Pub Date : 2025-12-01Epub Date: 2025-05-26DOI: 10.1080/09205063.2025.2504711
Samridhi Kurl, Gurpreet Kaur
This study aimed to develop a novel polymeric complex composed of Mimosa pudica gum (MMG) and chitosan (CH) and to explore its potential as a delivery system for targeting drugs to the colon. The method of extraction of MMG was optimized, resulting in a maximum yield of 12.41%. The molecular weight of the gum was determined to be 5.07 × 106 Da, and it was characterized for its physicochemical and rheological properties. A species distribution profile was constructed using the pKa values of both polymers, and polyelectrolyte complexes (PECs) were prepared at a pH value of 5.25 ± 0.10. The 40:60 (MMG: CH) PECs exhibited the highest yield (99%), minimal viscosity, and near-neutral zeta potential. Microflora biodegradation studies of PECs in pH 6.8 buffer containing rat cecal contents showed a pH decrease, likely due to degradation products of the PECs. In vitro drug release studies revealed 16.6% capecitabine release (model drug) from PECs without rat cecal contents, compared to 88.5% release after 24h with rat cecal contents. These findings suggest that MMG-CH PECs could serve as promising vehicles for microbially triggered, colon-targeted drug delivery systems.
{"title":"Development, optimization, and characterization of microbially triggered <i>Mimosa pudica</i> gum-chitosan polyelectrolyte complex for colon-targeted drug delivery.","authors":"Samridhi Kurl, Gurpreet Kaur","doi":"10.1080/09205063.2025.2504711","DOIUrl":"10.1080/09205063.2025.2504711","url":null,"abstract":"<p><p>This study aimed to develop a novel polymeric complex composed of <i>Mimosa pudica</i> gum (MMG) and chitosan (CH) and to explore its potential as a delivery system for targeting drugs to the colon. The method of extraction of MMG was optimized, resulting in a maximum yield of 12.41%. The molecular weight of the gum was determined to be 5.07 × 10<sup>6</sup> Da, and it was characterized for its physicochemical and rheological properties. A species distribution profile was constructed using the pKa values of both polymers, and polyelectrolyte complexes (PECs) were prepared at a pH value of 5.25 ± 0.10. The 40:60 (MMG: CH) PECs exhibited the highest yield (99%), minimal viscosity, and near-neutral zeta potential. Microflora biodegradation studies of PECs in pH 6.8 buffer containing rat cecal contents showed a pH decrease, likely due to degradation products of the PECs. <i>In vitro</i> drug release studies revealed 16.6% capecitabine release (model drug) from PECs without rat cecal contents, compared to 88.5% release after 24h with rat cecal contents. These findings suggest that MMG-CH PECs could serve as promising vehicles for microbially triggered, colon-targeted drug delivery systems.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2559-2581"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144150392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This work aimed to improve the peroral bioavailability of capecitabine (CPB) by developing and assessing solid lipid nanoparticles (SLNs). SLNs were made using the modified nanoprecipitation method. Particle size, zeta potential, entrapment efficiency, drug loading, in-vitro drug release, TEM, in-vivo pharmacokinetic study, stability study, histopathological evaluation and cytotoxicity study were assessed. The TEM revealed that the SLNs were transparent, with a mean particle size ranging from 13.06 ± 0.09 to 86.10 ± 0.15 nm. The F-3 formulation demonstrated the highest drug entrapment efficiency at 45.49 ± 0.28. The zeta potential and polydispersity index of all SLNs ranged from -15.53 ± 0.17 to 17.55 ± 0.18 mV and from 0.1356 ± 0.11 to 0.2678 ± 0.13, respectively. The drug entrapment efficiency and drug loading of all SLNs ranged from 18.45 ± 0.36 to 45.49 ± 0.28 and from 21.75 ± 0.64 to 59.49 ± 0.38, respectively. The CPB-SLNs showed sustained drug release with prolonged plasma retention, delayed Tmax, and extended half-life compared to raw CPB. In vivo pharmacokinetic studies suggest that developed SLNs may enhance therapeutic efficacy by maintaining drug concentrations in plasma for longer periods. Toxicity was observed at 200 mg/kg/day, indicated by changes in clinical biochemistry, organ weights, and histopathology, particularly affecting the liver and kidneys. Therefore, it can be said that these developed SLNs may be among the best preparations for the delivery of anti-cancer drugs for improved therapeutic efficacy.
{"title":"Development and evaluation of solid lipid nanoparticles for enhanced peroral bioavailability of capecitabine.","authors":"Mayukh Jana, Chandra Sekhar Patro, Suraj Sharma, Sweet Naskar, Ujjwal Kumar Biswas, Biplab Debnath","doi":"10.1080/09205063.2025.2505344","DOIUrl":"10.1080/09205063.2025.2505344","url":null,"abstract":"<p><p>This work aimed to improve the peroral bioavailability of capecitabine (CPB) by developing and assessing solid lipid nanoparticles (SLNs). SLNs were made using the modified nanoprecipitation method. Particle size, zeta potential, entrapment efficiency, drug loading, <i>in-vitro</i> drug release, TEM, <i>in-vivo</i> pharmacokinetic study, stability study, histopathological evaluation and cytotoxicity study were assessed. The TEM revealed that the SLNs were transparent, with a mean particle size ranging from 13.06 ± 0.09 to 86.10 ± 0.15 nm. The F-3 formulation demonstrated the highest drug entrapment efficiency at 45.49 ± 0.28. The zeta potential and polydispersity index of all SLNs ranged from -15.53 ± 0.17 to 17.55 ± 0.18 mV and from 0.1356 ± 0.11 to 0.2678 ± 0.13, respectively. The drug entrapment efficiency and drug loading of all SLNs ranged from 18.45 ± 0.36 to 45.49 ± 0.28 and from 21.75 ± 0.64 to 59.49 ± 0.38, respectively. The CPB-SLNs showed sustained drug release with prolonged plasma retention, delayed Tmax, and extended half-life compared to raw CPB. <i>In vivo</i> pharmacokinetic studies suggest that developed SLNs may enhance therapeutic efficacy by maintaining drug concentrations in plasma for longer periods. Toxicity was observed at 200 mg/kg/day, indicated by changes in clinical biochemistry, organ weights, and histopathology, particularly affecting the liver and kidneys. Therefore, it can be said that these developed SLNs may be among the best preparations for the delivery of anti-cancer drugs for improved therapeutic efficacy.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2582-2607"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144078106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The development of advanced biopolymer-based wound dressings is critical for enhancing tissue repair and reducing inflammation. This study presents a dual-crosslinked hydrogel composed of alginate and polyvinyl alcohol (PVA), enriched with bioactive seagrass extract, synthesized through a freeze-thawing technique to improve mechanical integrity and biocompatibility for potential applications in wound healing. Structural characterization was conducted using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal analysis and field emission scanning electron microscopy (FESEM) confirmed the successful integration of the extract and the uniformity of the hydrogel matrix. Invitro cytotoxicity assessment utilizing normal human dermal fibroblast (NHDF) cell lines showed high cell viability across all concentrations, with PVAS-treated cells exhibiting over 90% viability at 100 µg/mL (p < 0.01). In vivo wound healing studies in murine models demonstrated significantly enhanced outcomes in the PVAS group compared to controls, including improved epidermal regeneration, collagen deposition, and tissue remodeling. Notably, the PVAS group achieved approximately 85% wound closure by day 21, in contrast to around 60% in untreated controls (p < 0.001). These findings underscore the potential of alginate/PVA hydrogels enriched with seagrass extract as effective, biocompatible wound dressings and support their continued development for applications in regenerative medicine.
{"title":"Enhanced wound healing through alginate/PVA hydrogels enriched with seagrass extract: an in vivo and in vitro evaluation.","authors":"Varalakshmi Sureka, Suresh Vasugi, Kudalavagothi Afeeza, Boopathy Priya Dharshini, Ponnala Anandakumar, Elangovan Dilipan","doi":"10.1080/09205063.2025.2504709","DOIUrl":"10.1080/09205063.2025.2504709","url":null,"abstract":"<p><p>The development of advanced biopolymer-based wound dressings is critical for enhancing tissue repair and reducing inflammation. This study presents a dual-crosslinked hydrogel composed of alginate and polyvinyl alcohol (PVA), enriched with bioactive seagrass extract, synthesized through a freeze-thawing technique to improve mechanical integrity and biocompatibility for potential applications in wound healing. Structural characterization was conducted using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal analysis and field emission scanning electron microscopy (FESEM) confirmed the successful integration of the extract and the uniformity of the hydrogel matrix. Invitro cytotoxicity assessment utilizing normal human dermal fibroblast (NHDF) cell lines showed high cell viability across all concentrations, with PVAS-treated cells exhibiting over 90% viability at 100 µg/mL (<i>p < 0.01</i>). <i>In vivo</i> wound healing studies in murine models demonstrated significantly enhanced outcomes in the PVAS group compared to controls, including improved epidermal regeneration, collagen deposition, and tissue remodeling. Notably, the PVAS group achieved approximately 85% wound closure by day 21, in contrast to around 60% in untreated controls (<i>p</i> < 0.001). These findings underscore the potential of alginate/PVA hydrogels enriched with seagrass extract as effective, biocompatible wound dressings and support their continued development for applications in regenerative medicine.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2513-2529"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144078107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-06-02DOI: 10.1080/09205063.2025.2510441
Hitesh Kumar Dewangan, Roshan Sharma, Harneet Marwah, Kamal Shah, Perwez Alam
This study focuses on the development and evaluation of solid lipid nanoparticles (SLNs) as an efficient carrier for the co-delivery of paclitaxel (PTX) and kaempferol (KMF) in breast cancer treatment. PTX, a BCS (Biopharmaceutics Classification System)-IV class drug, was combined with KMF, a flavonoid extracted and isolated from bee pollen, to enhance therapeutic efficacy. The optimal synergistic ratio of PTX and KMF was incorporated into SLNs using a hot homogenization technique, resulting in PTX-KMF-SLNs with a stable core-shell structure, narrow size distribution (166.1 ± 3.2 nm), and high encapsulation efficiency (86.15 ± 4.52%). In vitro studies demonstrated that PTX-KMF-SLNs exhibited five times greater cytotoxicity against breast cancer cells compared to the free drug combination while minimizing systemic toxicity. Preclinical evaluation further confirmed a significant reduction in tumor volume, highlighting the enhanced therapeutic potential of the nanoformulation. The antioxidant properties of KMF contributed to improved drug stability and targeted delivery, making PTX-KMF-SLNs a promising nanocarrier system for breast cancer therapy. The nanoformulation SLNs effectively reduced tumor volume in preclinical models, showing strong therapeutic potential. Future prospects include clinical translation, personalized therapy, application to other cancers, and development of targeted or stimuli-responsive delivery systems. This formulation represents a promising strategy for safe and effective breast cancer therapy.
{"title":"Nanostructured solid lipid for Paclitaxel and Kaempferol co-delivery as a novel synergistic approach for breast cancer.","authors":"Hitesh Kumar Dewangan, Roshan Sharma, Harneet Marwah, Kamal Shah, Perwez Alam","doi":"10.1080/09205063.2025.2510441","DOIUrl":"10.1080/09205063.2025.2510441","url":null,"abstract":"<p><p>This study focuses on the development and evaluation of solid lipid nanoparticles (SLNs) as an efficient carrier for the co-delivery of paclitaxel (PTX) and kaempferol (KMF) in breast cancer treatment. PTX, a BCS (Biopharmaceutics Classification System)-IV class drug, was combined with KMF, a flavonoid extracted and isolated from bee pollen, to enhance therapeutic efficacy. The optimal synergistic ratio of PTX and KMF was incorporated into SLNs using a hot homogenization technique, resulting in PTX-KMF-SLNs with a stable core-shell structure, narrow size distribution (166.1 ± 3.2 nm), and high encapsulation efficiency (86.15 ± 4.52%). <i>In vitro</i> studies demonstrated that PTX-KMF-SLNs exhibited five times greater cytotoxicity against breast cancer cells compared to the free drug combination while minimizing systemic toxicity. Preclinical evaluation further confirmed a significant reduction in tumor volume, highlighting the enhanced therapeutic potential of the nanoformulation. The antioxidant properties of KMF contributed to improved drug stability and targeted delivery, making PTX-KMF-SLNs a promising nanocarrier system for breast cancer therapy. The nanoformulation SLNs effectively reduced tumor volume in preclinical models, showing strong therapeutic potential. Future prospects include clinical translation, personalized therapy, application to other cancers, and development of targeted or stimuli-responsive delivery systems. This formulation represents a promising strategy for safe and effective breast cancer therapy.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2837-2858"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144208616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-06-23DOI: 10.1080/09205063.2025.2511997
Syed Sarim Imam, Wael A Mahdi, Sultan Alshehri
Piperine (PRN) is a water-insoluble alkaloidal drug reported for different biological activities. As part of this study, Kollidone VA64 (KLD) and Soluplus (SLP) were used as carriers to develop piperine solid dispersions (PRN SDs) to enhance their solubility. The stability constant of the drug-polymer composition was determined by the phase solubility study. PRN SDs were evaluated for dissolution and saturation solubility studies to select the optimized composition. SDs were evaluated for drug-polymer compatibility by Infra-red and nuclear magnetic spectroscopy. The drug crystallinity was evaluated by scanning electron microscopy and X-Ray diffraction method. Finally, a comparative cell viability assay was performed on the breast cancer cell line. The ternary system (PRN-KLD-SLP) depicted a significantly (p < 0.05) higher stability constant value than the binary system [PRN-KLD; (2.1 folds) and PRN-SLP (2.5-folds)]. An enhanced drug release (about 1.4-folds) was found from the ternary PRN SDs (F7-F9) than binary PRN SDs (F1-F6) and free PRN. The spectral analysis and molecular docking results confirm the formation of stable SDs. SEM and XRD results revealed conversion of crystalline PRN into an amorphous form. Cell viability data demonstrated a higher viability assay than the free PRN. Based on the study, we can say that the formation of ternary solid dispersion makes PRN more soluble and shows a better dissolution rate than the binary SDs.
{"title":"Enhancement of piperine solubility by solid dispersion using Kollidone VA64 and Soluplus as polymers: physicochemical characterization, molecular docking and cell viability assay.","authors":"Syed Sarim Imam, Wael A Mahdi, Sultan Alshehri","doi":"10.1080/09205063.2025.2511997","DOIUrl":"10.1080/09205063.2025.2511997","url":null,"abstract":"<p><p>Piperine (PRN) is a water-insoluble alkaloidal drug reported for different biological activities. As part of this study, Kollidone VA64 (KLD) and Soluplus (SLP) were used as carriers to develop piperine solid dispersions (PRN SDs) to enhance their solubility. The stability constant of the drug-polymer composition was determined by the phase solubility study. PRN SDs were evaluated for dissolution and saturation solubility studies to select the optimized composition. SDs were evaluated for drug-polymer compatibility by Infra-red and nuclear magnetic spectroscopy. The drug crystallinity was evaluated by scanning electron microscopy and X-Ray diffraction method. Finally, a comparative cell viability assay was performed on the breast cancer cell line. The ternary system (PRN-KLD-SLP) depicted a significantly (<i>p</i> < 0.05) higher stability constant value than the binary system [PRN-KLD; (2.1 folds) and PRN-SLP (2.5-folds)]. An enhanced drug release (about 1.4-folds) was found from the ternary PRN SDs (F7-F9) than binary PRN SDs (F1-F6) and free PRN. The spectral analysis and molecular docking results confirm the formation of stable SDs. SEM and XRD results revealed conversion of crystalline PRN into an amorphous form. Cell viability data demonstrated a higher viability assay than the free PRN. Based on the study, we can say that the formation of ternary solid dispersion makes PRN more soluble and shows a better dissolution rate than the binary SDs.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2908-2930"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144475367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-06-16DOI: 10.1080/09205063.2025.2515953
Megha Satpathy
This review provides an in-depth analysis of dental bone regeneration, tracing its evolution and applications. Recent advancements in dental bone regeneration have allowed the utilization of barrier membranes to direct the regeneration process, excluding undesired cell types and fostering the growth of beneficial tissues, particularly in treating periodontal and bone defects. Over the past forty years, bone regeneration has advanced significantly, effectively enhancing periodontal ligament restoration while preventing unwanted soft-tissue growth. It is widely applied in periodontal, oral, implant, and jawbone surgeries, offering benefits such as restoring functionality and aesthetics of damaged tissues. The review also explores the structure of bone, emphasizing its biphasic nature with collagen and hydroxyapatite, which are crucial for maintaining bone strength and mechanical properties. As dental diseases like periodontitis and trauma become more prevalent, bone regeneration has gained prominence. Various graft materials, synthetic biomaterials, and techniques for creating scaffold designs have been explored. Understanding these regeneration mechanisms is key to improving dental treatments, and patient outcomes, and addressing challenges in oral health care.
{"title":"A comprehensive review of dental bone regeneration.","authors":"Megha Satpathy","doi":"10.1080/09205063.2025.2515953","DOIUrl":"10.1080/09205063.2025.2515953","url":null,"abstract":"<p><p>This review provides an in-depth analysis of dental bone regeneration, tracing its evolution and applications. Recent advancements in dental bone regeneration have allowed the utilization of barrier membranes to direct the regeneration process, excluding undesired cell types and fostering the growth of beneficial tissues, particularly in treating periodontal and bone defects. Over the past forty years, bone regeneration has advanced significantly, effectively enhancing periodontal ligament restoration while preventing unwanted soft-tissue growth. It is widely applied in periodontal, oral, implant, and jawbone surgeries, offering benefits such as restoring functionality and aesthetics of damaged tissues. The review also explores the structure of bone, emphasizing its biphasic nature with collagen and hydroxyapatite, which are crucial for maintaining bone strength and mechanical properties. As dental diseases like periodontitis and trauma become more prevalent, bone regeneration has gained prominence. Various graft materials, synthetic biomaterials, and techniques for creating scaffold designs have been explored. Understanding these regeneration mechanisms is key to improving dental treatments, and patient outcomes, and addressing challenges in oral health care.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2999-3038"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144302121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Puerarin (Pn), a naturally occurring flavonoid, possesses numerous therapeutic qualities, while Dextran (Dn) is a naturally derived polysaccharide. Here, we examined the puerarin-dextran complex (Pn/Dn), characterization to confirming its functional groups through morphological and structural properties. Cytocompatibility assessments on HT22 cell lines along with ROS and MDA content analysis revealed higher cytocompatibility with Pn/Dn complex treatment, when compared to heat-stressed and control groups. Additionally, elevated oxidative stress levels were found to reduce after treatment with Pn/Dn complex. Flow cytometry analysis demonstrated that HT22 cells treated with puerarin, dextran, and the Pn/Dn complex exhibited preserved viability, with a reduced percentage of cells undergoing early and late apoptosis, particularly at concentrations below 20%, indicating effective prevention of cell death. Importantly, In vivo results proposed that neuronal death in various histopathological observations involves both neurons and surrounding glial cells. These findings demonstrate that the Pn/Dn complex effectively influenced in reduced hippocampal neuronal injury in mice, as confirmed by histological examination. Overall, this study highlights the protective effects of Pn/Dn complex against heat-induced neuronal injury and oxidative stress, emphasizing their potential therapeutic applications.
{"title":"Puerarin and dextran complex alleviates heat stress-induced hippocampal apoptosis and oxidative damage: therapeutic potential for hypothalamic neuronal damage in mice.","authors":"Biyue Zhang, Weiwei Li, Yutang Wu, Chunzhan Hong, Shitu Zhuo, Miao Yu, Zeming Guo, Huasong Lin, Lichao Ye, Zhenwu Zhao","doi":"10.1080/09205063.2025.2506925","DOIUrl":"10.1080/09205063.2025.2506925","url":null,"abstract":"<p><p>Puerarin (Pn), a naturally occurring flavonoid, possesses numerous therapeutic qualities, while Dextran (Dn) is a naturally derived polysaccharide. Here, we examined the puerarin-dextran complex (Pn/Dn), characterization to confirming its functional groups through morphological and structural properties. Cytocompatibility assessments on HT22 cell lines along with ROS and MDA content analysis revealed higher cytocompatibility with Pn/Dn complex treatment, when compared to heat-stressed and control groups. Additionally, elevated oxidative stress levels were found to reduce after treatment with Pn/Dn complex. Flow cytometry analysis demonstrated that HT22 cells treated with puerarin, dextran, and the Pn/Dn complex exhibited preserved viability, with a reduced percentage of cells undergoing early and late apoptosis, particularly at concentrations below 20%, indicating effective prevention of cell death. Importantly, <i>In vivo</i> results proposed that neuronal death in various histopathological observations involves both neurons and surrounding glial cells. These findings demonstrate that the Pn/Dn complex effectively influenced in reduced hippocampal neuronal injury in mice, as confirmed by histological examination. Overall, this study highlights the protective effects of Pn/Dn complex against heat-induced neuronal injury and oxidative stress, emphasizing their potential therapeutic applications.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2739-2757"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144698618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-06-25DOI: 10.1080/09205063.2025.2522746
Mehmet Topuz, Erkan Karatas, Damla Ruzgar, Yuksel Akinay, Tayfun Cetin
In the study, chitosan (CS)-based Ti3C2Tx MXene/Halloysite nanotube (HNT) films were successfully synthesized using the solution casting method. The prepared films were characterized morphologically and structurally. To measure the surface wettability of the films for potential biological applications, contact angles were measured in simulated body fluid. The bacterial viability and antibacterial properties on Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria were evaluated by CFU counting, and statistical analyses were performed using ANOVA. The HNT particles with a size of about 30-40 nm were homogeneously anchored onto MXene layers without partial agglomerations. The presence of micropores and functional end groups in the prepared films contributes to their antibacterial effect. The incorporation of HNT into the chitosan MXene film provided a hydrophilic character by decreasing the contact angle from 82.26° to 49.47°. Antibacterial evaluation revealed that the film exhibited high inhibition for E. coli (34.63%) and S. aureus (63%) due to the synergistic effect between HNT and MXene. These findings highlight the potential of the developed film as an antibacterial material for biomedical applications.
{"title":"Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene/halloysite nanotube functionalized films for antibacterial applications.","authors":"Mehmet Topuz, Erkan Karatas, Damla Ruzgar, Yuksel Akinay, Tayfun Cetin","doi":"10.1080/09205063.2025.2522746","DOIUrl":"10.1080/09205063.2025.2522746","url":null,"abstract":"<p><p>In the study, chitosan (CS)-based Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene/Halloysite nanotube (HNT) films were successfully synthesized using the solution casting method. The prepared films were characterized morphologically and structurally. To measure the surface wettability of the films for potential biological applications, contact angles were measured in simulated body fluid. The bacterial viability and antibacterial properties on Gram-negative (<i>E. coli</i>) and Gram-positive (<i>S. aureus</i>) bacteria were evaluated by CFU counting, and statistical analyses were performed using ANOVA. The HNT particles with a size of about 30-40 nm were homogeneously anchored onto MXene layers without partial agglomerations. The presence of micropores and functional end groups in the prepared films contributes to their antibacterial effect. The incorporation of HNT into the chitosan MXene film provided a hydrophilic character by decreasing the contact angle from 82.26° to 49.47°. Antibacterial evaluation revealed that the film exhibited high inhibition for <i>E. coli</i> (34.63%) and <i>S. aureus</i> (63%) due to the synergistic effect between HNT and MXene. These findings highlight the potential of the developed film as an antibacterial material for biomedical applications.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"3185-3199"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144496732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Burn wounds encompass skin injuries resulting from exposure to thermal, cryogenic, electrical, chemical, radioactive, and frictional agents. Disruption of the skin barrier and an exaggerated inflammatory response contribute to the impaired healing of these wounds. With the development of burn wound treatment technology, the importance of comfortable treatment for burn wound is becoming increasingly prominent. In this paper, we designed a multifunctional wound dressing based on silicone gel. This dressing incorporated the analgesic drug prilocaine into the polyvinyl alcohol (PVA) coating to provide pain relief. This ensures prolonged and controlled drug release, achieving effective analgesia and wound protection. We used positron emission tomography/computed tomography (PET/CT) scanning to compare pain levels in rats, and favorable results were obtained in animal experiments. The PET/CT results showed a significant decrease in pain indicators in the experimental group compared to the control group, confirming that the analgesic function of the dressing designed in this study is effective. In conclusion, our study provides a new perspective on burn wound dressings and offers a potential new approach to alleviating severe pain associated with burn wounds.
{"title":"Prilocaine-loaded silicone dressing with dual-functionality: integrated pain management and wound protection for burn care.","authors":"Yanshu Lu, Yi Peng, Jia Cheng, Zhaochen Hu, Fengbo Yang, Xiaoli Jia, Chunjing Yu, Ling Diao, Guozhong Lyu","doi":"10.1080/09205063.2025.2522751","DOIUrl":"10.1080/09205063.2025.2522751","url":null,"abstract":"<p><p>Burn wounds encompass skin injuries resulting from exposure to thermal, cryogenic, electrical, chemical, radioactive, and frictional agents. Disruption of the skin barrier and an exaggerated inflammatory response contribute to the impaired healing of these wounds. With the development of burn wound treatment technology, the importance of comfortable treatment for burn wound is becoming increasingly prominent. In this paper, we designed a multifunctional wound dressing based on silicone gel. This dressing incorporated the analgesic drug prilocaine into the polyvinyl alcohol (PVA) coating to provide pain relief. This ensures prolonged and controlled drug release, achieving effective analgesia and wound protection. We used positron emission tomography/computed tomography (PET/CT) scanning to compare pain levels in rats, and favorable results were obtained in animal experiments. The PET/CT results showed a significant decrease in pain indicators in the experimental group compared to the control group, confirming that the analgesic function of the dressing designed in this study is effective. In conclusion, our study provides a new perspective on burn wound dressings and offers a potential new approach to alleviating severe pain associated with burn wounds.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"3200-3225"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144784301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-08-18DOI: 10.1080/09205063.2025.2519970
Xue Liu, Xin An, Bingxue Xv, Ning Zhou, Wenxin Meng, Weibo Zhang, Guomin Wu
Current alveolar ridge preservation (ARP) materials face unresolved trade-offs between mechanical stability, bioactivity, and clinical operability. To address this, we developed a fish-derived methacrylated gelatin (FGelMA) hydrogel composited with magnesium silicate (MS) microparticles combining the low immunogenicity of FGelMA with the dual osteo-angiogenic potential of MS. To characterize the physical properties of this material, the composite hydrogels (MS/FGelMA) were tested using a mechanical tester and a rheometer, and then its biocompatibility and in vitro osteogenic properties were analyzed using bone marrow mesenchymal stem cells (BMSCs) in a three-dimensional environment. In vivo model was further established to evaluate the effect of MS/FGelMA on ARP in SD rats. The results indicated that MS/FGelMA hydrogels exhibited rapid crosslinking within 20 s (365 nm UV, 10 mW/cm2), excellent shear-thinning behavior enabled precise defect adaptation, enhanced mechanical robustness, improved osteogenesis and angiogenesis capacity, especially for the optimized 1%MS/15%FGelMA formulation. 1%MS/15%FGelMA had compressive strength of 231 ± 10.149 kPa (378.69% of pure 15%FGelMA), and 2.3-4.1 folds upregulation of osteogenic markers (RUNX2/ALP/OCN) and angiogenic marker (VEGF) in rat BMSCs cultured in 3D hydrogels compared with that in pristine FGelMA hydrogel. Micro-CT analysis revealed 1%MS/15%FGelMA had socket volume preservation of 61% (vs. 46% in controls) at 3 weeks and had bone density of 75% (vs. 62% in controls) at 6 weeks. In general, this species-independent, chairside-applicable platform demonstrates superior clinical translation potential for complex ARP scenarios.
{"title":"Chairside-applicable MS/FGelMA hydrogel with enhanced osteogenesis and mechanical adaptability for alveolar ridge preservation.","authors":"Xue Liu, Xin An, Bingxue Xv, Ning Zhou, Wenxin Meng, Weibo Zhang, Guomin Wu","doi":"10.1080/09205063.2025.2519970","DOIUrl":"10.1080/09205063.2025.2519970","url":null,"abstract":"<p><p>Current alveolar ridge preservation (ARP) materials face unresolved trade-offs between mechanical stability, bioactivity, and clinical operability. To address this, we developed a fish-derived methacrylated gelatin (FGelMA) hydrogel composited with magnesium silicate (MS) microparticles combining the low immunogenicity of FGelMA with the dual osteo-angiogenic potential of MS. To characterize the physical properties of this material, the composite hydrogels (MS/FGelMA) were tested using a mechanical tester and a rheometer, and then its biocompatibility and <i>in vitro</i> osteogenic properties were analyzed using bone marrow mesenchymal stem cells (BMSCs) in a three-dimensional environment. <i>In vivo</i> model was further established to evaluate the effect of MS/FGelMA on ARP in SD rats. The results indicated that MS/FGelMA hydrogels exhibited rapid crosslinking within 20 s (365 nm UV, 10 mW/cm<sup>2</sup>), excellent shear-thinning behavior enabled precise defect adaptation, enhanced mechanical robustness, improved osteogenesis and angiogenesis capacity, especially for the optimized 1%MS/15%FGelMA formulation. 1%MS/15%FGelMA had compressive strength of 231 ± 10.149 kPa (378.69% of pure 15%FGelMA), and 2.3-4.1 folds upregulation of osteogenic markers (RUNX2/ALP/OCN) and angiogenic marker (VEGF) in rat BMSCs cultured in 3D hydrogels compared with that in pristine FGelMA hydrogel. Micro-CT analysis revealed 1%MS/15%FGelMA had socket volume preservation of 61% (vs. 46% in controls) at 3 weeks and had bone density of 75% (vs. 62% in controls) at 6 weeks. In general, this species-independent, chairside-applicable platform demonstrates superior clinical translation potential for complex ARP scenarios.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"3125-3149"},"PeriodicalIF":3.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144873325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}