疗。经过透明质酸表面修饰的载药纳米颗粒显示出作为靶向药物输送到肿瘤部位的一种有潜力的方法。本研究旨在对相关文章进行系统综述,评估透明质酸涂层纳米粒子对乳腺癌的影响。本综述使用了各种数据库。纳入和排除标准根据 PRISMA 指南进行选择。收集并进一步分析了与表征、体外和体内研究相关的研究。根据纳入标准,共选择了 41 篇文献进行分析。从所有研究中观察到,涂有透明质酸的纳米颗粒具有更好的粒度、形状、ZETA电位,体外细胞毒性、细胞摄取、细胞凋亡和体内抗肿瘤效果都有所提高。研究表明,透明质酸对 CD44 受体具有更高的亲和力,从而增强了纳米粒子对癌细胞的靶向活性,同时保护了正常细胞。
{"title":"A systematic review on hyaluronic acid coated nanoparticles: recent strategy in breast cancer management.","authors":"Seema S Rathore, J Josephine Leno Jenita, Manjula Dotherabandi","doi":"10.1080/09205063.2024.2416293","DOIUrl":"https://doi.org/10.1080/09205063.2024.2416293","url":null,"abstract":"<p><p>Hyaluronic acid, a non-sulphated glycosaminoglycan has attracted its usage in the management of breast cancer. Drug-loaded nanoparticles with hyaluronic acid surface modifications show potential as a promising method for targeting and delivering drugs to the tumor site. The aim of this study was to conduct a systematic review of articles and assess the impact of hyaluronic acid coated nanoparticles on breast cancer. The various database were used for this comprehensive review. The inclusion and exclusion criteria were selected according to the PRISMA guidelines. Studies associated with characterization, <i>in vitro</i>, and <i>in vivo</i> studies were collected and subjected for further analysis. According to the inclusion criteria, 41 literature were selected for analysis. From all the studies, it was observed that the nanoparticles coated with hyaluronic acid produced better particle size, shape, zeta potential, increased <i>in vitro</i> cytotoxicity, cellular uptake, cell apoptosis, and anti-tumor effect <i>in vivo</i>. Research has shown that hyaluronic acid exhibits a higher affinity for CD44 receptors, resulting in enhanced targeted nanoparticle activity on cancer cells while sparing normal cells.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-42"},"PeriodicalIF":3.6,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vivo delivery of PBAE/ZIF-8 enhances the sensitivity of colorectal cancer to doxorubicin through sh-LncRNA ASB16-AS1. 体内递送 PBAE/ZIF-8 可通过 sh-LncRNA ASB16-AS1 提高结直肠癌对多柔比星的敏感性。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-20 DOI: 10.1080/09205063.2024.2410060
Qing Yang, Xiaosheng Jin, Yuansen Zhang, Xiaoqiu Wu, Haiying Lin, Tingting Ji, Rongzhou Li

The aim of this study is to investigate the impact of sh-LncRNA ASB16-AS1 on doxorubicin (DOX) resistance in colorectal cancer (CRC). First, an in vitro study was conducted to investigate the effects of LncRNA ASB16-AS1, miR-185-5p, and TEAD1 on drug resistance in CRC cells. Subsequently, utilizing nanotechnology, poly(beta amino esters) (PBAE)/zeolitic imidazolate framework-8 (ZIF-8)@sh-LncRNA ASB16-AS1 nanoparticles (PZSNP) were synthesized and characterized, evaluating their cellular toxicity and hemolytic activity. Finally, a mouse subcutaneous tumor model was established by subcutaneous injection of SW480/DOX cell suspension to investigate the impact of PZSNP on the tumor. Under DOX treatment, downregulation of LncRNA ASB16-AS1, overexpression of miR-185-5p, or downregulation of TEAD1 suppressed the viability and proliferation of drug-resistant CRC cells while promoting apoptosis. Conversely, overexpression of LncRNA ASB16-AS1, inhibition of miR-185-5p, or overexpression of TEAD1 enhanced the viability and proliferation of drug-resistant CRC cells while inhibiting apoptosis. The synthesized PZSNP exhibited a spherical shape with an average particle size of 123.6 nm, possessed positive charge, displayed good stability. It effectively encapsulated shRNA and displayed low cellular toxicity and hemolytic activity. Under DOX treatment, significant tumor necrosis was observed in the PZSNP group, and tumor growth was suppressed without causing weight loss. LncRNA ASB16-AS1, miR-185-5p, and TEAD1 are involved in regulating cell viability, proliferation, and apoptosis, contributing to drug resistance in CRC cells. sh-LncRNA ASB16-AS1 enhances the sensitivity of CRC cells to DOX during treatment, and in vivo delivery of PZSNP may serve as an effective strategy to overcome chemotherapy resistance in CRC.

本研究旨在探讨 sh-LncRNA ASB16-AS1 对结直肠癌(CRC)多柔比星(DOX)耐药性的影响。首先,研究人员在体外研究了 LncRNA ASB16-AS1、miR-185-5p 和 TEAD1 对 CRC 细胞耐药性的影响。随后,利用纳米技术合成了聚(β氨基酯)(PBAE)/沸石咪唑框架-8(ZIF-8)@sh-LncRNA ASB16-AS1纳米颗粒(PZSNP),并对其细胞毒性和溶血活性进行了评价。最后,通过皮下注射 SW480/DOX 细胞悬液建立了小鼠皮下肿瘤模型,以研究 PZSNP 对肿瘤的影响。在 DOX 治疗下,下调 LncRNA ASB16-AS1、过表达 miR-185-5p 或下调 TEAD1 可抑制耐药 CRC 细胞的活力和增殖,同时促进细胞凋亡。相反,过表达 LncRNA ASB16-AS1、抑制 miR-185-5p 或过表达 TEAD1 会增强耐药 CRC 细胞的活力和增殖,同时抑制细胞凋亡。合成的 PZSNP 呈球形,平均粒径为 123.6 nm,带正电荷,稳定性好。它能有效地包裹 shRNA,并显示出较低的细胞毒性和溶血活性。在 DOX 治疗下,PZSNP 组观察到明显的肿瘤坏死,肿瘤生长受到抑制,且不会导致体重减轻。LncRNA ASB16-AS1、miR-185-5p和TEAD1参与调控细胞活力、增殖和凋亡,导致了CRC细胞的耐药性。
{"title":"<i>In vivo</i> delivery of PBAE/ZIF-8 enhances the sensitivity of colorectal cancer to doxorubicin through sh-LncRNA ASB16-AS1.","authors":"Qing Yang, Xiaosheng Jin, Yuansen Zhang, Xiaoqiu Wu, Haiying Lin, Tingting Ji, Rongzhou Li","doi":"10.1080/09205063.2024.2410060","DOIUrl":"https://doi.org/10.1080/09205063.2024.2410060","url":null,"abstract":"<p><p>The aim of this study is to investigate the impact of sh-LncRNA ASB16-AS1 on doxorubicin (DOX) resistance in colorectal cancer (CRC). First, an <i>in vitro</i> study was conducted to investigate the effects of LncRNA ASB16-AS1, miR-185-5p, and TEAD1 on drug resistance in CRC cells. Subsequently, utilizing nanotechnology, poly(beta amino esters) (PBAE)/zeolitic imidazolate framework-8 (ZIF-8)@sh-LncRNA ASB16-AS1 nanoparticles (PZSNP) were synthesized and characterized, evaluating their cellular toxicity and hemolytic activity. Finally, a mouse subcutaneous tumor model was established by subcutaneous injection of SW480/DOX cell suspension to investigate the impact of PZSNP on the tumor. Under DOX treatment, downregulation of LncRNA ASB16-AS1, overexpression of miR-185-5p, or downregulation of TEAD1 suppressed the viability and proliferation of drug-resistant CRC cells while promoting apoptosis. Conversely, overexpression of LncRNA ASB16-AS1, inhibition of miR-185-5p, or overexpression of TEAD1 enhanced the viability and proliferation of drug-resistant CRC cells while inhibiting apoptosis. The synthesized PZSNP exhibited a spherical shape with an average particle size of 123.6 nm, possessed positive charge, displayed good stability. It effectively encapsulated shRNA and displayed low cellular toxicity and hemolytic activity. Under DOX treatment, significant tumor necrosis was observed in the PZSNP group, and tumor growth was suppressed without causing weight loss. LncRNA ASB16-AS1, miR-185-5p, and TEAD1 are involved in regulating cell viability, proliferation, and apoptosis, contributing to drug resistance in CRC cells. sh<b>-</b>LncRNA ASB16-AS1 enhances the sensitivity of CRC cells to DOX during treatment, and <i>in vivo</i> delivery of PZSNP may serve as an effective strategy to overcome chemotherapy resistance in CRC.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-18"},"PeriodicalIF":3.6,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of anticancer drug incorporated aptamer-functionalized cationic β-lactoglobulin: induction of cell cycle arrest and apoptosis in colorectal cancer. 构建掺入抗癌药物的aptamer功能化阳离子β-乳球蛋白:诱导结直肠癌细胞周期停滞和凋亡。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-16 DOI: 10.1080/09205063.2024.2402142
Zhipeng Zhang, Tianran Zhang, Zimeng Li, Zhijun Zeng

Nanoscale drug delivery systems that are both multifunctional and targeted have been developed using proteins as a basis, thanks to their attractive biomacromolecule properties. A novel nanocarrier, aptamer (AS1411)-conjugated β-lactoglobulin/poly-l-lysine (BLG/Ap/PL) nanoparticles, was developed in this study. To this unique formulation, the as-prepared nanocarrier blends the distinctive features of an aptamer as a chemotherapeutic targeting agent with those of protein nanocarriers. By loading cabazitaxel (CTX) onto the nanocarriers, the therapeutic potential of BLG/Ap/PL could be demonstrated. The CTX-loaded BLG/Ap/PL (CTX@BLG/Ap/PL) showed a regulated drug release profile in an acidic milieu, which could improve therapeutic efficacy in cancer cells and have a high drug encapsulation efficacy of up to 93%. However, compared to free CTX, CTX@BLG/Ap/PL killed colorectal HCT116 cancer cells with a higher efficacy at 24 and 48 h. Further investigation confirms the apoptosis by acridine orange and ethidium bromide (AO/EB), and DAPI staining confirms the morphological changes, chromatin condensation, and membrane blebbing in the treated cell through flow cytometry displayed the release of higher percentages of apoptosis. Cell cycle analysis revealed that CTX@BLG/Ap/PL induced sub-G1 and G2/M phase (apoptosis) at 24 and 48 h. Annexin V/propidium iodide (PI) flow cytometry analysis confirmed that CTX@BLG/Ap/PL induces apoptosis in HCT116 cells. Overall, this study proved that CTX@BLG/Ap/PL had several advantages over free chemotherapeutic drugs and showed promise as a solution to the clinical problems associated with targeted antitumor drug delivery systems.

由于蛋白质具有诱人的生物大分子特性,以蛋白质为基础开发的纳米级药物输送系统具有多功能性和靶向性。本研究开发了一种新型纳米载体--aptamer(AS1411)共轭β-乳球蛋白/聚赖氨酸(BLG/Ap/PL)纳米颗粒。对于这种独特的配方,所制备的纳米载体融合了作为化疗靶向药的适配体和蛋白质纳米载体的显著特点。通过在纳米载体上负载卡巴齐他赛(CTX),可以证明 BLG/Ap/PL 的治疗潜力。负载了CTX的BLG/Ap/PL(CTX@BLG/Ap/PL)在酸性环境中显示出调节的药物释放曲线,可提高对癌细胞的疗效,药物包封率高达93%。进一步研究发现,吖啶橙和溴化乙锭(AO/EB)证实了细胞凋亡,DAPI染色证实了处理后细胞的形态变化、染色质凝结和膜裂解,流式细胞仪显示了较高比例的细胞凋亡释放。细胞周期分析表明,CTX@BLG/Ap/PL 可在 24 和 48 h 内诱导亚 G1 期和 G2/M 期细胞(凋亡),Annexin V/propidium iodide (PI) 流式细胞仪分析证实 CTX@BLG/Ap/PL 可诱导 HCT116 细胞凋亡。总之,这项研究证明,CTX@BLG/Ap/PL 与游离化疗药物相比具有多种优势,有望解决靶向抗肿瘤药物递送系统的临床问题。
{"title":"Construction of anticancer drug incorporated aptamer-functionalized cationic β-lactoglobulin: induction of cell cycle arrest and apoptosis in colorectal cancer.","authors":"Zhipeng Zhang, Tianran Zhang, Zimeng Li, Zhijun Zeng","doi":"10.1080/09205063.2024.2402142","DOIUrl":"https://doi.org/10.1080/09205063.2024.2402142","url":null,"abstract":"<p><p>Nanoscale drug delivery systems that are both multifunctional and targeted have been developed using proteins as a basis, thanks to their attractive biomacromolecule properties. A novel nanocarrier, aptamer (AS1411)-conjugated β-lactoglobulin/poly-l-lysine (BLG/Ap/PL) nanoparticles, was developed in this study. To this unique formulation, the as-prepared nanocarrier blends the distinctive features of an aptamer as a chemotherapeutic targeting agent with those of protein nanocarriers. By loading cabazitaxel (CTX) onto the nanocarriers, the therapeutic potential of BLG/Ap/PL could be demonstrated. The CTX-loaded BLG/Ap/PL (CTX@BLG/Ap/PL) showed a regulated drug release profile in an acidic milieu, which could improve therapeutic efficacy in cancer cells and have a high drug encapsulation efficacy of up to 93%. However, compared to free CTX, CTX@BLG/Ap/PL killed colorectal HCT116 cancer cells with a higher efficacy at 24 and 48 h. Further investigation confirms the apoptosis by acridine orange and ethidium bromide (AO/EB), and DAPI staining confirms the morphological changes, chromatin condensation, and membrane blebbing in the treated cell through flow cytometry displayed the release of higher percentages of apoptosis. Cell cycle analysis revealed that CTX@BLG/Ap/PL induced sub-G1 and G2/M phase (apoptosis) at 24 and 48 h. Annexin V/propidium iodide (PI) flow cytometry analysis confirmed that CTX@BLG/Ap/PL induces apoptosis in HCT116 cells. Overall, this study proved that CTX@BLG/Ap/PL had several advantages over free chemotherapeutic drugs and showed promise as a solution to the clinical problems associated with targeted antitumor drug delivery systems.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-20"},"PeriodicalIF":3.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ROS-responsive nanomicelles encapsulating celastrol ameliorate pressure overload-induced cardiac hypertrophy by regulating the NF-κB signaling pathway. ROS响应性纳米细胞包裹的仙鹤草醇通过调节NF-κB信号通路,改善压力过载诱导的心肌肥大。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-14 DOI: 10.1080/09205063.2024.2411095
Shanjiang Chen, Jianjian Yang, Fuli Liu

Celastrol (CEL) belongs to the group of non-steroidal immunosuppressants with the potential to improve cardiac hypertrophy (CH). However, the poor biocompatibility and low bioavailability of CEL limit its in vivo application. This study was aimed to develop a targeted drug delivery system that can efficiently and safely deliver CEL to target tissues, providing a research basis for the application of CEL in CH therapy. A novel ROS-sensitive drug-loaded nanomicelle, dodecanoic acid (DA)-phenylboronic acid pinacol ester-dextran polymer encapsulating CEL (DBD@CEL), was synthesized using chemical synthesis. Then, the morphology, particle size, drug-loaded content, and ROS-responsive release behavior of DBD@CEL were studied. Pharmacokinetics and biocompatibility were evaluated using healthy mice. Finally, the ability and mechanism of DBD@CEL in improving CH in vivo were investigated using a mouse CH model. DBD@CEL was successfully prepared with a drug loading of 18.9%. It exhibited excellent stability with an average particle size of 110.0 ± 1.7 nm. Within 48 h, DBD@CEL released only 19.4% in the absence of H2O2, while in the presence of 1 mM H2O2, the release rate increased to 71.5%. Biocompatibility studies indicated that DBD@CEL did not cause blood cell hemolysis, had no impact on normal organs, and did not result in abnormal blood biochemical indicators, demonstrating excellent biocompatibility. In vivo studies revealed that DBD@CEL regulated the activation of NF-κB signaling, inhibits pyroptosis and oxidative stress, and thereby ameliorates CH. The ROS-responsive DBD@CEL nanodrug delivery system enhances the therapeutic activity of CEL for CH, providing a promising drug delivery system for the clinical treatment of CH.

塞拉斯托(CEL)属于非甾体类免疫抑制剂,具有改善心脏肥大(CH)的潜力。然而,CEL 的生物相容性差、生物利用度低,限制了其在体内的应用。本研究旨在开发一种靶向给药系统,该系统能高效、安全地将CEL输送到靶组织,为CEL在CH治疗中的应用提供研究基础。本研究采用化学合成法合成了一种新型的ROS敏感药物载药纳米胶束--十二烷酸(DA)-苯硼酸频哪醇酯-葡聚糖聚合物包裹CEL(DBD@CEL)。然后,研究了 DBD@CEL 的形态、粒度、载药量和 ROS 响应释放行为。利用健康小鼠评估了药代动力学和生物相容性。最后,利用小鼠CH模型研究了DBD@CEL改善体内CH的能力和机制。DBD@CEL 制备成功,载药量为 18.9%。它具有极佳的稳定性,平均粒径为 110.0 ± 1.7 nm。在没有 H2O2 的情况下,DBD@CEL 在 48 小时内的释放率仅为 19.4%,而在有 1 mM H2O2 的情况下,释放率则增加到 71.5%。生物相容性研究表明,DBD@CEL 不会引起血细胞溶血,对正常器官没有影响,也不会导致血液生化指标异常,表现出良好的生物相容性。体内研究表明,DBD@CEL 可调节 NF-κB 信号的活化,抑制热蛋白沉积和氧化应激,从而改善 CH。ROS响应的DBD@CEL纳米给药系统增强了CEL对CH的治疗活性,为临床治疗CH提供了一种前景广阔的给药系统。
{"title":"ROS-responsive nanomicelles encapsulating celastrol ameliorate pressure overload-induced cardiac hypertrophy by regulating the NF-κB signaling pathway.","authors":"Shanjiang Chen, Jianjian Yang, Fuli Liu","doi":"10.1080/09205063.2024.2411095","DOIUrl":"https://doi.org/10.1080/09205063.2024.2411095","url":null,"abstract":"<p><p>Celastrol (CEL) belongs to the group of non-steroidal immunosuppressants with the potential to improve cardiac hypertrophy (CH). However, the poor biocompatibility and low bioavailability of CEL limit its <i>in vivo</i> application. This study was aimed to develop a targeted drug delivery system that can efficiently and safely deliver CEL to target tissues, providing a research basis for the application of CEL in CH therapy. A novel ROS-sensitive drug-loaded nanomicelle, dodecanoic acid (DA)-phenylboronic acid pinacol ester-dextran polymer encapsulating CEL (DBD@CEL), was synthesized using chemical synthesis. Then, the morphology, particle size, drug-loaded content, and ROS-responsive release behavior of DBD@CEL were studied. Pharmacokinetics and biocompatibility were evaluated using healthy mice. Finally, the ability and mechanism of DBD@CEL in improving CH <i>in vivo</i> were investigated using a mouse CH model. DBD@CEL was successfully prepared with a drug loading of 18.9%. It exhibited excellent stability with an average particle size of 110.0 ± 1.7 nm. Within 48 h, DBD@CEL released only 19.4% in the absence of H<sub>2</sub>O<sub>2</sub>, while in the presence of 1 mM H<sub>2</sub>O<sub>2</sub>, the release rate increased to 71.5%. Biocompatibility studies indicated that DBD@CEL did not cause blood cell hemolysis, had no impact on normal organs, and did not result in abnormal blood biochemical indicators, demonstrating excellent biocompatibility. <i>In vivo</i> studies revealed that DBD@CEL regulated the activation of NF-κB signaling, inhibits pyroptosis and oxidative stress, and thereby ameliorates CH. The ROS-responsive DBD@CEL nanodrug delivery system enhances the therapeutic activity of CEL for CH, providing a promising drug delivery system for the clinical treatment of CH.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-19"},"PeriodicalIF":3.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical properties and biocompatibility characterization of 3D printed collagen type II/silk fibroin/hyaluronic acid scaffold. 三维打印 II 型胶原蛋白/丝纤维素/透明质酸支架的力学性能和生物相容性表征。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-10 DOI: 10.1080/09205063.2024.2411797
Lilan Gao, Yali Li, Gang Liu, Xianglong Lin, Yansong Tan, Jie Liu, Ruixin Li, Chunqiu Zhang

Damage to articular cartilage is irreversible and its ability to heal is minimal. The development of articular cartilage in tissue engineering requires suitable biomaterials as scaffolds that provide a 3D natural microenvironment for the development and growth of articular cartilage. This study aims to investigate the applicability of a 3D printed CSH (collagen type II/silk fibroin/hyaluronic acid) scaffold for constructing cartilage tissue engineering. The results showed that the composite scaffold had a three-dimensional porous network structure with uniform pore sizes and good connectivity. The hydrophilicity of the composite scaffold was 1071.7 ± 131.6%, the porosity was 85.12 ± 1.6%, and the compressive elastic modulus was 36.54 ± 2.28 kPa. The creep and stress relaxation constitutive models were also established, which could well describe the visco-elastic mechanical behavior of the scaffold. The biocompatibility experiments showed that the CSH scaffold was very suitable for the adhesion and proliferation of chondrocytes. Under dynamic compressive loading conditions, it was able to promote cell adhesion and proliferation on the scaffold surface. The 3D printed CSH scaffold is expected to be ideal for promoting articular cartilage regeneration.

关节软骨的损伤是不可逆的,其愈合能力也微乎其微。组织工程中的关节软骨发育需要合适的生物材料作为支架,为关节软骨的发育和生长提供三维自然微环境。本研究旨在探讨三维打印 CSH(II 型胶原蛋白/丝状纤维素/透明质酸)支架在构建软骨组织工程中的适用性。结果表明,该复合支架具有三维多孔网络结构,孔隙大小均匀,连通性良好。复合支架的亲水性为 1071.7 ± 131.6%,孔隙率为 85.12 ± 1.6%,压缩弹性模量为 36.54 ± 2.28 kPa。同时还建立了蠕变和应力松弛组成模型,很好地描述了支架的粘弹性力学行为。生物相容性实验表明,CSH 支架非常适合软骨细胞的粘附和增殖。在动态压缩加载条件下,它能促进细胞在支架表面的粘附和增殖。三维打印 CSH 支架有望成为促进关节软骨再生的理想材料。
{"title":"Mechanical properties and biocompatibility characterization of 3D printed collagen type II/silk fibroin/hyaluronic acid scaffold.","authors":"Lilan Gao, Yali Li, Gang Liu, Xianglong Lin, Yansong Tan, Jie Liu, Ruixin Li, Chunqiu Zhang","doi":"10.1080/09205063.2024.2411797","DOIUrl":"https://doi.org/10.1080/09205063.2024.2411797","url":null,"abstract":"<p><p>Damage to articular cartilage is irreversible and its ability to heal is minimal. The development of articular cartilage in tissue engineering requires suitable biomaterials as scaffolds that provide a 3D natural microenvironment for the development and growth of articular cartilage. This study aims to investigate the applicability of a 3D printed CSH (collagen type II/silk fibroin/hyaluronic acid) scaffold for constructing cartilage tissue engineering. The results showed that the composite scaffold had a three-dimensional porous network structure with uniform pore sizes and good connectivity. The hydrophilicity of the composite scaffold was 1071.7 ± 131.6%, the porosity was 85.12 ± 1.6%, and the compressive elastic modulus was 36.54 ± 2.28 kPa. The creep and stress relaxation constitutive models were also established, which could well describe the visco-elastic mechanical behavior of the scaffold. The biocompatibility experiments showed that the CSH scaffold was very suitable for the adhesion and proliferation of chondrocytes. Under dynamic compressive loading conditions, it was able to promote cell adhesion and proliferation on the scaffold surface. The 3D printed CSH scaffold is expected to be ideal for promoting articular cartilage regeneration.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-23"},"PeriodicalIF":3.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Biomaterials Science, Polymer Edition
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1