首页 > 最新文献

Journal of Biomaterials Science, Polymer Edition最新文献

英文 中文
Enhanced mucoadhesive properties of ionically cross-linked thiolated gellan gum films. 增强离子交联硫醇化胶凝胶薄膜的粘液粘附性能。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-02 DOI: 10.1080/09205063.2024.2397199
Ankita Modi, Reshma Sanal, Ashika Suresh, Manju Saraswathy

Localized oral drug delivery offers several advantages for treating various disease conditions. However, drug retention at the disease site within the oral cavity is indeed a significant challenge due to the dynamic oral environment. The present study aimed to develop a mucoadhesive inner layer for a three-layer mucoadhesive bandage suitable for localized oral drug delivery. using gellan gum (GG) biopolymer. Gellan gum (GG) was modified using L-cysteine moieties via carbodiimide chemistry. Subsequently, gellan gum solution at different extents of thiolation was ionically cross-linked using aluminum ammonium sulfate. Thiolated gellan gum films of uniform thickness were prepared using a solvent casting method. The thickness of bare gellan gum film was 0.035 ± 0.0043 mm, whereas the thiolated gellan gum films, GG 1S and GG 2S showed a thickness of 0.0191 ± 0.0011 mm and 0.0188 ± 0.0004 mm respectively. A high work of adhesion was noted for thiolated gellan gum (GG 2S) with a value of 10 N.mm while using porcine buccal mucosa. An average tensile strength of 48.2 ± 2.46 MPa was measured for thiolated gellan gum films irrespective of the extent of thiolation. The high work of adhesion, favorable cytocompatibility, desirable mechanical properties, and free swell capacity in saline confirmed the suitability of ionically cross-linked thiolated gellan gum films as an inner mucoadhesive layer for the mucoadhesive bandage.

局部口服给药在治疗各种疾病方面具有多种优势。然而,由于口腔环境的动态变化,药物在口腔内疾病部位的保留确实是一项重大挑战。本研究旨在利用结冷胶(GG)生物聚合物,为适合局部口腔给药的三层粘胶绷带开发一种粘胶内层。通过碳二亚胺化学方法,使用 L-半胱氨酸分子对结冷胶(GG)进行改性。随后,使用硫酸铝铵对不同硫醇化程度的结冷胶溶液进行离子交联。采用溶剂浇铸法制备出厚度均匀的硫醇化结冷胶薄膜。裸露的结冷胶薄膜厚度为 0.035 ± 0.0043 毫米,而硫醇化结冷胶薄膜 GG 1S 和 GG 2S 的厚度分别为 0.0191 ± 0.0011 毫米和 0.0188 ± 0.0004 毫米。在使用猪口腔粘膜时,硫醇化结冷胶(GG 2S)的粘附力值高达 10 N.mm。无论硫醇化程度如何,硫醇化结冷胶薄膜的平均拉伸强度为 48.2 ± 2.46 兆帕。高粘附力、良好的细胞相容性、理想的机械性能以及在生理盐水中的自由膨胀能力证实了离子交联硫醇化结冷胶薄膜适合用作粘液绷带的粘液粘附内层。
{"title":"Enhanced mucoadhesive properties of ionically cross-linked thiolated gellan gum films.","authors":"Ankita Modi, Reshma Sanal, Ashika Suresh, Manju Saraswathy","doi":"10.1080/09205063.2024.2397199","DOIUrl":"https://doi.org/10.1080/09205063.2024.2397199","url":null,"abstract":"<p><p>Localized oral drug delivery offers several advantages for treating various disease conditions. However, drug retention at the disease site within the oral cavity is indeed a significant challenge due to the dynamic oral environment. The present study aimed to develop a mucoadhesive inner layer for a three-layer mucoadhesive bandage suitable for localized oral drug delivery. using gellan gum (GG) biopolymer. Gellan gum (GG) was modified using L-cysteine moieties <i>via</i> carbodiimide chemistry. Subsequently, gellan gum solution at different extents of thiolation was ionically cross-linked using aluminum ammonium sulfate. Thiolated gellan gum films of uniform thickness were prepared using a solvent casting method. The thickness of bare gellan gum film was 0.035 ± 0.0043 mm, whereas the thiolated gellan gum films, GG 1S and GG 2S showed a thickness of 0.0191 ± 0.0011 mm and 0.0188 ± 0.0004 mm respectively. A high work of adhesion was noted for thiolated gellan gum (GG 2S) with a value of 10 N.mm while using porcine buccal mucosa. An average tensile strength of 48.2 ± 2.46 MPa was measured for thiolated gellan gum films irrespective of the extent of thiolation. The high work of adhesion, favorable cytocompatibility, desirable mechanical properties, and free swell capacity in saline confirmed the suitability of ionically cross-linked thiolated gellan gum films as an inner mucoadhesive layer for the mucoadhesive bandage.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-15"},"PeriodicalIF":3.6,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of MgO nanoparticle on PVA/PEG-based membranes for potential application in wound healing. 氧化镁纳米粒子对 PVA/PEG 基膜的影响在伤口愈合中的潜在应用。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-01 Epub Date: 2024-07-01 DOI: 10.1080/09205063.2024.2364526
Massar Najim Obaid, Ohood Hmaizah Sabr, Ban Jawad Kadhim

The interest in wound dressings increased ten years ago. Wound care practitioners can now use interactive/bioactive dressings and tissue-engineered skin substitutes. Several bandages can heal burns, but none can treat all chronic wounds. This study formulates a composite material from 70% polyvinyl alcohol (PVA) and 30% polyethylene glycol (PEG) with 0.2, 0.4, and 0.6 wt% magnesium oxide nanoparticles. This study aims to create a biodegradable wound dressing. A Fourier Transform Infrared (FTIR) study shows that PVA, PEG, and MgO create hydrogen bonding interactions. Hydrophilic characteristics are shown by the polymeric blend's 56.289° contact angle. MgO also lowers the contact angle, making the film more hydrophilic. Hydrophilicity improves film biocompatibility, live cell adhesion, wound healing, and wound dressing degradability. Differential Scanning Calorimeter (DSC) findings suggest the PVA/PEG combination melted at 53.16 °C. However, adding different weight fractions of MgO nanoparticles increased the nanocomposite's melting temperature (Tm). These nanoparticles improve the film's thermal stability, increasing Tm. In addition, MgO nanoparticles in the polymer blend increased tensile strength and elastic modulus. This is due to the blend's strong adherence to the reinforcing phase and MgO nanoparticles' ceramic material which has a great mechanical strength. The combination of 70% PVA + 30% PEG exhibited good antibacterial spatially at 0.2% MgO, according to antibacterial test results.

十年前,人们对伤口敷料的兴趣与日俱增。现在,伤口护理医师可以使用交互式/生物活性敷料和组织工程皮肤替代物。有几种绷带可以治疗烧伤,但没有一种可以治疗所有慢性伤口。本研究将 70% 的聚乙烯醇 (PVA) 和 30% 的聚乙二醇 (PEG) 与 0.2、0.4 和 0.6 wt% 的氧化镁纳米粒子配制成一种复合材料。本研究旨在制作一种可生物降解的伤口敷料。傅立叶变换红外线(FTIR)研究表明,PVA、PEG 和氧化镁会产生氢键相互作用。聚合物混合物 56.289°的接触角显示了其亲水特性。氧化镁也降低了接触角,使薄膜更具亲水性。亲水性提高了薄膜的生物相容性、活细胞粘附性、伤口愈合性和伤口敷料的降解性。差示扫描量热仪(DSC)的研究结果表明,PVA/PEG 组合在 53.16 °C 时熔化。然而,添加不同重量分数的氧化镁纳米粒子可提高纳米复合材料的熔化温度(Tm)。这些纳米颗粒改善了薄膜的热稳定性,提高了 Tm。此外,聚合物混合物中的氧化镁纳米粒子还提高了拉伸强度和弹性模量。这是由于共混物与增强相的强粘附性以及氧化镁纳米粒子的陶瓷材料具有很高的机械强度。根据抗菌测试结果,70% PVA + 30% PEG 的组合在 0.2% MgO 的条件下表现出良好的空间抗菌性。
{"title":"The effect of MgO nanoparticle on PVA/PEG-based membranes for potential application in wound healing.","authors":"Massar Najim Obaid, Ohood Hmaizah Sabr, Ban Jawad Kadhim","doi":"10.1080/09205063.2024.2364526","DOIUrl":"10.1080/09205063.2024.2364526","url":null,"abstract":"<p><p>The interest in wound dressings increased ten years ago. Wound care practitioners can now use interactive/bioactive dressings and tissue-engineered skin substitutes. Several bandages can heal burns, but none can treat all chronic wounds. This study formulates a composite material from 70% polyvinyl alcohol (PVA) and 30% polyethylene glycol (PEG) with 0.2, 0.4, and 0.6 wt% magnesium oxide nanoparticles. This study aims to create a biodegradable wound dressing. A Fourier Transform Infrared (FTIR) study shows that PVA, PEG, and MgO create hydrogen bonding interactions. Hydrophilic characteristics are shown by the polymeric blend's 56.289° contact angle. MgO also lowers the contact angle, making the film more hydrophilic. Hydrophilicity improves film biocompatibility, live cell adhesion, wound healing, and wound dressing degradability. Differential Scanning Calorimeter (DSC) findings suggest the PVA/PEG combination melted at 53.16 °C. However, adding different weight fractions of MgO nanoparticles increased the nanocomposite's melting temperature (T<sub>m</sub>). These nanoparticles improve the film's thermal stability, increasing Tm. In addition, MgO nanoparticles in the polymer blend increased tensile strength and elastic modulus. This is due to the blend's strong adherence to the reinforcing phase and MgO nanoparticles' ceramic material which has a great mechanical strength. The combination of 70% PVA + 30% PEG exhibited good antibacterial spatially at 0.2% MgO, according to antibacterial test results.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1963-1977"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141468221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of novel hybrid nanomaterials with potential application in bone/dental tissue engineering: design, fabrication and characterization enriched-SAPO-34/CS/PANI scaffold. 开发具有骨/牙组织工程应用潜力的新型混合纳米材料:富集-SAPO-34/CS/PANI 支架的设计、制造和表征。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-01 Epub Date: 2024-07-02 DOI: 10.1080/09205063.2024.2366638
Golnaz Navidi, Saeideh Same, Maryam Allahvirdinesbat, Parvaneh Nakhostin Panahi, Kazem Dindar Safa

Fe-Ca-SAPO-34/CS/PANI, a novel hybrid bio-composite scaffold with potential application in dental tissue engineering, was prepared by freeze drying technique. The scaffold was characterized using FT-IR and SEM methods. The effects of PANI on the physicochemical properties of the Fe-Ca-SAPO-34/CS scaffold were investigated, including changes in swelling ratio, mechanical behavior, density, porosity, biodegradation, and biomineralization. Compared to the Fe-Ca-SAPO-34/CS scaffold, adding PANI decreased the pore size, porosity, swelling ratio, and biodegradation, while increasing the mechanical strength and biomineralization. Cell viability, cytotoxicity, and adhesion of human dental pulp stem cells (hDPSCs) on the scaffolds were investigated by MTT assay and SEM. The Fe-Ca-SAPO-34/CS/PANI scaffold promoted hDPSC proliferation and osteogenic differentiation compared to the Fe-Ca-SAPO-34/CS scaffold. Alizarin red staining, alkaline phosphatase activity, and qRT-PCR results revealed that Fe-Ca-SAPO-34/CS/PANI triggered osteoblast/odontoblast differentiation in hDPSCs through the up-regulation of osteogenic marker genes BGLAP, RUNX2, and SPARC. The significance of this study lies in developing a novel scaffold that synergistically combines the beneficial properties of Fe-Ca-SAPO-34, chitosan, and PANI to create an optimized microenvironment for dental tissue regeneration. These findings highlight the potential of the Fe-Ca-SAPO-34/CS/PANI scaffold as a promising biomaterial for dental tissue engineering applications, paving the way for future research and clinical translation in regenerative dentistry.

通过冷冻干燥技术制备了一种新型混合生物复合材料支架--Fe-Ca-SAPO-34/CS/PANI,该支架有望应用于牙科组织工程。使用傅立叶变换红外光谱和扫描电镜方法对该支架进行了表征。研究了 PANI 对 Fe-Ca-SAPO-34/CS 支架理化性质的影响,包括膨胀率、力学行为、密度、孔隙率、生物降解和生物矿化的变化。与 Fe-Ca-SAPO-34/CS 支架相比,添加 PANI 会减小孔径、孔隙率、膨胀率和生物降解,同时增加机械强度和生物矿化。通过 MTT 试验和扫描电镜研究了人牙髓干细胞(hDPSCs)在支架上的细胞活力、细胞毒性和粘附性。与 Fe-Ca-SAPO-34/CS 支架相比,Fe-Ca-SAPO-34/CS/PANI 支架促进了 hDPSC 的增殖和成骨分化。茜素红染色、碱性磷酸酶活性和 qRT-PCR 结果表明,Fe-Ca-SAPO-34/CS/PANI 通过上调成骨标志基因 BGLAP、RUNX2 和 SPARC 触发了 hDPSC 的成骨细胞/骨细胞分化。本研究的意义在于开发了一种新型支架,它能协同结合 Fe-Ca-SAPO-34、壳聚糖和 PANI 的有益特性,为牙科组织再生创造优化的微环境。这些发现凸显了 Fe-Ca-SAPO-34/CS/PANI 支架作为一种有前途的生物材料在牙科组织工程应用中的潜力,为再生牙科的未来研究和临床转化铺平了道路。
{"title":"Development of novel hybrid nanomaterials with potential application in bone/dental tissue engineering: design, fabrication and characterization enriched-SAPO-34/CS/PANI scaffold.","authors":"Golnaz Navidi, Saeideh Same, Maryam Allahvirdinesbat, Parvaneh Nakhostin Panahi, Kazem Dindar Safa","doi":"10.1080/09205063.2024.2366638","DOIUrl":"10.1080/09205063.2024.2366638","url":null,"abstract":"<p><p>Fe-Ca-SAPO-34/CS/PANI, a novel hybrid bio-composite scaffold with potential application in dental tissue engineering, was prepared by freeze drying technique. The scaffold was characterized using FT-IR and SEM methods. The effects of PANI on the physicochemical properties of the Fe-Ca-SAPO-34/CS scaffold were investigated, including changes in swelling ratio, mechanical behavior, density, porosity, biodegradation, and biomineralization. Compared to the Fe-Ca-SAPO-34/CS scaffold, adding PANI decreased the pore size, porosity, swelling ratio, and biodegradation, while increasing the mechanical strength and biomineralization. Cell viability, cytotoxicity, and adhesion of human dental pulp stem cells (hDPSCs) on the scaffolds were investigated by MTT assay and SEM. The Fe-Ca-SAPO-34/CS/PANI scaffold promoted hDPSC proliferation and osteogenic differentiation compared to the Fe-Ca-SAPO-34/CS scaffold. Alizarin red staining, alkaline phosphatase activity, and qRT-PCR results revealed that Fe-Ca-SAPO-34/CS/PANI triggered osteoblast/odontoblast differentiation in hDPSCs through the up-regulation of osteogenic marker genes BGLAP, RUNX2, and SPARC. The significance of this study lies in developing a novel scaffold that synergistically combines the beneficial properties of Fe-Ca-SAPO-34, chitosan, and PANI to create an optimized microenvironment for dental tissue regeneration. These findings highlight the potential of the Fe-Ca-SAPO-34/CS/PANI scaffold as a promising biomaterial for dental tissue engineering applications, paving the way for future research and clinical translation in regenerative dentistry.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2090-2114"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design, optimization, and evaluation of methotrexate loaded and albumin coated polymeric nanoparticles. 甲氨蝶呤负载和白蛋白涂层聚合物纳米粒子的设计、优化和评估。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-01 Epub Date: 2024-06-18 DOI: 10.1080/09205063.2024.2366619
Gaurav Tiwari, Anasuya Patil, Pranshul Sethi, Ankur Agrawal, Vaseem A Ansari, Mahesh Kumar Posa, Vaibhav Dagaji Aher

Methotrexate is a potent anticancer drug whose strong efflux is facilitated by the brain's efflux transporter. As an efflux transporter blocker, albumin increased the drug's concentration in the brain. Methotrexate-loaded nanoparticles were produced by evaporating the emulsification fluid. Improvements and analyses were made to the following aspects of the generated nanoparticles: size, polydispersity, zeta potential, entrapment efficiency, percentage yield, scanning electron microscopy, in vitro drug release studies, and sterilization. The particle size was determined to be in the nano range, and homogeneity of particle size was suggested by a low polydispersity index result. Particle diameters of 168 nm were observed in the F5 preparation, and zeta potential values of -1.5 mV suggested that the preparation produced adequate repulsive interactions between the nanoparticles. Albumin and dopamine HCl were employed to coat the methotrexate-loaded nanoparticles to guarantee that the brain received an adequate amount of them. The homogeneity of albumin coated nanoparticles was demonstrated by the low% PDI values of 0.129 and 0.122 for albumin coated nanoparticles (MNPs-Alb) and polymerized dopamine HCl and albumin coated nanoparticles (MNPs-PMD-Alb), respectively. After 48 h of incubation, the cell viability measured at the same drug concentration (5 mg) decreased for the F5, albumin coated nanoparticles, polymerized dopamine HCl coated nanoparticles, and polymerized dopamine HCl and albumin coated nanoparticles, respectively. Our primary findings demonstrate that the albumin nanoparticles containing methotrexate are designed to deliver the drug gradually. With minimal cytotoxicity, the intended preparation might give the brain an appropriate dosage of methotrexate.

甲氨蝶呤是一种强效抗癌药物,大脑的外排转运体可促进其大量外排。作为一种外排转运体阻断剂,白蛋白可增加药物在大脑中的浓度。通过蒸发乳化液,生产出了载甲氨蝶呤的纳米颗粒。对生成的纳米颗粒的以下方面进行了改进和分析:粒度、多分散性、ZETA电位、夹带效率、产量百分比、扫描电子显微镜、体外药物释放研究和灭菌。粒度被确定为纳米级,低多分散指数结果表明粒度均匀。在 F5 制剂中观察到的颗粒直径为 168 nm,Zeta 电位值为-1.5 mV,表明该制剂在纳米颗粒之间产生了充分的排斥作用。白蛋白和盐酸多巴胺被用来包覆甲氨蝶呤负载的纳米颗粒,以保证大脑获得足量的甲氨蝶呤负载。白蛋白包覆纳米粒子(MNPs-Alb)和盐酸多巴胺与白蛋白聚合纳米粒子(MNPs-PMD-Alb)的 PDI 值分别为 0.129 和 0.122,较低的 PDI 值证明了白蛋白包覆纳米粒子的均匀性。培养 48 小时后,在相同的药物浓度(5 毫克)下,F5、白蛋白包覆纳米粒子、盐酸聚合多巴胺包覆纳米粒子以及盐酸聚合多巴胺和白蛋白包覆纳米粒子的细胞活力分别下降。我们的主要研究结果表明,含有甲氨蝶呤的白蛋白纳米粒子可逐步递送药物。在细胞毒性最小的情况下,预期的制剂可为大脑提供适当剂量的甲氨蝶呤。
{"title":"Design, optimization, and evaluation of methotrexate loaded and albumin coated polymeric nanoparticles.","authors":"Gaurav Tiwari, Anasuya Patil, Pranshul Sethi, Ankur Agrawal, Vaseem A Ansari, Mahesh Kumar Posa, Vaibhav Dagaji Aher","doi":"10.1080/09205063.2024.2366619","DOIUrl":"10.1080/09205063.2024.2366619","url":null,"abstract":"<p><p>Methotrexate is a potent anticancer drug whose strong efflux is facilitated by the brain's efflux transporter. As an efflux transporter blocker, albumin increased the drug's concentration in the brain. Methotrexate-loaded nanoparticles were produced by evaporating the emulsification fluid. Improvements and analyses were made to the following aspects of the generated nanoparticles: size, polydispersity, zeta potential, entrapment efficiency, percentage yield, scanning electron microscopy, <i>in vitro</i> drug release studies, and sterilization. The particle size was determined to be in the nano range, and homogeneity of particle size was suggested by a low polydispersity index result. Particle diameters of 168 nm were observed in the F5 preparation, and zeta potential values of -1.5 mV suggested that the preparation produced adequate repulsive interactions between the nanoparticles. Albumin and dopamine HCl were employed to coat the methotrexate-loaded nanoparticles to guarantee that the brain received an adequate amount of them. The homogeneity of albumin coated nanoparticles was demonstrated by the low% PDI values of 0.129 and 0.122 for albumin coated nanoparticles (MNPs-Alb) and polymerized dopamine HCl and albumin coated nanoparticles (MNPs-PMD-Alb), respectively. After 48 h of incubation, the cell viability measured at the same drug concentration (5 mg) decreased for the F5, albumin coated nanoparticles, polymerized dopamine HCl coated nanoparticles, and polymerized dopamine HCl and albumin coated nanoparticles, respectively. Our primary findings demonstrate that the albumin nanoparticles containing methotrexate are designed to deliver the drug gradually. With minimal cytotoxicity, the intended preparation might give the brain an appropriate dosage of methotrexate.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2068-2089"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141419218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal modulation of inflammation and chondrogenesis through dendritic nanoparticle-mediated therapy with diclofenac surface modification and strontium ion encapsulation. 通过树突状纳米粒子介导的双氯芬酸表面修饰和锶离子封装疗法,对炎症和软骨生成进行时间调节。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-01 Epub Date: 2024-07-12 DOI: 10.1080/09205063.2024.2366080
Peng Cheng, Jun Yang, Song Wu, Linlin Xie, Yong Xu, Nanjian Xu, Yafeng Xu

Cartilage tissue engineering holds great promise for efficient cartilage regeneration. However, early inflammatory reactions to seed cells and/or scaffolds impede this process. Consequently, managing inflammation is of paramount importance. Moreover, due to the body's restricted chondrogenic capacity, inducing cartilage regeneration becomes imperative. Thus, a controlled platform is essential to establish an anti-inflammatory microenvironment before initiating the cartilage regeneration process. In this study, we utilized fifth-generation polyamidoamine dendrimers (G5) as a vehicle for drugs to create composite nanoparticles known as G5-Dic/Sr. These nanoparticles were generated by surface modification with diclofenac (Dic), known for its potent anti-inflammatory effects, and encapsulating strontium (Sr), which effectively induces chondrogenesis, within the core. Our findings indicated that the G5-Dic/Sr nanoparticle exhibited selective Dic release during the initial 9 days and gradual Sr release from days 3 to 15. Subsequently, these nanoparticles were incorporated into a gelatin methacryloyl (GelMA) hydrogel, resulting in GelMA@G5-Dic/Sr. In vitro assessments demonstrated GelMA@G5-Dic/Sr's biocompatibility with bone marrow stem cells (BMSCs). The enclosed nanoparticles effectively mitigated inflammation in lipopolysaccharide-induced RAW264.7 macrophages and significantly augmented chondrogenesis in BMSCs cocultures. Implanting BMSCs-loaded GelMA@G5-Dic/Sr hydrogels in immunocompetent rabbits for 2 and 6 weeks revealed diminished inflammation and enhanced cartilage formation compared to GelMA, GelMA@G5, GelMA@G5-Dic, and GelMA@G5/Sr hydrogels. Collectively, this study introduces an innovative strategy to advance cartilage regeneration by temporally modulating inflammation and chondrogenesis in immunocompetent animals. Through the development of a platform addressing the temporal modulation of inflammation and the limited chondrogenic capacity, we offer valuable insights to the field of cartilage tissue engineering.

软骨组织工程为高效软骨再生带来了巨大希望。然而,种子细胞和/或支架的早期炎症反应阻碍了这一进程。因此,控制炎症至关重要。此外,由于人体的软骨生成能力有限,诱导软骨再生变得势在必行。因此,在启动软骨再生过程之前,建立一个抗炎微环境的可控平台至关重要。在这项研究中,我们利用第五代聚氨基胺树枝状聚合物(G5)作为药物载体,创建了名为 G5-Dic/Sr 的复合纳米粒子。 这些纳米粒子是用双氯芬酸(Dic)进行表面修饰后生成的,双氯芬酸具有强大的抗炎作用,而锶(Sr)则能有效诱导软骨生成。我们的研究结果表明,G5-Dic/Sr 纳米粒子在最初的 9 天内会选择性地释放 Dic,而在第 3 到 15 天内会逐渐释放 Sr。体外评估表明,GelMA@G5-Dic/Sr 与骨髓干细胞(BMSCs)具有生物相容性。封闭的纳米颗粒有效减轻了脂多糖诱导的 RAW264.7 巨噬细胞的炎症反应,并显著促进了骨髓干细胞共培养的软骨生成。与 GelMA、GelMA@G5、GelMA@G5-Dic 和 GelMA@G5/Sr 水凝胶相比,将负载 BMSCs 的 GelMA@G5-Dic/Sr 水凝胶植入免疫功能正常的兔子体内 2 周和 6 周后,发现炎症减轻,软骨形成增强。总之,这项研究提出了一种创新策略,通过在免疫功能健全的动物体内对炎症和软骨生成进行时间调节来促进软骨再生。通过开发一个平台来解决炎症的时间调节和有限的软骨生成能力问题,我们为软骨组织工程领域提供了宝贵的见解。
{"title":"Temporal modulation of inflammation and chondrogenesis through dendritic nanoparticle-mediated therapy with diclofenac surface modification and strontium ion encapsulation.","authors":"Peng Cheng, Jun Yang, Song Wu, Linlin Xie, Yong Xu, Nanjian Xu, Yafeng Xu","doi":"10.1080/09205063.2024.2366080","DOIUrl":"10.1080/09205063.2024.2366080","url":null,"abstract":"<p><p>Cartilage tissue engineering holds great promise for efficient cartilage regeneration. However, early inflammatory reactions to seed cells and/or scaffolds impede this process. Consequently, managing inflammation is of paramount importance. Moreover, due to the body's restricted chondrogenic capacity, inducing cartilage regeneration becomes imperative. Thus, a controlled platform is essential to establish an anti-inflammatory microenvironment before initiating the cartilage regeneration process. In this study, we utilized fifth-generation polyamidoamine dendrimers (G5) as a vehicle for drugs to create composite nanoparticles known as G5-Dic/Sr. These nanoparticles were generated by surface modification with diclofenac (Dic), known for its potent anti-inflammatory effects, and encapsulating strontium (Sr), which effectively induces chondrogenesis, within the core. Our findings indicated that the G5-Dic/Sr nanoparticle exhibited selective Dic release during the initial 9 days and gradual Sr release from days 3 to 15. Subsequently, these nanoparticles were incorporated into a gelatin methacryloyl (GelMA) hydrogel, resulting in GelMA@G5-Dic/Sr. <i>In vitro</i> assessments demonstrated GelMA@G5-Dic/Sr's biocompatibility with bone marrow stem cells (BMSCs). The enclosed nanoparticles effectively mitigated inflammation in lipopolysaccharide-induced RAW264.7 macrophages and significantly augmented chondrogenesis in BMSCs cocultures. Implanting BMSCs-loaded GelMA@G5-Dic/Sr hydrogels in immunocompetent rabbits for 2 and 6 weeks revealed diminished inflammation and enhanced cartilage formation compared to GelMA, GelMA@G5, GelMA@G5-Dic, and GelMA@G5/Sr hydrogels. Collectively, this study introduces an innovative strategy to advance cartilage regeneration by temporally modulating inflammation and chondrogenesis in immunocompetent animals. Through the development of a platform addressing the temporal modulation of inflammation and the limited chondrogenic capacity, we offer valuable insights to the field of cartilage tissue engineering.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2049-2067"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of PTFE + TiO2/Ag coatings on 316L/polydopamine with advanced mechanical, bio-corrosion, and antibacterial properties for stainless steel Catheters. 在 316L/聚多巴胺上制造具有先进机械、生物防腐和抗菌性能的聚四氟乙烯+二氧化钛/银涂层,用于不锈钢导管。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-01 Epub Date: 2024-06-16 DOI: 10.1080/09205063.2024.2365047
Mohammad Sajjad Sheikhzadeh, Reza Ahmadi, Niloufar Ghamari, Abdollah Afshar

This study explores the corrosion resistance and antibacterial properties of a PTFE + TiO2/Ag coating applied to 316 L stainless steel. To enhance adhesion, a polydopamine interlayer was chemically deposited onto the steel surface. The PTFE + TiO2 coating was subsequently applied through immersion, followed by the deposition of silver nanoparticles using a chemical method. Optimization of the polydopamine interlayer involved varying temperature, time, stirring speed, and drying parameters. The optimal conditions for the polydopamine interlayer were determined to be 60 °C for 1 h, 300 rpm stirring, and 24-h drying in a freeze dryer. Analytical results demonstrated that both the PTFE + TiO2 and PTFE/PTFE + TiO2/Ag coatings exhibited exceptional corrosion resistance, with corrosion currents of 3.3 × 10-5 and 3.2 × 10-4 μA/cm2, respectively. Antibacterial assessments showcased the remarkable ability of the PTFE/PTFE + TiO2/Ag coating, containing 5% silver content, to effectively inhibit bacterial penetration within a 6.5 mm radius. Furthermore, this coating displayed a water contact angle of 143°, classifying it as a hydrophobic coating. The photocatalytic efficiency (Rs) was determined to be 3.18 × 10-3 A/W, a performance level comparable to that of a standard UV sensor. These findings underscore the substantial enhancements in corrosion resistance, antibacterial performance, and hydrophobic characteristics achieved with the PTFE + TiO2/Ag coating, particularly through the novel optimization of the polydopamine interlayer. This coating exhibits great promise for multifunctional protective applications in diverse fields, particularly demonstrating its suitability for implants and bio-coatings.

本研究探讨了应用于 316 L 不锈钢的 PTFE + TiO2/Ag 涂层的耐腐蚀性和抗菌性。为了增强附着力,在钢表面化学沉积了一层聚多巴胺中间膜。PTFE + TiO2 涂层随后通过浸泡进行涂敷,然后使用化学方法沉积银纳米粒子。聚多巴胺中间膜的优化包括改变温度、时间、搅拌速度和干燥参数。聚多巴胺中间膜的最佳条件被确定为 60 °C 1 小时、搅拌速度 300 rpm、在冷冻干燥机中干燥 24 小时。分析结果表明,PTFE + TiO2 和 PTFE/PTFE + TiO2/Ag 涂层都具有优异的耐腐蚀性,腐蚀电流分别为 3.3 × 10-5 和 3.2 × 10-4 μA/cm2。抗菌评估结果表明,含银量为 5%的 PTFE/PTFE + TiO2/Ag 涂层能够有效抑制半径为 6.5 mm 的细菌渗透。此外,这种涂层的水接触角为 143°,属于疏水涂层。光催化效率(Rs)被测定为 3.18 × 10-3 A/W,与标准紫外线传感器的性能水平相当。这些发现强调了聚四氟乙烯 + TiO2/Ag 涂层在耐腐蚀性、抗菌性能和疏水特性方面的显著提高,特别是通过对聚多巴胺中间膜的新颖优化。这种涂层在不同领域的多功能保护应用中大有可为,尤其适用于植入物和生物涂层。
{"title":"Fabrication of PTFE + TiO<sub>2</sub>/Ag coatings on 316L/polydopamine with advanced mechanical, bio-corrosion, and antibacterial properties for stainless steel Catheters.","authors":"Mohammad Sajjad Sheikhzadeh, Reza Ahmadi, Niloufar Ghamari, Abdollah Afshar","doi":"10.1080/09205063.2024.2365047","DOIUrl":"10.1080/09205063.2024.2365047","url":null,"abstract":"<p><p>This study explores the corrosion resistance and antibacterial properties of a PTFE + TiO<sub>2</sub>/Ag coating applied to 316 L stainless steel. To enhance adhesion, a polydopamine interlayer was chemically deposited onto the steel surface. The PTFE + TiO<sub>2</sub> coating was subsequently applied through immersion, followed by the deposition of silver nanoparticles using a chemical method. Optimization of the polydopamine interlayer involved varying temperature, time, stirring speed, and drying parameters. The optimal conditions for the polydopamine interlayer were determined to be 60 °C for 1 h, 300 rpm stirring, and 24-h drying in a freeze dryer. Analytical results demonstrated that both the PTFE + TiO<sub>2</sub> and PTFE/PTFE + TiO<sub>2</sub>/Ag coatings exhibited exceptional corrosion resistance, with corrosion currents of 3.3 × 10<sup>-5</sup> and 3.2 × 10<sup>-4</sup> μA/cm<sup>2</sup>, respectively. Antibacterial assessments showcased the remarkable ability of the PTFE/PTFE + TiO<sub>2</sub>/Ag coating, containing 5% silver content, to effectively inhibit bacterial penetration within a 6.5 mm radius. Furthermore, this coating displayed a water contact angle of 143°, classifying it as a hydrophobic coating. The photocatalytic efficiency (Rs) was determined to be 3.18 × 10<sup>-3</sup> A/W, a performance level comparable to that of a standard UV sensor. These findings underscore the substantial enhancements in corrosion resistance, antibacterial performance, and hydrophobic characteristics achieved with the PTFE + TiO<sub>2</sub>/Ag coating, particularly through the novel optimization of the polydopamine interlayer. This coating exhibits great promise for multifunctional protective applications in diverse fields, particularly demonstrating its suitability for implants and bio-coatings.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2020-2048"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of pH-responsive temozolomide (TMZ)-clacked tannic acid-altered zeolite imidazole nanoframeworks (ZIF-8) enhance anticancer activity and apoptosis induction in glioma cancer cells. 制备具有 pH 响应性的替莫唑胺(TMZ)-叠层单宁酸改性沸石咪唑纳米框架(ZIF-8),增强抗癌活性并诱导胶质瘤癌细胞凋亡。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-01 Epub Date: 2024-07-02 DOI: 10.1080/09205063.2024.2364533
Chongwen Ren, Qingqing Tu, Jinchao He

Glioma cancer is the primary cause of cancer-related fatalities globally for both men and women. Traditional chemotherapy treatments for this condition frequently result in reduced efficacy and significant adverse effects. This investigation developed a new drug delivery system for the chemotherapeutic drug temozolomide (TMZ) using pH-sensitive drug delivery zeolitic imidazolate frameworks (ZIF-8). These nanoplatforms demonstrate excellent biocompatibility and hold potential for cancer therapy. Utilizing the favorable reaction milieu offered by ZIFs, a 'one-pot method' was employed for the fabrication and loading of drugs, leading to a good capacity for loading. TMZ@TA@ZIF-8 NPs exhibit a notable response to an acidic milieu, resulting in an enhanced drug release pattern characterized by a controlled release outcome. The effectiveness of TMZ@TA@ZIF-8 NPs in inhibiting the migration and invasion of U251 glioma cancer cells, as well as promoting apoptosis, was confirmed through various tests, including MTT (3-(4,5)-dimethylthiahiazo(-z-y1)) assay, DAPI/PI dual staining, and cell scratch assay. The biochemical fluorescent staining assays showed that TMZ@TA@ZIF-8 NPs potentially improved ROS, reduced MMP, and triggered apoptosis in U251 cells. In U251 cells treated with NPs, the p53, Bax, Cyt-C, caspase-3, -8, and -9 expressions were significantly enhanced, while Bcl-2 expression was diminished. These outcomes show the potential of TMZ@TA@ZIF-8 NPs as a therapeutic agent with anti-glioma properties. Overall, the pH-responsive drug delivery systems we fabricated using TMZ@TA@ZIF-8 NPs show great potential for cancer treatment. This approach has the potential to make significant contributions to the improvement of cancer therapy by overcoming the problems associated with TMZ-based treatments.

胶质瘤癌症是导致全球男性和女性癌症相关死亡的主要原因。传统的化疗方法常常导致疗效降低和严重的不良反应。这项研究利用对 pH 值敏感的给药沸石咪唑盐酸盐框架(ZIF-8),为化疗药物替莫唑胺(TMZ)开发了一种新的给药系统。这些纳米平台具有良好的生物相容性,有望用于癌症治疗。利用 ZIF 提供的有利反应环境,我们采用了 "一锅法 "来制造和装载药物,从而获得了良好的装载能力。TMZ@TA@ZIF-8 NPs 对酸性环境有明显的反应,从而增强了药物释放模式,达到了控释的效果。通过 MTT(3-(4,5)-dimethylthiahiazo(-z-y1))试验、DAPI/PI 双染色和细胞划痕试验等多种试验,证实了 TMZ@TA@ZIF-8 NPs 在抑制 U251 脑胶质瘤癌细胞迁移和侵袭以及促进细胞凋亡方面的有效性。生化荧光染色检测结果表明,TMZ@TA@ZIF-8 NPs可改善ROS,降低MMP,并诱导U251细胞凋亡。经 NPs 处理的 U251 细胞中,p53、Bax、Cyt-C、caspase-3、-8 和 -9 的表达明显增强,而 Bcl-2 的表达则有所降低。这些结果表明,TMZ@TA@ZIF-8 NPs 具有作为抗胶质瘤治疗药物的潜力。总之,我们利用 TMZ@TA@ZIF-8 NPs 制作的 pH 值响应型给药系统在癌症治疗方面显示出巨大的潜力。这种方法有望克服基于 TMZ 治疗的相关问题,为改善癌症治疗做出重大贡献。
{"title":"Fabrication of pH-responsive temozolomide (TMZ)-clacked tannic acid-altered zeolite imidazole nanoframeworks (ZIF-8) enhance anticancer activity and apoptosis induction in glioma cancer cells.","authors":"Chongwen Ren, Qingqing Tu, Jinchao He","doi":"10.1080/09205063.2024.2364533","DOIUrl":"10.1080/09205063.2024.2364533","url":null,"abstract":"<p><p>Glioma cancer is the primary cause of cancer-related fatalities globally for both men and women. Traditional chemotherapy treatments for this condition frequently result in reduced efficacy and significant adverse effects. This investigation developed a new drug delivery system for the chemotherapeutic drug temozolomide (TMZ) using pH-sensitive drug delivery zeolitic imidazolate frameworks (ZIF-8). These nanoplatforms demonstrate excellent biocompatibility and hold potential for cancer therapy. Utilizing the favorable reaction milieu offered by ZIFs, a 'one-pot method' was employed for the fabrication and loading of drugs, leading to a good capacity for loading. TMZ@TA@ZIF-8 NPs exhibit a notable response to an acidic milieu, resulting in an enhanced drug release pattern characterized by a controlled release outcome. The effectiveness of TMZ@TA@ZIF-8 NPs in inhibiting the migration and invasion of U251 glioma cancer cells, as well as promoting apoptosis, was confirmed through various tests, including MTT (3-(4,5)-dimethylthiahiazo(-z-y1)) assay, DAPI/PI dual staining, and cell scratch assay. The biochemical fluorescent staining assays showed that TMZ@TA@ZIF-8 NPs potentially improved ROS, reduced MMP, and triggered apoptosis in U251 cells. In U251 cells treated with NPs, the p53, Bax, Cyt-C, caspase-3, -8, and -9 expressions were significantly enhanced, while Bcl-2 expression was diminished. These outcomes show the potential of TMZ@TA@ZIF-8 NPs as a therapeutic agent with anti-glioma properties. Overall, the pH-responsive drug delivery systems we fabricated using TMZ@TA@ZIF-8 NPs show great potential for cancer treatment. This approach has the potential to make significant contributions to the improvement of cancer therapy by overcoming the problems associated with TMZ-based treatments.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1978-1998"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and characterization of the injectable pH- and temperature-sensitive pentablock hydrogel containing human growth hormone-loaded chitosan nanoparticles via electrospraying. 通过电喷雾法制备含有载人生长激素壳聚糖纳米颗粒的可注射的 pH 和温度敏感的五嵌段水凝胶及其特性。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-01 Epub Date: 2024-07-07 DOI: 10.1080/09205063.2024.2365043
Dai Phu Huynh, Thien Anh Tran, Thi Thanh Hang Nguyen, Vu Viet Linh Nguyen

This research investigated the in vivo gelation, biodegradation, and drug release efficiency of a novel injectable sensitive drug delivery system for human growth hormone (HGh). This composite system comprises pH- and temperature-sensitive hydrogel, designated as oligomer serine-b-poly(lactide)-b-poly(ethylene glycol)-b-poly(lactide)-b-oligomer serine (OS-PLA-PEG-PLA-OS) pentablock copolymer, as matrix and electrosprayed HGh-loaded chitosan (HGh@CS) nanoparticles (NPs) as principal material. The proton nuclear magnetic resonance spectrum of the pH- and temperature-sensitive OS-PLA-PEG-PLA-OS pentablock copolymer hydrogel proved that this copolymer was successfully synthesized. The HGh was encapsulated in chitosan (CS) NPs by an electrospraying system in acetic acid with appropriate granulation parameters. The scanning electron microscopy images and size distribution showed that the HGh@CS NPs formed had an average diameter of 366.1 ± 214.5 nm with a discrete spherical shape and dispersed morphology. The sol-gel transition of complex gel based on HGh@CS NPs and OS-PLA-PEG-PLA-OS pentablock hydrogel was investigated at 15 °C and pH 7.8 in the sol state and gelled at 37 °C and pH 7.4, which is suitable for the physiological conditions of the human body. The HGh release experiment of the composite system was performed in an in vivo environment, which demonstrated the ability to release HGh, and underwent biodegradation within 32 days. The findings of the investigation revealed that the distribution of HGh@CS NPs into the hydrogel matrix not only improved the mechanical properties of the gel matrix but also controlled the drug release kinetics into the systematic bloodstream, which ultimately promotes the desired therapeutic body growth depending on the distinct concentration used.

本研究探讨了一种新型注射用人体生长激素(HGh)敏感给药系统的体内凝胶化、生物降解和药物释放效率。该复合系统由对pH和温度敏感的水凝胶(低聚丝氨酸-b-聚(乳酸)-b-聚(乙二醇)-b-聚(乳酸)-b-低聚丝氨酸(OS-PLA-PEG-PLA-OS)五嵌段共聚物)为基质,电喷载人生长激素壳聚糖(HGh@CS)纳米颗粒(NPs)为主要材料组成。pH和温度敏感的OS-PLA-PEG-PLA-OS五嵌段共聚物水凝胶的质子核磁共振谱证明了该共聚物的成功合成。在醋酸中采用电喷雾系统以适当的造粒参数将 HGh 包封在壳聚糖(CS)NPs 中。扫描电子显微镜图像和粒度分布显示,所形成的 HGh@CS NPs 平均直径为 366.1 ± 214.5 nm,呈离散球形,形态分散。研究了基于HGh@CS NPs和OS-PLA-PEG-PLA-OS五嵌段水凝胶的复合凝胶的溶胶-凝胶转变,溶胶状态下为15 °C、pH值为7.8,凝胶状态下为37 °C、pH值为7.4,适合人体生理条件。在体内环境中进行了该复合系统的 HGh 释放实验,结果表明其具有释放 HGh 的能力,并在 32 天内完成了生物降解。研究结果表明,HGh@CS NPs 在水凝胶基质中的分布不仅改善了凝胶基质的机械性能,还控制了药物在系统血液中的释放动力学,最终根据使用的不同浓度促进了理想的治疗体生长。
{"title":"Preparation and characterization of the injectable pH- and temperature-sensitive pentablock hydrogel containing human growth hormone-loaded chitosan nanoparticles via electrospraying.","authors":"Dai Phu Huynh, Thien Anh Tran, Thi Thanh Hang Nguyen, Vu Viet Linh Nguyen","doi":"10.1080/09205063.2024.2365043","DOIUrl":"10.1080/09205063.2024.2365043","url":null,"abstract":"<p><p>This research investigated the <i>in vivo</i> gelation, biodegradation, and drug release efficiency of a novel injectable sensitive drug delivery system for human growth hormone (HGh). This composite system comprises pH- and temperature-sensitive hydrogel, designated as oligomer serine-b-poly(lactide)-b-poly(ethylene glycol)-b-poly(lactide)-b-oligomer serine (OS-PLA-PEG-PLA-OS) pentablock copolymer, as matrix and electrosprayed HGh-loaded chitosan (HGh@CS) nanoparticles (NPs) as principal material. The proton nuclear magnetic resonance spectrum of the pH- and temperature-sensitive OS-PLA-PEG-PLA-OS pentablock copolymer hydrogel proved that this copolymer was successfully synthesized. The HGh was encapsulated in chitosan (CS) NPs by an electrospraying system in acetic acid with appropriate granulation parameters. The scanning electron microscopy images and size distribution showed that the HGh@CS NPs formed had an average diameter of 366.1 ± 214.5 nm with a discrete spherical shape and dispersed morphology. The sol-gel transition of complex gel based on HGh@CS NPs and OS-PLA-PEG-PLA-OS pentablock hydrogel was investigated at 15 °C and pH 7.8 in the sol state and gelled at 37 °C and pH 7.4, which is suitable for the physiological conditions of the human body. The HGh release experiment of the composite system was performed in an <i>in vivo</i> environment, which demonstrated the ability to release HGh, and underwent biodegradation within 32 days. The findings of the investigation revealed that the distribution of HGh@CS NPs into the hydrogel matrix not only improved the mechanical properties of the gel matrix but also controlled the drug release kinetics into the systematic bloodstream, which ultimately promotes the desired therapeutic body growth depending on the distinct concentration used.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1999-2019"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of co-delivery liposomal formulation incorporating carmustine and cabazitaxel displays improved cytotoxic potential and induced apoptosis in ovarian cancer cells. 卡莫司汀和卡巴他赛联合给药脂质体制剂的制备提高了细胞毒性潜力,并诱导卵巢癌细胞凋亡。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-29 DOI: 10.1080/09205063.2024.2387949
Jianming Gong, Renqian Feng, Xiaoqing Fu, Qi Lin, Bicheng Wu

Ovarian cancer is the primary cause of death from cancer in female patients. The existing treatments for ovarian cancer are restricted and ineffective in achieving a cure for the disease. To address this issue, we provide a novel approach to treating ovarian cancer by utilizing a liposomal carrier that effectively delivers the chemotherapeutic drugs carmustine (BCNU) and cabazitaxel (CTX). Initially, the combined impact of BCNU and CTX was confirmed, revealing that this impact reaches its maximum at a ratio of 1:2 mol/mol (BCNU/CTX). After that, the BC-Lipo co-delivery system was developed, which has a high capability for loading drugs (97.48% ± 1.14 for BCNU, 86.29% ± 3.03 for CTX). This system also has a sustained release profile and a beneficial long-circulating feature. The accumulation of BC-Lipo in tumors was dramatically enhanced compared to the accumulation of the free drug. Furthermore, BC-Lipo demonstrated similar levels of cytotoxicity to free BCNU and CTX (BCNU/CTX) when tested on HeyA8 cells in an in vitro model. Biochemical staining methods investigated the cancer cell's morphological examination. The apoptosis was confirmed by FITC-Annexin-V/PI staining by flow cytometry analysis. In addition, the investigation of fluorescence and protein markers examined the apoptosis mechanistic pathway, and the results indicated that BC-Lipo induced apoptosis due to mitochondrial membrane potential variation. This proof-of-concept study has established the probability of these BCNU-CTX combined treatments as active drug delivery nanocarriers for poorly soluble BCNU and CTX.

卵巢癌是女性患者死于癌症的主要原因。现有的卵巢癌治疗方法受到限制,无法有效治愈该疾病。为解决这一问题,我们提供了一种治疗卵巢癌的新方法,即利用脂质体载体有效递送化疗药物卡莫司汀(BCNU)和卡巴齐他赛(CTX)。最初,BCNU 和 CTX 的联合作用得到了证实,发现这种作用在 1:2 mol/mol(BCNU/CTX)的比例时达到最大。随后,开发出了 BC-Lipo 联合给药系统,该系统具有很高的载药能力(BCNU 为 97.48% ± 1.14,CTX 为 86.29% ± 3.03)。该系统还具有持续释放特性和有益的长循环特性。与游离药物相比,BC-Lipo 在肿瘤中的蓄积显著增加。此外,在体外模型中对 HeLa 细胞进行测试时,BC-Lipo 表现出与游离 BCNU 和 CTX(BCNU/CTX)相似的细胞毒性水平。生化染色法研究了癌细胞的形态学检查。流式细胞仪分析法通过 FITC-Annexin-V/PI 染色证实了细胞凋亡。此外,荧光和蛋白质标记物的研究还考察了细胞凋亡的机理途径,结果表明 BC-Lipo 诱导细胞凋亡是由于线粒体膜电位的变化。这项概念验证研究确定了这些 BCNU-CTX 联合疗法作为活性给药纳米载体用于溶解性较差的 BCNU 和 CTX 的可能性。
{"title":"Fabrication of co-delivery liposomal formulation incorporating carmustine and cabazitaxel displays improved cytotoxic potential and induced apoptosis in ovarian cancer cells.","authors":"Jianming Gong, Renqian Feng, Xiaoqing Fu, Qi Lin, Bicheng Wu","doi":"10.1080/09205063.2024.2387949","DOIUrl":"10.1080/09205063.2024.2387949","url":null,"abstract":"<p><p>Ovarian cancer is the primary cause of death from cancer in female patients. The existing treatments for ovarian cancer are restricted and ineffective in achieving a cure for the disease. To address this issue, we provide a novel approach to treating ovarian cancer by utilizing a liposomal carrier that effectively delivers the chemotherapeutic drugs carmustine (BCNU) and cabazitaxel (CTX). Initially, the combined impact of BCNU and CTX was confirmed, revealing that this impact reaches its maximum at a ratio of 1:2 mol/mol (BCNU/CTX). After that, the BC-Lipo co-delivery system was developed, which has a high capability for loading drugs (97.48% ± 1.14 for BCNU, 86.29% ± 3.03 for CTX). This system also has a sustained release profile and a beneficial long-circulating feature. The accumulation of BC-Lipo in tumors was dramatically enhanced compared to the accumulation of the free drug. Furthermore, BC-Lipo demonstrated similar levels of cytotoxicity to free BCNU and CTX (BCNU/CTX) when tested on HeyA8 cells in an <i>in vitro</i> model. Biochemical staining methods investigated the cancer cell's morphological examination. The apoptosis was confirmed by FITC-Annexin-V/PI staining by flow cytometry analysis. In addition, the investigation of fluorescence and protein markers examined the apoptosis mechanistic pathway, and the results indicated that BC-Lipo induced apoptosis due to mitochondrial membrane potential variation. This proof-of-concept study has established the probability of these BCNU-CTX combined treatments as active drug delivery nanocarriers for poorly soluble BCNU and CTX.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-21"},"PeriodicalIF":3.6,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Additive manufacturing of TPU devices for genital herpes treatment with sustained acyclovir release. 用于持续释放阿昔洛韦治疗生殖器疱疹的热塑性聚氨酯设备的添加剂制造。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-27 DOI: 10.1080/09205063.2024.2396221
Victor de Carvalho Rodrigues, Iara Zanella Guterres, Beatriz Pereira Savi, Gislaine Fongaro, Izabella Thaís Silva, Gean Vitor Salmoria

The treatment of recurrent genital herpes typically involves daily doses of acyclovir for extended periods. Additive manufacturing is an intriguing technique for creating personalised drug delivery systems, which can enhance the effectiveness of treatments for various diseases. The vaginal route offers a viable alternative for the systemic administration of drugs with low oral bioavailability. In this study, we produced different grades of thermoplastic polyurethane (TPU) filaments through hot-melt extrusion, with acyclovir concentrations of 0%, 10%, and 20% by weight. We used fused filament fabrication to manufacture matrix-based devices, including intrauterine devices and intravaginal rings. Our results, obtained through SEM, FTIR, and DSC analyses, confirm the successful incorporation of acyclovir into the matrix. Thermal analysis reveals that the manufacturing process alters the organization of the TPU chains, resulting in a slight reduction in crystallinity. In our in-vitro tests, we observed an initial burst release on the first day, followed by sustained release at reduced rates for up to 145 days, demonstrating their potential for long-term applications. Additionally, cytotoxicity analysis suggests the excellent biocompatibility of the printed devices, and biological assays show a remarkable 99% reduction in HSV-1 replication. In summary, TPU printed devices offer a promising alternative for long-term genital herpes treatment, with the results obtained potentially contributing to the advancement of pharmaceutical manufacturing.

治疗复发性生殖器疱疹通常需要每天长期服用阿昔洛韦。增材制造是一种令人感兴趣的技术,可用于创建个性化给药系统,从而提高各种疾病的治疗效果。阴道给药途径为口服生物利用度较低的全身给药提供了一种可行的替代方法。在这项研究中,我们通过热熔挤出法生产了不同等级的热塑性聚氨酯(TPU)长丝,阿昔洛韦的重量浓度分别为 0%、10% 和 20%。我们利用熔融长丝制造技术制造了基于基质的装置,包括宫内装置和阴道内环。我们通过扫描电镜、傅立叶变换红外光谱和 DSC 分析获得的结果证实,阿昔洛韦成功地融入了基质中。热分析表明,制造过程改变了热塑性聚氨酯链的组织结构,导致结晶度略有降低。在体外测试中,我们观察到了第一天的初始迸发释放,随后以较低的速率持续释放长达 145 天,这证明了其长期应用的潜力。此外,细胞毒性分析表明,这种印刷设备具有良好的生物相容性,生物试验显示,HSV-1 复制率显著降低了 99%。总之,热塑性聚氨酯印刷设备为生殖器疱疹的长期治疗提供了一种前景广阔的替代方案,所取得的成果有望推动药品生产的发展。
{"title":"Additive manufacturing of TPU devices for genital herpes treatment with sustained acyclovir release.","authors":"Victor de Carvalho Rodrigues, Iara Zanella Guterres, Beatriz Pereira Savi, Gislaine Fongaro, Izabella Thaís Silva, Gean Vitor Salmoria","doi":"10.1080/09205063.2024.2396221","DOIUrl":"https://doi.org/10.1080/09205063.2024.2396221","url":null,"abstract":"<p><p>The treatment of recurrent genital herpes typically involves daily doses of acyclovir for extended periods. Additive manufacturing is an intriguing technique for creating personalised drug delivery systems, which can enhance the effectiveness of treatments for various diseases. The vaginal route offers a viable alternative for the systemic administration of drugs with low oral bioavailability. In this study, we produced different grades of thermoplastic polyurethane (TPU) filaments through hot-melt extrusion, with acyclovir concentrations of 0%, 10%, and 20% by weight. We used fused filament fabrication to manufacture matrix-based devices, including intrauterine devices and intravaginal rings. Our results, obtained through SEM, FTIR, and DSC analyses, confirm the successful incorporation of acyclovir into the matrix. Thermal analysis reveals that the manufacturing process alters the organization of the TPU chains, resulting in a slight reduction in crystallinity. In our in-vitro tests, we observed an initial burst release on the first day, followed by sustained release at reduced rates for up to 145 days, demonstrating their potential for long-term applications. Additionally, cytotoxicity analysis suggests the excellent biocompatibility of the printed devices, and biological assays show a remarkable 99% reduction in HSV-1 replication. In summary, TPU printed devices offer a promising alternative for long-term genital herpes treatment, with the results obtained potentially contributing to the advancement of pharmaceutical manufacturing.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-16"},"PeriodicalIF":3.6,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Biomaterials Science, Polymer Edition
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1