In the current study, we aimed to design an individual hybrid silibinin nano-delivery system consisting of ZnO and BSA components to study its antioxidant activity and apoptotic potential on human pancreatic, breast, lung, and colon cancer cell lines. The folate-linked ZnO-decorated bovine serum albumin/silibinin nanoparticles (FZBS-NP) were synthesized and characterized by FTIR, FESEM, DLS, and zeta potential analysis. The FZBS-NP's cytotoxicity was evaluated by measuring the cancer cells' (MCF-7, A549, HT-29, and Panc) viability. Moreover, the apoptotic potential of the nanoparticles was studied by conducting several analyses including AO/PI and DAPI cell staining analysis, apoptotic gene expression profile (BAX, BCL2, and Caspase-8) preparation, and FITC Annexin V/PI flow cytometry. Finally, both antioxidant assays (ABTS and DPPH) were utilized to analyze the FZBS-NPs' antioxidant activities. The 152-nm FZBS-NP significantly induced the selective apoptotic death on the MCF-7, A549, HT-29, Panc, and Huvec cancer cells by increasing the SubG1 cell population following the increased treatment concentrations of FZBS-NP. Moreover, the FZBS-NPs exhibited powerful antioxidant activity. The BSA component of the FZBS-NPs delivery system improves the ability of the nanoparticles to gradually release silibinin and ZnO near the cancer cells. On the other hand, considering the powerful antioxidant activity of FZBS-NP, they have the potential to selectively induce apoptosis in human colon and breast cancer cells and protect normal types, which makes it an efficient safe anticancer compound. However, to verify the FZBS-NP anti-cancer efficiency further cancer and normal cell lines are required to measure several types of apoptotic gene expression.
{"title":"The anticancer impact of folate-linked ZnO-decorated bovine serum albumin/silibinin nanoparticles on human pancreatic, breast, lung, and colon cancers.","authors":"Farzaneh Sadeghzadeh, Parisa Golestani, Parisa Beyramabdi, Vahid Pouresmaeil, Hossein Hosseini, Masoud Homayouni Tabrizi","doi":"10.1080/09205063.2024.2356967","DOIUrl":"10.1080/09205063.2024.2356967","url":null,"abstract":"<p><p>In the current study, we aimed to design an individual hybrid silibinin nano-delivery system consisting of ZnO and BSA components to study its antioxidant activity and apoptotic potential on human pancreatic, breast, lung, and colon cancer cell lines. The folate-linked ZnO-decorated bovine serum albumin/silibinin nanoparticles (FZBS-NP) were synthesized and characterized by FTIR, FESEM, DLS, and zeta potential analysis. The FZBS-NP's cytotoxicity was evaluated by measuring the cancer cells' (MCF-7, A549, HT-29, and Panc) viability. Moreover, the apoptotic potential of the nanoparticles was studied by conducting several analyses including AO/PI and DAPI cell staining analysis, apoptotic gene expression profile (BAX, BCL2, and Caspase-8) preparation, and FITC Annexin V/PI flow cytometry. Finally, both antioxidant assays (ABTS and DPPH) were utilized to analyze the FZBS-NPs' antioxidant activities. The 152-nm FZBS-NP significantly induced the selective apoptotic death on the MCF-7, A549, HT-29, Panc, and Huvec cancer cells by increasing the SubG1 cell population following the increased treatment concentrations of FZBS-NP. Moreover, the FZBS-NPs exhibited powerful antioxidant activity. The BSA component of the FZBS-NPs delivery system improves the ability of the nanoparticles to gradually release silibinin and ZnO near the cancer cells. On the other hand, considering the powerful antioxidant activity of FZBS-NP, they have the potential to selectively induce apoptosis in human colon and breast cancer cells and protect normal types, which makes it an efficient safe anticancer compound. However, to verify the FZBS-NP anti-cancer efficiency further cancer and normal cell lines are required to measure several types of apoptotic gene expression.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1845-1862"},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141175642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recent advancements in tissue engineering have witnessed luffa-derived scaffolds, exhibiting their exceptional potential in cellular proliferation, biocompatibility, appropriate interconnectivity, and biomechanical strength. In vivo studies involved implanting fabricated scaffolds subcutaneously in Wistar rats to evaluate their impact on the heart, liver, and kidneys. This approach provided a safe and minimally invasive means to evaluate scaffold compatibility with surrounding tissues. Male Wistar rats were categorized into four distinct groups, Group A, B, C, and D are referred to as 3% LC implanted scaffolds, 5% LC implanted scaffolds, control (without luffa scaffolds), and Sham (without any scaffold implantation), respectively. Histological analysis in all the groups indicated that the animal models did not exhibit any signs of inflammation or toxicity, suggesting favorable tissue response to the implanted scaffolds. Initial observations revealed elevated levels of enzymes and biomarkers in the experimental groups after a 24 h interval, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), bilirubin, creatine kinase-MB (CK-MB), and serum creatinine. However, these parameters normalized 3 weeks post-implantation, with no significant increase compared to the control groups, suggesting that the implanted luffa-based scaffolds did not induce adverse effects on the heart, liver, and kidneys. Furthermore, the scaffold's significant pore size and porosity enable it to release drugs, including antibacterial medications. This study demonstrates promising results, indicating excellent scaffold porosity, sustained drug release, affirming the in vivo biocompatibility, absence of inflammatory responses, and overall tissue compatibility highlighting the immense potential of these luffa-based scaffolds in various tissue engineering and regenerative medicine applications.
{"title":"In vivo characterization of a luffa-based composite scaffold for subcutaneous implantation in rats.","authors":"Shravanya Gundu, Ajay Kumar Sahi, Pooja Kumari, Chandrakant Singh Tekam, Ishita Allu, Richa Singh, Sanjeev Kumar Mahto","doi":"10.1080/09205063.2024.2363080","DOIUrl":"10.1080/09205063.2024.2363080","url":null,"abstract":"<p><p>Recent advancements in tissue engineering have witnessed luffa-derived scaffolds, exhibiting their exceptional potential in cellular proliferation, biocompatibility, appropriate interconnectivity, and biomechanical strength. <i>In vivo</i> studies involved implanting fabricated scaffolds subcutaneously in Wistar rats to evaluate their impact on the heart, liver, and kidneys. This approach provided a safe and minimally invasive means to evaluate scaffold compatibility with surrounding tissues. Male Wistar rats were categorized into four distinct groups, Group A, B, C, and D are referred to as 3% LC implanted scaffolds, 5% LC implanted scaffolds, control (without luffa scaffolds), and Sham (without any scaffold implantation), respectively. Histological analysis in all the groups indicated that the animal models did not exhibit any signs of inflammation or toxicity, suggesting favorable tissue response to the implanted scaffolds. Initial observations revealed elevated levels of enzymes and biomarkers in the experimental groups after a 24 h interval, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), bilirubin, creatine kinase-MB (CK-MB), and serum creatinine. However, these parameters normalized 3 weeks post-implantation, with no significant increase compared to the control groups, suggesting that the implanted luffa-based scaffolds did not induce adverse effects on the heart, liver, and kidneys. Furthermore, the scaffold's significant pore size and porosity enable it to release drugs, including antibacterial medications. This study demonstrates promising results, indicating excellent scaffold porosity, sustained drug release, affirming the <i>in vivo</i> biocompatibility, absence of inflammatory responses, and overall tissue compatibility highlighting the immense potential of these luffa-based scaffolds in various tissue engineering and regenerative medicine applications.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1922-1946"},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1080/09205063.2024.2385138
Manish Dwivedi, Sreevidya S. Devi, Sukriti Singh, Mala Trivedi, Nadia Hussain, Shalini Yadav, Kshatresh Dutta Dubey
SARS-CoV-2 is one of the deadly outbreaks in the present era and still showing its presence around the globe. Researchers have produced various vaccines that offer protection against infection, but...
{"title":"Phytocompounds as versatile drug-leads targeting mProtease in the SARS-CoV-2 virus: insights from a molecular dynamics study","authors":"Manish Dwivedi, Sreevidya S. Devi, Sukriti Singh, Mala Trivedi, Nadia Hussain, Shalini Yadav, Kshatresh Dutta Dubey","doi":"10.1080/09205063.2024.2385138","DOIUrl":"https://doi.org/10.1080/09205063.2024.2385138","url":null,"abstract":"SARS-CoV-2 is one of the deadly outbreaks in the present era and still showing its presence around the globe. Researchers have produced various vaccines that offer protection against infection, but...","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":"7 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, a three-layer small diameter artificial vascular graft with a structure similar to that of natural blood vessels was first constructed by triple-step electrospinning technology, in w...
{"title":"Preparation of fibre-reinforced PLA-collagen@PLA-PCL@PCL-gelatin three-layer vascular graft by EDC/NHS cross-linking and its performance study","authors":"Yue Xiong, Xingjian Lu, Xiaoman Ma, Jun Cao, Jiaqi Pan, Chaorong Li, Yingying Zheng","doi":"10.1080/09205063.2024.2380567","DOIUrl":"https://doi.org/10.1080/09205063.2024.2380567","url":null,"abstract":"In this study, a three-layer small diameter artificial vascular graft with a structure similar to that of natural blood vessels was first constructed by triple-step electrospinning technology, in w...","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":"18 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141740400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-03-26DOI: 10.1080/09205063.2024.2328421
Qingliang Fang, Guangmin Mao, Lei Wang, Yukai Gu, Renjie Song, Xianglian Gu, Song Lu, Xiaoli Li
Traditional methods of treating lung cancer have not been very effective, contributing to the disease's high incidence and death rate. As a result, Fn/Tn-PLGA NPs, a novel directed fucoidan and trabectedin complex loaded PLGA nanoparticle, were produced to investigate the role of developing therapeutic strategies for NSCLC and A549 cell lines. Quantitative real-time polymerase chain reaction was used to examine protein expression and mRNA expression, respectively. Protein activity was knocked down using specific inhibitors and short disrupting RNA transfection. Lastly, cancer cell lines H1299 and A549 were subjected to an in vitro cytotoxicity experiment. Commercial assays were used to assess the levels of cell viability, ROS and proliferation found that Fn/Tn-PLGA NPs effectively killed lung cancer cells. To examine cell death, annexin flow cytometry was employed. In addition, a scratch-wound assay was conducted to assess the migration effects of Fn/Tn-PLGA NPs in a laboratory setting. Finally, PLGA NPs covered with a mix of fucoidan and trabectedin could be a good vehicle for targeting cancerous tissues with chemotherapeutic drugs.
{"title":"Synergetic approaches of fucoidan and trabectedin complex coated PLGA nanoparticles effectively suppresses proliferation and induce apoptosis for the treatment on non-small cell lung cancer.","authors":"Qingliang Fang, Guangmin Mao, Lei Wang, Yukai Gu, Renjie Song, Xianglian Gu, Song Lu, Xiaoli Li","doi":"10.1080/09205063.2024.2328421","DOIUrl":"10.1080/09205063.2024.2328421","url":null,"abstract":"<p><p>Traditional methods of treating lung cancer have not been very effective, contributing to the disease's high incidence and death rate. As a result, Fn/Tn-PLGA NPs, a novel directed fucoidan and trabectedin complex loaded PLGA nanoparticle, were produced to investigate the role of developing therapeutic strategies for NSCLC and A549 cell lines. Quantitative real-time polymerase chain reaction was used to examine protein expression and mRNA expression, respectively. Protein activity was knocked down using specific inhibitors and short disrupting RNA transfection. Lastly, cancer cell lines H1299 and A549 were subjected to an <i>in vitro</i> cytotoxicity experiment. Commercial assays were used to assess the levels of cell viability, ROS and proliferation found that Fn/Tn-PLGA NPs effectively killed lung cancer cells. To examine cell death, annexin flow cytometry was employed. In addition, a scratch-wound assay was conducted to assess the migration effects of Fn/Tn-PLGA NPs in a laboratory setting. Finally, PLGA NPs covered with a mix of fucoidan and trabectedin could be a good vehicle for targeting cancerous tissues with chemotherapeutic drugs.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1323-1342"},"PeriodicalIF":3.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140293618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-03-03DOI: 10.1080/09205063.2024.2322771
Ali Salehi, Stefanie Sprejz, Holger Ruehl, Monilola Olayioye, Giorgio Cattaneo
Biologization of biomaterials with endothelial cells (ECs) is an important step in vascular tissue engineering, aiming at improving hemocompatibility and diminishing the thrombo-inflammatory response of implants. Since subcellular topography in the scale of nano to micrometers can influence cellular adhesion, proliferation, and differentiation, we here investigate the effect of surface roughness on the endothelialization of gelatin hydrogel scaffolds. Considering the micron and sub-micron features of the different native tissues underlying the endothelium in the body, we carried out a biomimetic approach to replicate the surface roughness of tissues and analyzed how this impacted the adhesion and proliferation of human umbilical endothelial cells (HUVECs). Using an imprinting technique, nano and micro-roughness ranging from Sa= 402 nm to Sa= 8 μm were replicated on the surface of gelatin hydrogels. Fluorescent imaging of HUVECs on consecutive days after seeding revealed that microscale topographies negatively affect cell spreading and proliferation. By contrast, nanoscale roughnesses of Sa= 402 and Sa= 538 nm promoted endothelialization as evidenced by the formation of confluent cell monolayers with prominent VE-cadherin surface expression. Collectively, we present an affordable and flexible imprinting method to replicate surface characteristics of tissues on hydrogels and demonstrate how nanoscale roughness positively supports their endothelialization.
{"title":"An imprint-based approach to replicate nano- to microscale roughness on gelatin hydrogel scaffolds: surface characterization and effect on endothelialization.","authors":"Ali Salehi, Stefanie Sprejz, Holger Ruehl, Monilola Olayioye, Giorgio Cattaneo","doi":"10.1080/09205063.2024.2322771","DOIUrl":"10.1080/09205063.2024.2322771","url":null,"abstract":"<p><p>Biologization of biomaterials with endothelial cells (ECs) is an important step in vascular tissue engineering, aiming at improving hemocompatibility and diminishing the thrombo-inflammatory response of implants. Since subcellular topography in the scale of nano to micrometers can influence cellular adhesion, proliferation, and differentiation, we here investigate the effect of surface roughness on the endothelialization of gelatin hydrogel scaffolds. Considering the micron and sub-micron features of the different native tissues underlying the endothelium in the body, we carried out a biomimetic approach to replicate the surface roughness of tissues and analyzed how this impacted the adhesion and proliferation of human umbilical endothelial cells (HUVECs). Using an imprinting technique, nano and micro-roughness ranging from Sa= 402 nm to Sa= 8 μm were replicated on the surface of gelatin hydrogels. Fluorescent imaging of HUVECs on consecutive days after seeding revealed that microscale topographies negatively affect cell spreading and proliferation. By contrast, nanoscale roughnesses of Sa= 402 and Sa= 538 nm promoted endothelialization as evidenced by the formation of confluent cell monolayers with prominent VE-cadherin surface expression. Collectively, we present an affordable and flexible imprinting method to replicate surface characteristics of tissues on hydrogels and demonstrate how nanoscale roughness positively supports their endothelialization.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1214-1235"},"PeriodicalIF":3.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140021853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recently, we applied solution 2H-nuclear magnetic resonance spectroscopy (2H NMR) to analyze the water (deuterium oxide, D2O) structure in several biopolymers at ambient temperature. We established that polymers with good blood compatibility (i.e. poly(2-methoxyethyl acrylate) (PMEA)) have water observed at high magnetic fields (upfield) compared with bulk water. Polymers containing poly(propylene glycol) (PPG) or poly(propylene oxide) (PPO) exhibit good compatibility; however, the reason for this remains unclear. In addition, reports on the blood compatibility of PPO/PPG are limited. Therefore, PPG diester (PPGest) was prepared as a model polymer, and its blood compatibility and water structure were investigated. PPGest exhibited excellent blood compatibility. The water in PPGest was observed upfield by 2H NMR, and it was defined as non-freezing water via differential scanning calorimetry. Based on these observations, the relationship between the blood compatibility and water structure of PPGest is discussed by comparing with those of PMEA, and the reason for the good performance of PPG/PPO-based polymers is discussed.
{"title":"Blood compatibility of poly(propylene glycol diester) and its water structure observed by differential scanning calorimetry and <sup>2</sup>H-nuclear magnetic resonance spectroscopy.","authors":"Akira Mochizuki, Ayaka Udagawa, Yuko Miwa, Yoshiki Oda, Konatsu Yoneyama, Chihiro Okuda","doi":"10.1080/09205063.2024.2324505","DOIUrl":"10.1080/09205063.2024.2324505","url":null,"abstract":"<p><p>Recently, we applied solution <sup>2</sup>H-nuclear magnetic resonance spectroscopy (<sup>2</sup>H NMR) to analyze the water (deuterium oxide, D<sub>2</sub>O) structure in several biopolymers at ambient temperature. We established that polymers with good blood compatibility (i.e. poly(2-methoxyethyl acrylate) (PMEA)) have water observed at high magnetic fields (upfield) compared with bulk water. Polymers containing poly(propylene glycol) (PPG) or poly(propylene oxide) (PPO) exhibit good compatibility; however, the reason for this remains unclear. In addition, reports on the blood compatibility of PPO/PPG are limited. Therefore, PPG diester (PPGest) was prepared as a model polymer, and its blood compatibility and water structure were investigated. PPGest exhibited excellent blood compatibility. The water in PPGest was observed upfield by <sup>2</sup>H NMR, and it was defined as non-freezing water <i>via</i> differential scanning calorimetry. Based on these observations, the relationship between the blood compatibility and water structure of PPGest is discussed by comparing with those of PMEA, and the reason for the good performance of PPG/PPO-based polymers is discussed.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1258-1272"},"PeriodicalIF":3.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140065212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present research focuses on formulating and evaluating hydrogels modified with crosslinking agents using methylcellulose to treat diabetic foot ulcers (DFU). Methylcellulose hydrogels are prepared and characterized for their crosslinking capacity through FTIR and degradation studies. The optimized hydrogel is further assessed for viscosity, gel strength, contact angle, in-vitro biodegradation, water-vapor transmission rate, anti-bacterial activity, and in-vivo efficacy. The results demonstrate that the developed hydrogel exhibits promising properties for DFU treatment, including increased wound healing percentage, improved ulcer morphology, reduced levels of proinflammatory cytokines, and enhanced tissue characteristics. These findings suggest that the novel hydrogel composition could serve as a viable alternative to existing dressings for DFU management.
{"title":"Evaluating a promising methylcellulose hydrogel for enhanced diabetic foot ulcer therapy through comprehensive preclinical studies.","authors":"Priya Patel, Sanika Dongre, Alkesh Patel, Gayatri Patel","doi":"10.1080/09205063.2024.2333068","DOIUrl":"10.1080/09205063.2024.2333068","url":null,"abstract":"<p><p>The present research focuses on formulating and evaluating hydrogels modified with crosslinking agents using methylcellulose to treat diabetic foot ulcers (DFU). Methylcellulose hydrogels are prepared and characterized for their crosslinking capacity through FTIR and degradation studies. The optimized hydrogel is further assessed for viscosity, gel strength, contact angle, <i>in-vitro</i> biodegradation, water-vapor transmission rate, anti-bacterial activity, and <i>in-vivo</i> efficacy. The results demonstrate that the developed hydrogel exhibits promising properties for DFU treatment, including increased wound healing percentage, improved ulcer morphology, reduced levels of proinflammatory cytokines, and enhanced tissue characteristics. These findings suggest that the novel hydrogel composition could serve as a viable alternative to existing dressings for DFU management.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1421-1438"},"PeriodicalIF":3.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140305782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}