首页 > 最新文献

Journal of Biomaterials Science, Polymer Edition最新文献

英文 中文
Sodium alginate-based nanofibers loaded with Capparis Sepiaria plant extract for wound healing. 藻酸钠基纳米纤维载入蓝花楹植物提取物,用于伤口愈合。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-01 Epub Date: 2024-07-22 DOI: 10.1080/09205063.2024.2381375
Sindi P Ndlovu, Keolebogile S C M Motaung, Samson A Adeyemi, Philemon Ubanako, Lindokuhle Ngema, Thierry Y Fonkui, Derek T Ndinteh, Pradeep Kumar, Yahya E Choonara, Blessing A Aderibigbe

Burn wounds are associated with infections, drug resistance, allergic reactions, odour, bleeding, excess exudates, and scars, requiring prolonged hospital stay. It is crucial to develop wound dressings that can effectively combat allergic reactions and drug resistance, inhibit infections, and absorb excess exudates to accelerate wound healing. To overcome the above-mentioned problems associated with burn wounds, SA/PVA/PLGA/Capparis sepiaria and SA/PVA/Capparis sepiaria nanofibers incorporated with Capparis sepiaria plant extract were prepared using an electrospinning technique. Fourier-transform infrared spectroscopy confirmed the successful incorporation of the extract into the nanofibers without any interaction between the extract and the polymers. The nanofibers displayed porous morphology and a rough surface suitable for cellular adhesion and proliferation. SA/PVA/PLGA/Capparis sepiaria and SA/PVA/Capparis sepiaria nanofibers demonstrated significant antibacterial effects against wound infection-associated bacterial strains: Pseudomonas aeruginosa, Enterococcus faecalis, Mycobaterium smegmatis, Escherichia coli, Enterobacter cloacae, Proteus vulgaris, and Staphylococcus aureus. Cytocompatibility studies using HaCaT cells revealed the non-toxicity of the nanofibers. SA/PVA/PLGA/Capparis sepiaria and SA/PVA/Capparis sepiaria nanofibers exhibited hemostatic properties, resulting from the synergistic effect of the plant extract and polymers. The in vitro scratch wound healing assay showed that the SA/PVA/Capparis sepiaria nanofiber wound-healing capability is more than the plant extract and a commercially available wound dressing. The wound-healing potential of SA/PVA/Capparis sepiaria nanofiber is attributed to the synergistic effect of the phytochemicals present in the extract, their porosity, and the ECM-mimicking structure of the nanofibers. The findings suggest that the electrospun nanofibers loaded with Capparis sepiaria extract are promising wound dressings that should be explored for burn wounds.

烧伤伤口与感染、耐药性、过敏反应、异味、出血、渗出物过多和疤痕有关,需要长期住院治疗。因此,开发能有效抗过敏反应和抗药性、抑制感染、吸收多余渗出物以加速伤口愈合的伤口敷料至关重要。为了解决烧伤创面的上述问题,本研究采用电纺丝技术制备了掺有蓝花楹植物提取物的 SA/PVA/PLGA/Capparis sepiaria 纳米纤维和 SA/PVA/Capparis sepiaria 纳米纤维。傅立叶变换红外光谱证实,提取物成功地融入了纳米纤维,提取物与聚合物之间没有发生任何相互作用。纳米纤维呈现多孔形态,表面粗糙,适于细胞粘附和增殖。SA/PVA/PLGA/Capparis sepiaria 和 SA/PVA/Capparis sepiaria 纳米纤维对伤口感染相关细菌菌株具有显著的抗菌效果:铜绿假单胞菌、粪肠球菌、烟曲霉菌、大肠杆菌、泄殖腔肠杆菌、普通变形杆菌和金黄色葡萄球菌。使用 HaCaT 细胞进行的细胞相容性研究表明,纳米纤维无毒性。SA/PVA/PLGA/Capparis sepiaria 和 SA/PVA/Capparis sepiaria 纳米纤维具有止血特性,这是植物提取物和聚合物协同作用的结果。体外划痕伤口愈合试验表明,SA/PVA/蓝花楹纳米纤维的伤口愈合能力高于植物提取物和市售伤口敷料。SA/PVA/Capparis sepiaria 纳米纤维的伤口愈合潜力归因于提取物中的植物化学物质、纳米纤维的多孔性和 ECM 模拟结构的协同作用。研究结果表明,含有蓝花楹提取物的电纺纳米纤维是一种很有前景的伤口敷料,应在烧伤伤口方面进行探索。
{"title":"Sodium alginate-based nanofibers loaded with <i>Capparis Sepiaria</i> plant extract for wound healing.","authors":"Sindi P Ndlovu, Keolebogile S C M Motaung, Samson A Adeyemi, Philemon Ubanako, Lindokuhle Ngema, Thierry Y Fonkui, Derek T Ndinteh, Pradeep Kumar, Yahya E Choonara, Blessing A Aderibigbe","doi":"10.1080/09205063.2024.2381375","DOIUrl":"10.1080/09205063.2024.2381375","url":null,"abstract":"<p><p>Burn wounds are associated with infections, drug resistance, allergic reactions, odour, bleeding, excess exudates, and scars, requiring prolonged hospital stay. It is crucial to develop wound dressings that can effectively combat allergic reactions and drug resistance, inhibit infections, and absorb excess exudates to accelerate wound healing. To overcome the above-mentioned problems associated with burn wounds, SA/PVA/PLGA/<i>Capparis sepiaria</i> and SA/PVA/<i>Capparis sepiaria</i> nanofibers incorporated with <i>Capparis sepiaria</i> plant extract were prepared using an electrospinning technique. Fourier-transform infrared spectroscopy confirmed the successful incorporation of the extract into the nanofibers without any interaction between the extract and the polymers. The nanofibers displayed porous morphology and a rough surface suitable for cellular adhesion and proliferation. SA/PVA/PLGA/<i>Capparis sepiaria</i> and SA/PVA/<i>Capparis sepiaria</i> nanofibers demonstrated significant antibacterial effects against wound infection-associated bacterial strains: <i>Pseudomonas aeruginosa</i>, <i>Enterococcus faecalis</i>, <i>Mycobaterium smegmatis</i>, <i>Escherichia coli</i>, <i>Enterobacter cloacae</i>, <i>Proteus vulgaris</i>, and <i>Staphylococcus aureus</i>. Cytocompatibility studies using HaCaT cells revealed the non-toxicity of the nanofibers. SA/PVA/PLGA/<i>Capparis sepiaria</i> and SA/PVA/<i>Capparis sepiaria</i> nanofibers exhibited hemostatic properties, resulting from the synergistic effect of the plant extract and polymers. The <i>in vitro</i> scratch wound healing assay showed that the SA/PVA/<i>Capparis sepiaria</i> nanofiber wound-healing capability is more than the plant extract and a commercially available wound dressing. The wound-healing potential of SA/PVA/<i>Capparis sepiaria</i> nanofiber is attributed to the synergistic effect of the phytochemicals present in the extract, their porosity, and the ECM-mimicking structure of the nanofibers. The findings suggest that the electrospun nanofibers loaded with <i>Capparis sepiaria</i> extract are promising wound dressings that should be explored for burn wounds.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2380-2401"},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction. 更正。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-01 Epub Date: 2024-09-04 DOI: 10.1080/09205063.2024.2397618
{"title":"Correction.","authors":"","doi":"10.1080/09205063.2024.2397618","DOIUrl":"10.1080/09205063.2024.2397618","url":null,"abstract":"","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"I"},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Poly (hydroxyethylmethacrylate-co-methacryloyl glutamic acid) nanocarrier system for controlled release of levothyroxine. 用于控制释放左甲状腺素的聚(羟乙基甲基丙烯酸酯-甲基丙烯酰谷氨酸)纳米载体系统。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-01 Epub Date: 2024-07-15 DOI: 10.1080/09205063.2024.2378610
Fulden Ulucan-Karnak, Cansu İlke Kuru, Sinan Akgöl

The deterioration in the structure of thyroid hormones causes many thyroid-related disorders, which leads to a negative effect on the quality of life, as well as the change in metabolic rate. For the treatment of thyroid disorders, daily use of levothyroxine-based medication is essential. In the study, it is aimed to develop a polymeric nanocarrier that can provide controlled drug release of levothyroxine. In this respect, the p(HEMA-MAGA) nanopolymer was synthesized and then characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Zeta size analysis. The specific surface area of the nanopolymer was calculated as 587.68 m2/g. The pH, temperature, concentration, and time parameters were determined for levothyroxine binding to p(HEMA-MAGA) and optimum binding was determined as pH 7.4, 25 °C, 25 µg/mL concentration, and 30 min adsorption time. As a result of the release performed at pH 7.4, a release profile was observed which increased for the first 3 days and continued for 14 days. According to the results of MTT cell viability analysis, it was determined that the p(HEMA-MAGA) nanopolymeric carrier system had no cytotoxic effect. This developed polymer-based nanocarrier system is suitable for long-term and controlled release of levothyroxine. This is a unique and novel study in terms of developing poly hydroxyethylmethacrylate-co-methacryloyl glutamic acid-based polymeric nanoparticles for levothyroxine release.

甲状腺激素结构的恶化会导致许多与甲状腺有关的疾病,从而对生活质量产生负面影响,并改变新陈代谢率。为了治疗甲状腺疾病,必须每天服用以左甲状腺素为基础的药物。本研究旨在开发一种可控制左甲状腺素药物释放的聚合物纳米载体。为此,我们合成了 p(HEMA-MAGA)纳米聚合物,并通过扫描电子显微镜(SEM)、傅立叶变换红外光谱(FTIR)和 Zeta 尺寸分析对其进行了表征。计算得出纳米聚合物的比表面积为 587.68 m2/g。测定了左旋甲状腺素与 p(HEMA-MAGA)结合的 pH 值、温度、浓度和时间参数,并确定最佳结合值为 pH 值 7.4、温度 25 °C、浓度 25 µg/mL 和吸附时间 30 分钟。在 pH 值为 7.4 的条件下进行释放,观察到释放曲线在前 3 天有所增加,并持续了 14 天。根据 MTT 细胞活力分析结果,p(HEMA-MAGA) 纳米聚合物载体系统没有细胞毒性作用。这种基于聚合物的纳米载体系统适用于左旋甲状腺素的长期控释。在开发聚羟乙基甲基丙烯酸酯-共甲基丙烯酰谷氨酸聚合物纳米颗粒用于释放左旋甲状腺素方面,这是一项独特而新颖的研究。
{"title":"Poly (hydroxyethylmethacrylate-co-methacryloyl glutamic acid) nanocarrier system for controlled release of levothyroxine.","authors":"Fulden Ulucan-Karnak, Cansu İlke Kuru, Sinan Akgöl","doi":"10.1080/09205063.2024.2378610","DOIUrl":"10.1080/09205063.2024.2378610","url":null,"abstract":"<p><p>The deterioration in the structure of thyroid hormones causes many thyroid-related disorders, which leads to a negative effect on the quality of life, as well as the change in metabolic rate. For the treatment of thyroid disorders, daily use of levothyroxine-based medication is essential. In the study, it is aimed to develop a polymeric nanocarrier that can provide controlled drug release of levothyroxine. In this respect, the p(HEMA-MAGA) nanopolymer was synthesized and then characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Zeta size analysis. The specific surface area of the nanopolymer was calculated as 587.68 m<sup>2</sup>/g. The pH, temperature, concentration, and time parameters were determined for levothyroxine binding to p(HEMA-MAGA) and optimum binding was determined as pH 7.4, 25 °C, 25 µg/mL concentration, and 30 min adsorption time. As a result of the release performed at pH 7.4, a release profile was observed which increased for the first 3 days and continued for 14 days. According to the results of MTT cell viability analysis, it was determined that the p(HEMA-MAGA) nanopolymeric carrier system had no cytotoxic effect. This developed polymer-based nanocarrier system is suitable for long-term and controlled release of levothyroxine. This is a unique and novel study in terms of developing poly hydroxyethylmethacrylate-co-methacryloyl glutamic acid-based polymeric nanoparticles for levothyroxine release.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2275-2293"},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and Characterization of Silica-Coated Sodium Alginate Hydrogel Beads and the Delivery of Curcumin. 硅包覆海藻酸钠水凝胶珠的制备与特性以及姜黄素的输送
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-01 Epub Date: 2024-07-02 DOI: 10.1080/09205063.2024.2368957
Yu Xiao, Lu Wang, Xueze Zhang, Yi Ren, Jianhong Wang, Baolong Niu, Wenfeng Li

In this study, to address the defects of sodium alginate (SA), such as its susceptibility to disintegration, silica was coated on the outer layer of sodium alginate hydrogel beads in order to improve its swelling and slow-release properties. Tetraethyl orthosilicate (TEOS) was used as the hydrolyzed precursor, and the solution of silica precursor was prepared by sol-gel reaction under acidic conditions. Then SA-silica hydrogel beads prepared by ionic crosslinking method were immersed into the SiO2 precursor solution to prepare SA-silica hydrogel beads. The chemical structure and morphology of the hydrogel beads were characterized by XRD, FTIR, and SEM, and the results showed that the surface of SA-silica beads was successfully encapsulated with the outer layer of SiO2, and the surface was smooth and dense. The swelling experiments showed that the swelling performance effectively decreased with the increase of TEOS molar concentration, and the maximum swelling ratio of the hydrogel beads decreased from 41.07 to 14.3, and the time to reach the maximum swelling ratio was prolonged from 4 h to 8 h. The sustained-release experiments showed that the SA-silica hydrogel beads possessed a good pH sensitivity, and the time of sustained-release was significantly prolonged in vitro. Hemolysis and cytotoxicity experiments showed that the SA-silica hydrogel beads were biocompatible when the TEOS molar concentration was lower than 0.375 M. The SA-silica-2 hydrogel beads had good biocompatibility, swelling properties, and slow-release properties at the same time.

本研究针对海藻酸钠(SA)易崩解等缺陷,在海藻酸钠水凝胶珠外层包覆二氧化硅,以改善其溶胀和缓释性能。以正硅酸四乙酯(TEOS)为水解前驱体,在酸性条件下通过溶胶-凝胶反应制备二氧化硅前驱体溶液。然后将离子交联法制备的 SA-二氧化硅水凝胶珠浸入 SiO2 前驱体溶液中,制备 SA-二氧化硅水凝胶珠。通过 XRD、FTIR 和 SEM 对水凝胶珠的化学结构和形貌进行了表征,结果表明 SA-二氧化硅珠表面成功包覆了外层 SiO2,表面光滑致密。溶胀实验表明,随着TEOS摩尔浓度的增加,溶胀性能有效降低,水凝胶珠的最大溶胀比从41.07降低到14.3,达到最大溶胀比的时间从4 h延长到8 h;缓释实验表明,SA-二氧化硅水凝胶珠具有良好的pH敏感性,体外缓释时间明显延长。溶血和细胞毒性实验表明,当 TEOS 摩尔浓度低于 0.375 M 时,SA-二氧化硅水凝胶珠具有良好的生物相容性。SA-二氧化硅-2水凝胶珠同时具有良好的生物相容性、溶胀性和缓释性。
{"title":"Preparation and Characterization of Silica-Coated Sodium Alginate Hydrogel Beads and the Delivery of Curcumin.","authors":"Yu Xiao, Lu Wang, Xueze Zhang, Yi Ren, Jianhong Wang, Baolong Niu, Wenfeng Li","doi":"10.1080/09205063.2024.2368957","DOIUrl":"10.1080/09205063.2024.2368957","url":null,"abstract":"<p><p>In this study, to address the defects of sodium alginate (SA), such as its susceptibility to disintegration, silica was coated on the outer layer of sodium alginate hydrogel beads in order to improve its swelling and slow-release properties. Tetraethyl orthosilicate (TEOS) was used as the hydrolyzed precursor, and the solution of silica precursor was prepared by sol-gel reaction under acidic conditions. Then SA-silica hydrogel beads prepared by ionic crosslinking method were immersed into the SiO<sub>2</sub> precursor solution to prepare SA-silica hydrogel beads. The chemical structure and morphology of the hydrogel beads were characterized by XRD, FTIR, and SEM, and the results showed that the surface of SA-silica beads was successfully encapsulated with the outer layer of SiO<sub>2</sub>, and the surface was smooth and dense. The swelling experiments showed that the swelling performance effectively decreased with the increase of TEOS molar concentration, and the maximum swelling ratio of the hydrogel beads decreased from 41.07 to 14.3, and the time to reach the maximum swelling ratio was prolonged from 4 h to 8 h. The sustained-release experiments showed that the SA-silica hydrogel beads possessed a good pH sensitivity, and the time of sustained-release was significantly prolonged in vitro. Hemolysis and cytotoxicity experiments showed that the SA-silica hydrogel beads were biocompatible when the TEOS molar concentration was lower than 0.375 M. The SA-silica-2 hydrogel beads had good biocompatibility, swelling properties, and slow-release properties at the same time.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2153-2169"},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-layer nanofibrous PCL/gelatin membrane as a sealant barrier to prevent postoperative pancreatic leakage. 双层纳米纤维 PCL/明胶膜作为密封屏障,防止术后胰腺渗漏。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-18 DOI: 10.1080/09205063.2024.2402135
Prayas Chakma Shanto,Heyjin Tae,Md Yousuf Ali,Nusrat Jahan,Hae Il Jung,Byong-Taek Lee
Post-operative pancreatic leakage is a severe surgical complication that can cause internal bleeding, infections, multiple organ damage, and even death. To prevent pancreatic leakage and enhance the protection of the suture lining and tissue regeneration, a dual-layer nanofibrous membrane composed of synthetic polymer polycaprolactone (PCL) and biopolymer gelatin was developed. The fabrication of this dual-layer (PGI-PGO) membrane was achieved through the electrospinning technique, with the inner layer (PGI) containing 2% PCL (w/v) and 10% gelatin (w/v), and the outer layer (PGO) containing 10% PCL (w/v) and 10% gelatin (w/v) in mixing ratios of 2:1 and 1:1, respectively. Experimental results indicated that a higher gelatin content reduced fiber diameter enhanced the hydrophilicity of the PGI layer compared to the PGO layer, improved the membrane's biodegradability, and increased its adhesive properties. In vitro biocompatibility assessments with L929 fibroblast cells showed enhanced cell proliferation in the PGI-PGO membrane. In vivo studies confirmed that the PGI-PGO membrane effectively protected the suture line without any instances of leakage and promoted wound healing within four weeks post-surgery. In conclusion, the nanofibrous PGI-PGO membrane demonstrates a promising therapeutic potential to prevent postoperative pancreatic leakage.
术后胰腺渗漏是一种严重的外科并发症,可导致内出血、感染、多器官损伤甚至死亡。为了防止胰腺渗漏,加强对缝线内衬的保护和组织再生,研究人员开发了一种由合成聚合物聚己内酯(PCL)和生物聚合物明胶组成的双层纳米纤维膜。这种双层膜(PGI-PGO)是通过电纺丝技术制成的,内层(PGI)含有 2% PCL(重量比)和 10% 明胶(重量比),外层(PGO)含有 10% PCL(重量比)和 10% 明胶(重量比),混合比例分别为 2:1 和 1:1。实验结果表明,与 PGO 层相比,明胶含量越高,纤维直径越小,PGI 层的亲水性就越强,膜的生物降解性就越好,粘合性也越强。用 L929 成纤维细胞进行的体外生物相容性评估显示,PGI-PGO 膜的细胞增殖能力更强。体内研究证实,PGI-PGO 膜能有效保护缝合线,不会出现任何渗漏,并能在术后四周内促进伤口愈合。总之,纳米纤维 PGI-PGO 膜在防止胰腺术后渗漏方面具有良好的治疗潜力。
{"title":"Dual-layer nanofibrous PCL/gelatin membrane as a sealant barrier to prevent postoperative pancreatic leakage.","authors":"Prayas Chakma Shanto,Heyjin Tae,Md Yousuf Ali,Nusrat Jahan,Hae Il Jung,Byong-Taek Lee","doi":"10.1080/09205063.2024.2402135","DOIUrl":"https://doi.org/10.1080/09205063.2024.2402135","url":null,"abstract":"Post-operative pancreatic leakage is a severe surgical complication that can cause internal bleeding, infections, multiple organ damage, and even death. To prevent pancreatic leakage and enhance the protection of the suture lining and tissue regeneration, a dual-layer nanofibrous membrane composed of synthetic polymer polycaprolactone (PCL) and biopolymer gelatin was developed. The fabrication of this dual-layer (PGI-PGO) membrane was achieved through the electrospinning technique, with the inner layer (PGI) containing 2% PCL (w/v) and 10% gelatin (w/v), and the outer layer (PGO) containing 10% PCL (w/v) and 10% gelatin (w/v) in mixing ratios of 2:1 and 1:1, respectively. Experimental results indicated that a higher gelatin content reduced fiber diameter enhanced the hydrophilicity of the PGI layer compared to the PGO layer, improved the membrane's biodegradability, and increased its adhesive properties. In vitro biocompatibility assessments with L929 fibroblast cells showed enhanced cell proliferation in the PGI-PGO membrane. In vivo studies confirmed that the PGI-PGO membrane effectively protected the suture line without any instances of leakage and promoted wound healing within four weeks post-surgery. In conclusion, the nanofibrous PGI-PGO membrane demonstrates a promising therapeutic potential to prevent postoperative pancreatic leakage.","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":"18 1","pages":"1-18"},"PeriodicalIF":3.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142258092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The emerging role of nanoscaffolds in chronic diabetic wound healing: a new horizon for advanced therapeutics 纳米支架在慢性糖尿病伤口愈合中的新兴作用:先进疗法的新视野
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-18 DOI: 10.1080/09205063.2024.2402148
Mehmet Ali Tibatan, Dzana Katana, Casey M. Yin
Non-healing or chronic wounds in extremities that lead to amputations in patients with Type II diabetes (hyperglycemia) are among the most serious and common health problems in the modern world. Ov...
II 型糖尿病(高血糖症)患者四肢的伤口不愈合或慢性伤口导致截肢,是现代世界最严重和最常见的健康问题之一。...
{"title":"The emerging role of nanoscaffolds in chronic diabetic wound healing: a new horizon for advanced therapeutics","authors":"Mehmet Ali Tibatan, Dzana Katana, Casey M. Yin","doi":"10.1080/09205063.2024.2402148","DOIUrl":"https://doi.org/10.1080/09205063.2024.2402148","url":null,"abstract":"Non-healing or chronic wounds in extremities that lead to amputations in patients with Type II diabetes (hyperglycemia) are among the most serious and common health problems in the modern world. Ov...","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":"262 1","pages":"1-32"},"PeriodicalIF":3.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142258093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triple-layered encapsulation of sensitive biomolecules into poly (ε-caprolactone) nanofibers using AC electrospraying. 利用交流电喷雾技术将敏感生物分子三层封装到聚(ε-己内酯)纳米纤维中。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-12 DOI: 10.1080/09205063.2024.2399387
Nikifor Asatiani,Petra Křtěnová,Pavel Šimon,Štěpán Kunc,Petr Mikeš
The incorporation of sensitive bioactive substances such as proteins or DNA into nanofibers poses a significant problem due to the toxicity of most organic solvents. The main idea of this study is to use alternating current electrospraying to create a suspension consisting of polyvinyl alcohol (PVA) capsules containing a bioactive substance dispersed in a solvent system suitable for a water-insoluble biocompatible polymer. In this suspension consisting of PVA capsules and a chloroform/ethanol mixture, poly (ε-caprolactone) (PCL) was dissolved and spun by needle-free electrospinning. The result is a fibrous PCL structure in which PVA capsules containing the bioactive agent are integrated. The PVA capsules protect the bioactive substance from the organic solvents needed to dissolve the PCL. To verify the efficacy of the capsules' protection against chloroform, the green fluorescent protein was first encapsulated into the nanofibers, followed by horseradish peroxidase. Both molecules were shown to retain their bioactivity within the nanofibers.
由于大多数有机溶剂的毒性,将敏感的生物活性物质(如蛋白质或 DNA)加入纳米纤维是一个重大问题。本研究的主要思路是利用交流电喷涂技术制造一种悬浮液,该悬浮液由聚乙烯醇(PVA)胶囊组成,其中含有分散在适合水不溶性生物相容性聚合物的溶剂系统中的生物活性物质。在这种由 PVA 胶囊和氯仿/乙醇混合物组成的悬浮液中,溶解了聚(ε-己内酯)(PCL),并通过无针电纺丝进行纺丝。最后得到一种纤维状 PCL 结构,其中集成了含有生物活性剂的 PVA 胶囊。PVA 胶囊保护生物活性物质不受溶解 PCL 所需的有机溶剂的影响。为了验证胶囊对氯仿的保护效果,首先将绿色荧光蛋白封装到纳米纤维中,然后再封装辣根过氧化物酶。结果表明,这两种分子在纳米纤维中都保持了生物活性。
{"title":"Triple-layered encapsulation of sensitive biomolecules into poly (ε-caprolactone) nanofibers using AC electrospraying.","authors":"Nikifor Asatiani,Petra Křtěnová,Pavel Šimon,Štěpán Kunc,Petr Mikeš","doi":"10.1080/09205063.2024.2399387","DOIUrl":"https://doi.org/10.1080/09205063.2024.2399387","url":null,"abstract":"The incorporation of sensitive bioactive substances such as proteins or DNA into nanofibers poses a significant problem due to the toxicity of most organic solvents. The main idea of this study is to use alternating current electrospraying to create a suspension consisting of polyvinyl alcohol (PVA) capsules containing a bioactive substance dispersed in a solvent system suitable for a water-insoluble biocompatible polymer. In this suspension consisting of PVA capsules and a chloroform/ethanol mixture, poly (ε-caprolactone) (PCL) was dissolved and spun by needle-free electrospinning. The result is a fibrous PCL structure in which PVA capsules containing the bioactive agent are integrated. The PVA capsules protect the bioactive substance from the organic solvents needed to dissolve the PCL. To verify the efficacy of the capsules' protection against chloroform, the green fluorescent protein was first encapsulated into the nanofibers, followed by horseradish peroxidase. Both molecules were shown to retain their bioactivity within the nanofibers.","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":"17 1","pages":"1-19"},"PeriodicalIF":3.6,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142258096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of poly(vinyl pyrrolidone) and poly(ethylene glycol) microneedle arrays for delivering glycosaminoglycan, chondroitin sulfate, and hyaluronic acid 设计用于输送糖胺聚糖、硫酸软骨素和透明质酸的聚乙烯吡咯烷酮和聚乙二醇微针阵列
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-12 DOI: 10.1080/09205063.2024.2392914
Andisheh Choupani, Elif Sevval Temucin, Eda Ciftci, Feray Bakan, Busra Tugba Camic, Guralp Ozkoc, Meltem Sezen, Petek Korkusuz, Feza Korkusuz, Bekir Bediz
Osteoarthritis (OA) is a prevalent joint disorder characterized by cartilage and bone degradation. Medical therapies like glucosaminoglycan (GAG), chondroitin sulfate (CS), and hyaluronic acid (HA)...
骨关节炎(OA)是一种以软骨和骨质退化为特征的常见关节疾病。葡萄糖胺聚糖(GAG)、硫酸软骨素(CS)和透明质酸(HA)等药物疗法...
{"title":"Design of poly(vinyl pyrrolidone) and poly(ethylene glycol) microneedle arrays for delivering glycosaminoglycan, chondroitin sulfate, and hyaluronic acid","authors":"Andisheh Choupani, Elif Sevval Temucin, Eda Ciftci, Feray Bakan, Busra Tugba Camic, Guralp Ozkoc, Meltem Sezen, Petek Korkusuz, Feza Korkusuz, Bekir Bediz","doi":"10.1080/09205063.2024.2392914","DOIUrl":"https://doi.org/10.1080/09205063.2024.2392914","url":null,"abstract":"Osteoarthritis (OA) is a prevalent joint disorder characterized by cartilage and bone degradation. Medical therapies like glucosaminoglycan (GAG), chondroitin sulfate (CS), and hyaluronic acid (HA)...","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":"39 1","pages":"1-22"},"PeriodicalIF":3.6,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142258094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust tissue adhesion in biomedical applications: enhancing polymer stability in an injectable protein-based hydrogel. 生物医学应用中稳健的组织粘附性:增强可注射蛋白质水凝胶中聚合物的稳定性。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-11 DOI: 10.1080/09205063.2024.2398888
Pijush Giri,Daman Yadav,Balaram Mishra,Mukesh Kumar Gupta,Devendra Verma
Protein-based hydrogels are appealing materials for a variety of therapeutic uses because they are compatible, biodegradable, and adaptable to biological and chemical changes. Therefore, adherent varieties of hydrogels have received significant study; nevertheless, the majority of them show weak mechanical characteristics, transient adherence, poor biocompatibility activity, and low tensile strength. Here we are reporting, a two-component (BSA-gelatin) protein solution crosslinked with Tetrakis (hydroxymethyl) phosphonium chloride (THPC) to form a novel hydrogel. Compared with classical adhesive hydrogels, this hydrogel showed enhanced mechanical properties, was biocompatible with L929 cells, and had minimal invasive injectability. A considerable, high tensile strength of 73.33 ± 11.54 KPa and faultless compressive mechanical properties of 173 KPa at 75% strain were both demonstrated by this adhesive hydrogel. Moreover, this maximum tissue adhesion strength could reach 18.29 ± 2.22 kPa, significantly higher than fibrin glue. Cell viability was 97.09 ± 6.07%, which indicated that these hydrogels were non-toxic to L929. The fastest gelation time of the BSA-gelatin hydrogel was 1.25 ± 0.17 min at physiological pH and 37 °C. Therefore, the obtained novel work can potentially serve as a tissue adhesive hydrogel in the field of biomedical industries.
基于蛋白质的水凝胶具有兼容性、生物可降解性以及对生物和化学变化的适应性,因此是具有多种治疗用途的理想材料。因此,人们对粘附型水凝胶进行了大量研究;然而,大多数粘附型水凝胶的机械特性较弱、粘附性短暂、生物相容性差且拉伸强度低。我们在此报告的是一种双组分(BSA-明胶)蛋白质溶液与四(羟甲基)氯化磷(THPC)交联形成的新型水凝胶。与传统的粘合性水凝胶相比,这种水凝胶显示出更强的机械性能,与 L929 细胞具有生物相容性,并且具有最小的侵入性注射性。这种粘合水凝胶具有相当高的拉伸强度(73.33 ± 11.54 KPa)和无故障压缩机械性能(75% 应变时为 173 KPa)。此外,这种水凝胶的最大组织粘附强度可达 18.29 ± 2.22 千帕,明显高于纤维蛋白胶。细胞存活率为 97.09 ± 6.07%,表明这些水凝胶对 L929 无毒。在生理 pH 和 37 °C 条件下,BSA-明胶水凝胶的最快凝胶时间为 1.25 ± 0.17 分钟。因此,这项新研究成果可作为一种组织粘合水凝胶应用于生物医学领域。
{"title":"Robust tissue adhesion in biomedical applications: enhancing polymer stability in an injectable protein-based hydrogel.","authors":"Pijush Giri,Daman Yadav,Balaram Mishra,Mukesh Kumar Gupta,Devendra Verma","doi":"10.1080/09205063.2024.2398888","DOIUrl":"https://doi.org/10.1080/09205063.2024.2398888","url":null,"abstract":"Protein-based hydrogels are appealing materials for a variety of therapeutic uses because they are compatible, biodegradable, and adaptable to biological and chemical changes. Therefore, adherent varieties of hydrogels have received significant study; nevertheless, the majority of them show weak mechanical characteristics, transient adherence, poor biocompatibility activity, and low tensile strength. Here we are reporting, a two-component (BSA-gelatin) protein solution crosslinked with Tetrakis (hydroxymethyl) phosphonium chloride (THPC) to form a novel hydrogel. Compared with classical adhesive hydrogels, this hydrogel showed enhanced mechanical properties, was biocompatible with L929 cells, and had minimal invasive injectability. A considerable, high tensile strength of 73.33 ± 11.54 KPa and faultless compressive mechanical properties of 173 KPa at 75% strain were both demonstrated by this adhesive hydrogel. Moreover, this maximum tissue adhesion strength could reach 18.29 ± 2.22 kPa, significantly higher than fibrin glue. Cell viability was 97.09 ± 6.07%, which indicated that these hydrogels were non-toxic to L929. The fastest gelation time of the BSA-gelatin hydrogel was 1.25 ± 0.17 min at physiological pH and 37 °C. Therefore, the obtained novel work can potentially serve as a tissue adhesive hydrogel in the field of biomedical industries.","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":"12 1","pages":"1-23"},"PeriodicalIF":3.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanomaterial-functionalized electrospun scaffolds for tissue engineering. 用于组织工程的纳米材料功能化电纺支架。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-11 DOI: 10.1080/09205063.2024.2399909
Kilole Tesfaye Chaka,Kai Cao,Tamrat Tesfaye,Xiaohong Qin
Tissue engineering has emerged as a biological alternative aimed at sustaining, rehabilitating, or enhancing the functionality of tissues that have experienced partial or complete loss of their operational capabilities. The distinctive characteristics of electrospun nanofibrous structures, such as their elevated surface-area-to-volume ratio, specific pore sizes, and fine fiber diameters, make them suitable as effective scaffolds in tissue engineering, capable of mimicking the functions of the targeted tissue. However, electrospun nanofibers, whether derived from natural or synthetic polymers or their combinations, often fall short of replicating the multifunctional attributes of the extracellular matrix (ECM). To address this, nanomaterials (NMs) are integrated into the electrospun polymeric matrix through various functionalization techniques to enhance their multifunctional properties. Incorporation of NMs into electrospun nanofibrous scaffolds imparts unique features, including a high surface area, superior mechanical properties, compositional variety, structural adaptability, exceptional porosity, and enhanced capabilities for promoting cell migration and proliferation. This review provides a comprehensive overview of the various types of NMs, the methodologies used for their integration into electrospun nanofibrous scaffolds, and the recent advancements in NM-functionalized electrospun nanofibrous scaffolds aimed at regenerating bone, cardiac, cartilage, nerve, and vascular tissues. Moreover, the main challenges, limitations, and prospects in electrospun nanofibrous scaffolds are elaborated.
组织工程已成为一种生物替代方法,旨在维持、恢复或增强部分或完全丧失功能的组织的功能。电纺纳米纤维结构具有独特的特性,如较高的表面积-体积比、特定的孔径和细纤维直径,因此适合作为组织工程中的有效支架,能够模拟目标组织的功能。然而,电纺纳米纤维,无论是从天然或合成聚合物或其组合中提取,往往都无法复制细胞外基质(ECM)的多功能属性。为了解决这个问题,人们通过各种功能化技术将纳米材料(NMs)整合到电纺聚合物基质中,以增强其多功能特性。将纳米材料融入电纺纳米纤维支架具有独特的功能,包括高表面积、优异的机械性能、成分多样性、结构适应性、优异的多孔性以及促进细胞迁移和增殖的更强能力。本综述全面概述了各种类型的 NM、将 NM 集成到电纺纳米纤维支架中的方法,以及 NM 功能化电纺纳米纤维支架在再生骨、心脏、软骨、神经和血管组织方面的最新进展。此外,还阐述了电纺纳米纤维支架面临的主要挑战、局限性和前景。
{"title":"Nanomaterial-functionalized electrospun scaffolds for tissue engineering.","authors":"Kilole Tesfaye Chaka,Kai Cao,Tamrat Tesfaye,Xiaohong Qin","doi":"10.1080/09205063.2024.2399909","DOIUrl":"https://doi.org/10.1080/09205063.2024.2399909","url":null,"abstract":"Tissue engineering has emerged as a biological alternative aimed at sustaining, rehabilitating, or enhancing the functionality of tissues that have experienced partial or complete loss of their operational capabilities. The distinctive characteristics of electrospun nanofibrous structures, such as their elevated surface-area-to-volume ratio, specific pore sizes, and fine fiber diameters, make them suitable as effective scaffolds in tissue engineering, capable of mimicking the functions of the targeted tissue. However, electrospun nanofibers, whether derived from natural or synthetic polymers or their combinations, often fall short of replicating the multifunctional attributes of the extracellular matrix (ECM). To address this, nanomaterials (NMs) are integrated into the electrospun polymeric matrix through various functionalization techniques to enhance their multifunctional properties. Incorporation of NMs into electrospun nanofibrous scaffolds imparts unique features, including a high surface area, superior mechanical properties, compositional variety, structural adaptability, exceptional porosity, and enhanced capabilities for promoting cell migration and proliferation. This review provides a comprehensive overview of the various types of NMs, the methodologies used for their integration into electrospun nanofibrous scaffolds, and the recent advancements in NM-functionalized electrospun nanofibrous scaffolds aimed at regenerating bone, cardiac, cartilage, nerve, and vascular tissues. Moreover, the main challenges, limitations, and prospects in electrospun nanofibrous scaffolds are elaborated.","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":"27 1","pages":"1-43"},"PeriodicalIF":3.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Biomaterials Science, Polymer Edition
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1