首页 > 最新文献

Journal of Biomaterials Science, Polymer Edition最新文献

英文 中文
Fabrication of co-delivery liposomal formulation incorporating carmustine and cabazitaxel displays improved cytotoxic potential and induced apoptosis in ovarian cancer cells. 卡莫司汀和卡巴他赛联合给药脂质体制剂的制备提高了细胞毒性潜力,并诱导卵巢癌细胞凋亡。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-29 DOI: 10.1080/09205063.2024.2387949
Jianming Gong, Renqian Feng, Xiaoqing Fu, Qi Lin, Bicheng Wu

Ovarian cancer is the primary cause of death from cancer in female patients. The existing treatments for ovarian cancer are restricted and ineffective in achieving a cure for the disease. To address this issue, we provide a novel approach to treating ovarian cancer by utilizing a liposomal carrier that effectively delivers the chemotherapeutic drugs carmustine (BCNU) and cabazitaxel (CTX). Initially, the combined impact of BCNU and CTX was confirmed, revealing that this impact reaches its maximum at a ratio of 1:2 mol/mol (BCNU/CTX). After that, the BC-Lipo co-delivery system was developed, which has a high capability for loading drugs (97.48% ± 1.14 for BCNU, 86.29% ± 3.03 for CTX). This system also has a sustained release profile and a beneficial long-circulating feature. The accumulation of BC-Lipo in tumors was dramatically enhanced compared to the accumulation of the free drug. Furthermore, BC-Lipo demonstrated similar levels of cytotoxicity to free BCNU and CTX (BCNU/CTX) when tested on HeLa cells in an in vitro model. Biochemical staining methods investigated the cancer cell's morphological examination. The apoptosis was confirmed by FITC-Annexin-V/PI staining by flow cytometry analysis. In addition, the investigation of fluorescence and protein markers examined the apoptosis mechanistic pathway, and the results indicated that BC-Lipo induced apoptosis due to mitochondrial membrane potential variation. This proof-of-concept study has established the probability of these BCNU-CTX combined treatments as active drug delivery nanocarriers for poorly soluble BCNU and CTX.

卵巢癌是女性患者死于癌症的主要原因。现有的卵巢癌治疗方法受到限制,无法有效治愈该疾病。为解决这一问题,我们提供了一种治疗卵巢癌的新方法,即利用脂质体载体有效递送化疗药物卡莫司汀(BCNU)和卡巴齐他赛(CTX)。最初,BCNU 和 CTX 的联合作用得到了证实,发现这种作用在 1:2 mol/mol(BCNU/CTX)的比例时达到最大。随后,开发出了 BC-Lipo 联合给药系统,该系统具有很高的载药能力(BCNU 为 97.48% ± 1.14,CTX 为 86.29% ± 3.03)。该系统还具有持续释放特性和有益的长循环特性。与游离药物相比,BC-Lipo 在肿瘤中的蓄积显著增加。此外,在体外模型中对 HeLa 细胞进行测试时,BC-Lipo 表现出与游离 BCNU 和 CTX(BCNU/CTX)相似的细胞毒性水平。生化染色法研究了癌细胞的形态学检查。流式细胞仪分析法通过 FITC-Annexin-V/PI 染色证实了细胞凋亡。此外,荧光和蛋白质标记物的研究还考察了细胞凋亡的机理途径,结果表明 BC-Lipo 诱导细胞凋亡是由于线粒体膜电位的变化。这项概念验证研究确定了这些 BCNU-CTX 联合疗法作为活性给药纳米载体用于溶解性较差的 BCNU 和 CTX 的可能性。
{"title":"Fabrication of co-delivery liposomal formulation incorporating carmustine and cabazitaxel displays improved cytotoxic potential and induced apoptosis in ovarian cancer cells.","authors":"Jianming Gong, Renqian Feng, Xiaoqing Fu, Qi Lin, Bicheng Wu","doi":"10.1080/09205063.2024.2387949","DOIUrl":"https://doi.org/10.1080/09205063.2024.2387949","url":null,"abstract":"<p><p>Ovarian cancer is the primary cause of death from cancer in female patients. The existing treatments for ovarian cancer are restricted and ineffective in achieving a cure for the disease. To address this issue, we provide a novel approach to treating ovarian cancer by utilizing a liposomal carrier that effectively delivers the chemotherapeutic drugs carmustine (BCNU) and cabazitaxel (CTX). Initially, the combined impact of BCNU and CTX was confirmed, revealing that this impact reaches its maximum at a ratio of 1:2 mol/mol (BCNU/CTX). After that, the BC-Lipo co-delivery system was developed, which has a high capability for loading drugs (97.48% ± 1.14 for BCNU, 86.29% ± 3.03 for CTX). This system also has a sustained release profile and a beneficial long-circulating feature. The accumulation of BC-Lipo in tumors was dramatically enhanced compared to the accumulation of the free drug. Furthermore, BC-Lipo demonstrated similar levels of cytotoxicity to free BCNU and CTX (BCNU/CTX) when tested on HeLa cells in an <i>in vitro</i> model. Biochemical staining methods investigated the cancer cell's morphological examination. The apoptosis was confirmed by FITC-Annexin-V/PI staining by flow cytometry analysis. In addition, the investigation of fluorescence and protein markers examined the apoptosis mechanistic pathway, and the results indicated that BC-Lipo induced apoptosis due to mitochondrial membrane potential variation. This proof-of-concept study has established the probability of these BCNU-CTX combined treatments as active drug delivery nanocarriers for poorly soluble BCNU and CTX.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-21"},"PeriodicalIF":3.6,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Additive manufacturing of TPU devices for genital herpes treatment with sustained acyclovir release. 用于持续释放阿昔洛韦治疗生殖器疱疹的热塑性聚氨酯设备的添加剂制造。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-27 DOI: 10.1080/09205063.2024.2396221
Victor de Carvalho Rodrigues, Iara Zanella Guterres, Beatriz Pereira Savi, Gislaine Fongaro, Izabella Thaís Silva, Gean Vitor Salmoria

The treatment of recurrent genital herpes typically involves daily doses of acyclovir for extended periods. Additive manufacturing is an intriguing technique for creating personalised drug delivery systems, which can enhance the effectiveness of treatments for various diseases. The vaginal route offers a viable alternative for the systemic administration of drugs with low oral bioavailability. In this study, we produced different grades of thermoplastic polyurethane (TPU) filaments through hot-melt extrusion, with acyclovir concentrations of 0%, 10%, and 20% by weight. We used fused filament fabrication to manufacture matrix-based devices, including intrauterine devices and intravaginal rings. Our results, obtained through SEM, FTIR, and DSC analyses, confirm the successful incorporation of acyclovir into the matrix. Thermal analysis reveals that the manufacturing process alters the organization of the TPU chains, resulting in a slight reduction in crystallinity. In our in-vitro tests, we observed an initial burst release on the first day, followed by sustained release at reduced rates for up to 145 days, demonstrating their potential for long-term applications. Additionally, cytotoxicity analysis suggests the excellent biocompatibility of the printed devices, and biological assays show a remarkable 99% reduction in HSV-1 replication. In summary, TPU printed devices offer a promising alternative for long-term genital herpes treatment, with the results obtained potentially contributing to the advancement of pharmaceutical manufacturing.

治疗复发性生殖器疱疹通常需要每天长期服用阿昔洛韦。增材制造是一种令人感兴趣的技术,可用于创建个性化给药系统,从而提高各种疾病的治疗效果。阴道给药途径为口服生物利用度较低的全身给药提供了一种可行的替代方法。在这项研究中,我们通过热熔挤出法生产了不同等级的热塑性聚氨酯(TPU)长丝,阿昔洛韦的重量浓度分别为 0%、10% 和 20%。我们利用熔融长丝制造技术制造了基于基质的装置,包括宫内装置和阴道内环。我们通过扫描电镜、傅立叶变换红外光谱和 DSC 分析获得的结果证实,阿昔洛韦成功地融入了基质中。热分析表明,制造过程改变了热塑性聚氨酯链的组织结构,导致结晶度略有降低。在体外测试中,我们观察到了第一天的初始迸发释放,随后以较低的速率持续释放长达 145 天,这证明了其长期应用的潜力。此外,细胞毒性分析表明,这种印刷设备具有良好的生物相容性,生物试验显示,HSV-1 复制率显著降低了 99%。总之,热塑性聚氨酯印刷设备为生殖器疱疹的长期治疗提供了一种前景广阔的替代方案,所取得的成果有望推动药品生产的发展。
{"title":"Additive manufacturing of TPU devices for genital herpes treatment with sustained acyclovir release.","authors":"Victor de Carvalho Rodrigues, Iara Zanella Guterres, Beatriz Pereira Savi, Gislaine Fongaro, Izabella Thaís Silva, Gean Vitor Salmoria","doi":"10.1080/09205063.2024.2396221","DOIUrl":"https://doi.org/10.1080/09205063.2024.2396221","url":null,"abstract":"<p><p>The treatment of recurrent genital herpes typically involves daily doses of acyclovir for extended periods. Additive manufacturing is an intriguing technique for creating personalised drug delivery systems, which can enhance the effectiveness of treatments for various diseases. The vaginal route offers a viable alternative for the systemic administration of drugs with low oral bioavailability. In this study, we produced different grades of thermoplastic polyurethane (TPU) filaments through hot-melt extrusion, with acyclovir concentrations of 0%, 10%, and 20% by weight. We used fused filament fabrication to manufacture matrix-based devices, including intrauterine devices and intravaginal rings. Our results, obtained through SEM, FTIR, and DSC analyses, confirm the successful incorporation of acyclovir into the matrix. Thermal analysis reveals that the manufacturing process alters the organization of the TPU chains, resulting in a slight reduction in crystallinity. In our in-vitro tests, we observed an initial burst release on the first day, followed by sustained release at reduced rates for up to 145 days, demonstrating their potential for long-term applications. Additionally, cytotoxicity analysis suggests the excellent biocompatibility of the printed devices, and biological assays show a remarkable 99% reduction in HSV-1 replication. In summary, TPU printed devices offer a promising alternative for long-term genital herpes treatment, with the results obtained potentially contributing to the advancement of pharmaceutical manufacturing.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-16"},"PeriodicalIF":3.6,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential of Graphene-Functionalized Polymer Surfaces for Dental Applications: A Systematic review. 石墨烯功能化聚合物表面在牙科应用中的潜力:系统回顾
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-27 DOI: 10.1080/09205063.2024.2396224
Rohit Kumar Singh, Khyati Verma, G C Mohan Kumar, Mallikarjun B Jalageri

Graphene, a two-dimensional carbon nanomaterial, has garnered widespread attention across various fields due to its outstanding properties. In dental implantology, researchers are exploring the use of graphene-functionalized polymer surfaces to enhance both the osseointegration process and the long-term success of dental implants. This review consolidates evidence from in-vivo and in-vitro studies, highlighting graphene's capacity to improve bone-to-implant contact, exhibit antibacterial properties, and enhance mechanical strength. This research investigates the effects of incorporating graphene derivatives into polymer materials on tissue response and compatibility. Among 123 search results, 14 articles meeting the predefined criteria were analyzed. The study primarily focuses on assessing the impact of GO and rGO on cellular function and stability in implants. Results indicate promising improvements in cellular function and stability with the use of GO-coated or composited implants. However, it is noted that interactions between Graphene derivatives and polymers may alter the inherent properties of the materials. Therefore, further rigorous research is deemed imperative to fully elucidate their potential in human applications. Such comprehensive understanding is essential for unlocking the extensive benefits associated with the utilization of Graphene derivatives in biomedical contexts.

石墨烯是一种二维碳纳米材料,因其卓越的性能在各个领域受到广泛关注。在牙科植入方面,研究人员正在探索使用石墨烯功能化聚合物表面来增强牙科植入物的骨结合过程和长期成功率。本综述综合了体内和体外研究的证据,强调了石墨烯改善骨与种植体接触、表现出抗菌特性和增强机械强度的能力。这项研究探讨了将石墨烯衍生物融入聚合物材料对组织反应和兼容性的影响。在 123 项搜索结果中,有 14 篇符合预定标准的文章接受了分析。研究主要侧重于评估 GO 和 rGO 对植入物中细胞功能和稳定性的影响。结果表明,使用GO涂层或复合植入物可改善细胞功能和稳定性。不过,需要注意的是,石墨烯衍生物与聚合物之间的相互作用可能会改变材料的固有特性。因此,必须进一步开展严格的研究,以充分阐明其在人体应用中的潜力。这种全面的了解对于释放石墨烯衍生物在生物医学领域的广泛优势至关重要。
{"title":"Potential of Graphene-Functionalized Polymer Surfaces for Dental Applications: A Systematic review.","authors":"Rohit Kumar Singh, Khyati Verma, G C Mohan Kumar, Mallikarjun B Jalageri","doi":"10.1080/09205063.2024.2396224","DOIUrl":"https://doi.org/10.1080/09205063.2024.2396224","url":null,"abstract":"<p><p>Graphene, a two-dimensional carbon nanomaterial, has garnered widespread attention across various fields due to its outstanding properties. In dental implantology, researchers are exploring the use of graphene-functionalized polymer surfaces to enhance both the osseointegration process and the long-term success of dental implants. This review consolidates evidence from in-vivo and in-vitro studies, highlighting graphene's capacity to improve bone-to-implant contact, exhibit antibacterial properties, and enhance mechanical strength. This research investigates the effects of incorporating graphene derivatives into polymer materials on tissue response and compatibility. Among 123 search results, 14 articles meeting the predefined criteria were analyzed. The study primarily focuses on assessing the impact of GO and rGO on cellular function and stability in implants. Results indicate promising improvements in cellular function and stability with the use of GO-coated or composited implants. However, it is noted that interactions between Graphene derivatives and polymers may alter the inherent properties of the materials. Therefore, further rigorous research is deemed imperative to fully elucidate their potential in human applications. Such comprehensive understanding is essential for unlocking the extensive benefits associated with the utilization of Graphene derivatives in biomedical contexts.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-21"},"PeriodicalIF":3.6,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishment of 3D cell culture systems with decellularized lung-derived extracellular matrix hydrogel scaffold. 利用脱细胞肺源细胞外基质水凝胶支架建立三维细胞培养系统。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-27 DOI: 10.1080/09205063.2024.2392356
Secil Subasi Can, Sema Tuncer, Hayriye Akel Bilgic, Gizem İmrak, Gülçin Günal, Ebru Damadoglu, Halil Murat Aydin, Cagatay Karaaslan

Decellularized tissue hydrogels, especially that mimic the native tissue, have a high potential for tissue engineering, three-dimensional (3D) cell culture, bioprinting, and therapeutic agent encapsulation due to their excellent biocompatibility and ability to facilitate the growth of cells. It is important to note that the decellularization process significantly affects the structural integrity and properties of the extracellular matrix, which in turn shapes the characteristics of the resulting hydrogels at the macromolecular level. Therefore, our study aims to identify an effective chemical decellularization method for sheep lung tissue, using a mixing/agitation technique with a range of detergents, including commonly [Sodium dodecyl sulfate (SDS), Triton X-100, and 3-((3-cholamidopropyl) dimethylammonio)-1-propanesulfonate] (CHAPS), and rarely used (sodium cholate hydrate, NP-40, and 3-[N,N-Dimethyl(3-myristoylaminopropyl)ammonio]propanesulfonate) (ASB-14). After the effectiveness of the used detergents on decellularization was determined by histological and biochemical methods, lung derived decellularized extracellular matrix was converted into hydrogel. We investigated the interactions between lung cells and decellularized extracellular matrix using proliferation assay, scanning electron microscopy, and immunofluorescence microscopy methods on BEAS-2B cells in air-liquid interface. Notably, this study emphasizes the effectiveness of ASB-14 in the decellularization process, showcasing its crucial role in removing cellular components while preserving vital extracellular matrix biological macromolecules, including glycosaminoglycans, collagen, and elastin. The resulting hydrogels demonstrated favorable mechanical properties and are compatible with both cell-cell and cell-extracellular matrix interactions.

脱细胞组织水凝胶,尤其是模拟原生组织的脱细胞组织水凝胶,由于其出色的生物相容性和促进细胞生长的能力,在组织工程、三维(3D)细胞培养、生物打印和治疗剂封装方面具有很大的潜力。值得注意的是,脱细胞过程会极大地影响细胞外基质的结构完整性和特性,进而在大分子水平上形成水凝胶的特性。因此,我们的研究旨在确定一种有效的绵羊肺组织化学脱细胞方法,该方法使用一系列洗涤剂的混合/搅拌技术,包括常用的[十二烷基硫酸钠(SDS)、Triton X-100、3-羟基丙烷(3-羟基丙烷)]、Triton X-100 和 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate](CHAPS),以及很少使用的(胆酸钠水合物、NP-40 和 3-[N,N-二甲基(3-肉豆蔻氨基丙基)氨基]丙磺酸盐)(ASB-14)。在通过组织学和生化方法确定了所使用的洗涤剂对脱细胞的有效性后,肺衍生的脱细胞细胞外基质被转化成了水凝胶。我们使用增殖试验、扫描电子显微镜和免疫荧光显微镜方法研究了气液界面中的 BEAS-2B 细胞与脱细胞细胞外基质之间的相互作用。值得注意的是,这项研究强调了 ASB-14 在脱细胞过程中的有效性,展示了它在去除细胞成分的同时保留细胞外基质生物大分子(包括糖胺聚糖、胶原蛋白和弹性蛋白)的关键作用。由此产生的水凝胶具有良好的机械性能,并且与细胞-细胞和细胞-细胞外基质的相互作用兼容。
{"title":"Establishment of 3D cell culture systems with decellularized lung-derived extracellular matrix hydrogel scaffold.","authors":"Secil Subasi Can, Sema Tuncer, Hayriye Akel Bilgic, Gizem İmrak, Gülçin Günal, Ebru Damadoglu, Halil Murat Aydin, Cagatay Karaaslan","doi":"10.1080/09205063.2024.2392356","DOIUrl":"10.1080/09205063.2024.2392356","url":null,"abstract":"<p><p>Decellularized tissue hydrogels, especially that mimic the native tissue, have a high potential for tissue engineering, three-dimensional (3D) cell culture, bioprinting, and therapeutic agent encapsulation due to their excellent biocompatibility and ability to facilitate the growth of cells. It is important to note that the decellularization process significantly affects the structural integrity and properties of the extracellular matrix, which in turn shapes the characteristics of the resulting hydrogels at the macromolecular level. Therefore, our study aims to identify an effective chemical decellularization method for sheep lung tissue, using a mixing/agitation technique with a range of detergents, including commonly [Sodium dodecyl sulfate (SDS), Triton X-100, and 3-((3-cholamidopropyl) dimethylammonio)-1-propanesulfonate] (CHAPS), and rarely used (sodium cholate hydrate, NP-40, and 3-[<i>N</i>,<i>N</i>-Dimethyl(3-myristoylaminopropyl)ammonio]propanesulfonate) (ASB-14). After the effectiveness of the used detergents on decellularization was determined by histological and biochemical methods, lung derived decellularized extracellular matrix was converted into hydrogel. We investigated the interactions between lung cells and decellularized extracellular matrix using proliferation assay, scanning electron microscopy, and immunofluorescence microscopy methods on BEAS-2B cells in air-liquid interface. Notably, this study emphasizes the effectiveness of ASB-14 in the decellularization process, showcasing its crucial role in removing cellular components while preserving vital extracellular matrix biological macromolecules, including glycosaminoglycans, collagen, and elastin. The resulting hydrogels demonstrated favorable mechanical properties and are compatible with both cell-cell and cell-extracellular matrix interactions.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-23"},"PeriodicalIF":3.6,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-dimensional porous polycaprolactone/chitosan/bioactive glass scaffold for bone tissue engineering. 用于骨组织工程的三维多孔聚己内酯/壳聚糖/生物活性玻璃支架。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-26 DOI: 10.1080/09205063.2024.2391218
Kiran Joy, Sathya Seeli David, Abinaya Shanmugavadivu, Selvamurugan Nagarajan, Prabaharan Mani

Three-dimensional (3D) porous scaffolds based on polycaprolactone (PCL)/chitosan (CS)/bioactive glass (BG) nanoparticle composites were fabricated by the freeze-drying technique for bone tissue engineering. The physiochemical properties of the developed PCL/CS/BG scaffolds were studied using FTIR, XRD, EDX and SEM. Furthermore, the swelling degree, porosity, water retention ability, compression strength, in vitro biodegradation, bioactivity and biocompatibility of the scaffolds were examined. The PCL/CS/BG scaffolds with 4 wt. % of BG content presented adequate pore size (106 μm), porosity (156%), water swelling degree (128%), water retention ability (179%), compressive strength (3.7 MPa) and controlled degradation behavior, which could be ideal for bone tissue engineering. The PCL/CS/BG composite scaffolds showed good antimicrobial activity against both test bacteria and fungi. The MTT assay demonstrated the biocompatibility of PCL/CS/BG scaffolds against C3H10T1/2 cell line. The Alizarin red staining assay confirmed the osteogenic activity of the PCL/CS/BG scaffolds.

通过冷冻干燥技术制备了基于聚己内酯(PCL)/壳聚糖(CS)/生物活性玻璃(BG)纳米颗粒复合材料的三维(3D)多孔支架,用于骨组织工程。利用傅立叶变换红外光谱(FTIR)、XRD、EDX和扫描电镜研究了所制备 PCL/CS/BG 支架的理化性质。此外,还考察了支架的溶胀度、孔隙率、保水能力、压缩强度、体外生物降解、生物活性和生物相容性。BG含量为4 wt.%的PCL/CS/BG支架具有足够的孔径(106 μm)、孔隙率(156%)、水膨胀度(128%)、保水能力(179%)、压缩强度(3.7 MPa)和可控降解行为,是骨组织工程的理想材料。PCL/CS/BG 复合材料支架对测试细菌和真菌都具有良好的抗菌活性。MTT 试验证明了 PCL/CS/BG 支架对 C3H10T1/2 细胞系的生物相容性。茜素红染色试验证实了 PCL/CS/BG 支架的成骨活性。
{"title":"Three-dimensional porous polycaprolactone/chitosan/bioactive glass scaffold for bone tissue engineering.","authors":"Kiran Joy, Sathya Seeli David, Abinaya Shanmugavadivu, Selvamurugan Nagarajan, Prabaharan Mani","doi":"10.1080/09205063.2024.2391218","DOIUrl":"https://doi.org/10.1080/09205063.2024.2391218","url":null,"abstract":"<p><p>Three-dimensional (3D) porous scaffolds based on polycaprolactone (PCL)/chitosan (CS)/bioactive glass (BG) nanoparticle composites were fabricated by the freeze-drying technique for bone tissue engineering. The physiochemical properties of the developed PCL/CS/BG scaffolds were studied using FTIR, XRD, EDX and SEM. Furthermore, the swelling degree, porosity, water retention ability, compression strength, <i>in vitro</i> biodegradation, bioactivity and biocompatibility of the scaffolds were examined. The PCL/CS/BG scaffolds with 4 wt. % of BG content presented adequate pore size (106 μm), porosity (156%), water swelling degree (128%), water retention ability (179%), compressive strength (3.7 MPa) and controlled degradation behavior, which could be ideal for bone tissue engineering. The PCL/CS/BG composite scaffolds showed good antimicrobial activity against both test bacteria and fungi. The MTT assay demonstrated the biocompatibility of PCL/CS/BG scaffolds against C3H10T1/2 cell line. The Alizarin red staining assay confirmed the osteogenic activity of the PCL/CS/BG scaffolds.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-16"},"PeriodicalIF":3.6,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of the molar mass of chitosan and film casting solvents on the properties of chitosan films loaded with Mentha spicata essential oil for potential application as wound dressing. 壳聚糖摩尔质量和成膜溶剂对载入薄荷精油的壳聚糖薄膜性能的影响,该薄膜有望用作伤口敷料。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-21 DOI: 10.1080/09205063.2024.2390752
Fatima Zahra Gana, Yahia Harek, Nadia Aissaoui, Taib Nadjat, Sarra Abbad, Houria Rouabhi

Chitosan based films endowed with antibacterial features have witnessed remarkable progress as potential wound dressings. The current study aimed at appraising the effects of the molar mass of chitosan (MM) and the film casting acids on the properties of unplasticized chitosan films and plasticized MSO-embedded chitosan films in order to provide best suited film formulation as a potential candidate for wound dressing application. The prepared films were functionally characterized in terms of their qualitative assessment, thickness, density, swelling behavior, water vapor barrier, mechanical and antibacterial properties. Overall, all chitosan films displayed thickness lower than the human dermis even though thicker and denser films were produced with lactic acid. Assessment of the swelling behavior revealed that only high molar mass (HMM) chitosan films may be regarded as absorbent dressings. Moreover, unplasticized HMM lactate (HMM-LA) films furnished lower stiffness and higher percent strain break as compared to acetate films, due to the plasticizing effect of the remaining lactic acid as alluded by the FTIR analysis. Meanwhile, they provided suitable level of moisture and indicated substantial antibacterial activity against S. aureus and E. coli, the most commonly opportunistic bacteria found in infected skin wound. Plasticized chitosan films doped with MSO were significantly thicker and more permeable to water compared to unplasticized films. Furthermore, MSO significantly potentiate the antibacterial effect of chitosan-based films. Therefore, plasticized HMM-LA/MSO chitosan film flashing good swelling behavior, adequate WVTR and WVP, suitable mechanical properties and antibacterial performances substantiated to be a promising antibacterial dressing material for moderately exuding wounds.

具有抗菌功能的壳聚糖薄膜作为潜在的伤口敷料取得了显著进展。本研究旨在评估壳聚糖摩尔质量(MM)和薄膜浇注酸对未塑化壳聚糖薄膜和塑化 MSO 嵌入壳聚糖薄膜性能的影响,以提供最适合的薄膜配方,作为伤口敷料应用的潜在候选材料。制备的薄膜在质量评估、厚度、密度、膨胀行为、水蒸气阻隔性、机械和抗菌性能等方面都具有功能特征。总体而言,所有壳聚糖薄膜的厚度都低于人体真皮层,尽管使用乳酸制备的薄膜更厚更致密。对膨胀行为的评估表明,只有高摩尔质量(HMM)壳聚糖薄膜才能被视为吸水敷料。此外,与醋酸纤维薄膜相比,未塑化的乳酸 HMM(HMM-LA)薄膜刚度较低,应变断裂百分率较高,这是因为傅立叶变换红外光谱分析显示了剩余乳酸的塑化作用。同时,它们还提供了适当的湿度,并显示出对金黄色葡萄球菌和大肠杆菌(感染性皮肤伤口中最常见的机会性细菌)具有很强的抗菌活性。与未增塑的薄膜相比,掺入了 MSO 的增塑壳聚糖薄膜明显更厚,透水性更强。此外,MSO 还能明显增强壳聚糖薄膜的抗菌效果。因此,增塑的 HMM-LA/MSO 壳聚糖薄膜具有良好的溶胀性能、足够的 WVTR 和 WVP、合适的机械性能和抗菌性能,可作为中度渗出伤口的抗菌敷料。
{"title":"Effect of the molar mass of chitosan and film casting solvents on the properties of chitosan films loaded with <i>Mentha spicata</i> essential oil for potential application as wound dressing.","authors":"Fatima Zahra Gana, Yahia Harek, Nadia Aissaoui, Taib Nadjat, Sarra Abbad, Houria Rouabhi","doi":"10.1080/09205063.2024.2390752","DOIUrl":"10.1080/09205063.2024.2390752","url":null,"abstract":"<p><p>Chitosan based films endowed with antibacterial features have witnessed remarkable progress as potential wound dressings. The current study aimed at appraising the effects of the molar mass of chitosan (MM) and the film casting acids on the properties of unplasticized chitosan films and plasticized MSO-embedded chitosan films in order to provide best suited film formulation as a potential candidate for wound dressing application. The prepared films were functionally characterized in terms of their qualitative assessment, thickness, density, swelling behavior, water vapor barrier, mechanical and antibacterial properties. Overall, all chitosan films displayed thickness lower than the human dermis even though thicker and denser films were produced with lactic acid. Assessment of the swelling behavior revealed that only high molar mass (HMM) chitosan films may be regarded as absorbent dressings. Moreover, unplasticized HMM lactate (HMM-LA) films furnished lower stiffness and higher percent strain break as compared to acetate films, due to the plasticizing effect of the remaining lactic acid as alluded by the FTIR analysis. Meanwhile, they provided suitable level of moisture and indicated substantial antibacterial activity against <i>S. aureus</i> and <i>E. coli</i>, the most commonly opportunistic bacteria found in infected skin wound. Plasticized chitosan films doped with MSO were significantly thicker and more permeable to water compared to unplasticized films. Furthermore, MSO significantly potentiate the antibacterial effect of chitosan-based films. Therefore, plasticized HMM-LA/MSO chitosan film flashing good swelling behavior, adequate WVTR and WVP, suitable mechanical properties and antibacterial performances substantiated to be a promising antibacterial dressing material for moderately exuding wounds.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-22"},"PeriodicalIF":3.6,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physicochemical analysis of chitosan oligosaccharide revealed its usefulness in effective delivery of drugs. 壳聚糖寡糖的理化分析表明了它在有效给药方面的作用。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-21 DOI: 10.1080/09205063.2024.2392365
Shraddha Gupta, Dhakshinamoorthy Vasanth, Awanish Kumar

Chitosan oligosaccharides are biopolymers with a wide range of potential applications in various fields. This biopolymer is diverse and promising, and current research is investigating its capabilities for improved drug delivery. As chitosan oligosaccharide has the potential to be used as a drug delivery option, the purpose of this study was to examine its physicochemical characteristics and its potential for drug delivery. In this study, the pharmacokinetic properties of chitosan oligosaccharide were studied through Insilco investigation, which revealed that it is an extremely soluble and effective drug delivery candidate because it does not inhibit CYP isoenzymes and has a log Kp of -12.10 cm/s. It belongs to toxicity class 6 for acute oral toxicity, with an average similarity of 87.5% and a prediction accuracy of 70.97%. Additionally, XRD peak analysis revealed that the material was amorphous, as the peak appeared at 2θ = 24.62°, indicating the absence of well-defined crystalline areas. This characteristic makes the material more suitable for customization in many applications such as drug delivery and tissue engineering. FTIR, SEM, and TGA analysis were performed to gain a better understanding. These findings also emphasize the distinctive qualities and benefits of the oligosaccharides in this domain. Application of chitosan oligosaccharides in the development of efficient drug delivery systems. In the future, it would be more effective, targeted, and safe, with potent therapeutic efficacy for drug delivery.

壳聚糖寡糖是一种生物聚合物,在各个领域都有广泛的潜在应用。这种生物聚合物种类繁多,前景广阔,目前的研究正在探究其改善药物输送的能力。由于壳聚糖低聚糖具有作为一种给药选择的潜力,本研究的目的是考察其理化特性及其在给药方面的潜力。本研究通过 Insilco 调查研究了壳聚糖低聚糖的药代动力学特性,结果表明,壳聚糖低聚糖不抑制 CYP 同工酶,Kp 对数为 -12.10 cm/s,是一种极易溶解且有效的给药候选物质。它属于急性口服毒性的第 6 类,平均相似度为 87.5%,预测准确率为 70.97%。此外,X 射线衍射峰分析表明,该材料为无定形材料,峰值出现在 2θ = 24.62°,表明没有明确的结晶区域。这一特性使该材料更适合在药物输送和组织工程等许多应用中进行定制。为了更好地了解这种材料,我们对其进行了傅立叶变换红外光谱、扫描电镜和热重分析。这些发现还强调了低聚糖在这一领域的独特品质和优势。壳聚糖低聚物在高效给药系统开发中的应用。未来,它将成为更有效、更有针对性、更安全、更有强大疗效的给药系统。
{"title":"Physicochemical analysis of chitosan oligosaccharide revealed its usefulness in effective delivery of drugs.","authors":"Shraddha Gupta, Dhakshinamoorthy Vasanth, Awanish Kumar","doi":"10.1080/09205063.2024.2392365","DOIUrl":"https://doi.org/10.1080/09205063.2024.2392365","url":null,"abstract":"<p><p>Chitosan oligosaccharides are biopolymers with a wide range of potential applications in various fields. This biopolymer is diverse and promising, and current research is investigating its capabilities for improved drug delivery. As chitosan oligosaccharide has the potential to be used as a drug delivery option, the purpose of this study was to examine its physicochemical characteristics and its potential for drug delivery. In this study, the pharmacokinetic properties of chitosan oligosaccharide were studied through Insilco investigation, which revealed that it is an extremely soluble and effective drug delivery candidate because it does not inhibit CYP isoenzymes and has a log <i>K<sub>p</sub></i> of -12.10 cm/s. It belongs to toxicity class 6 for acute oral toxicity, with an average similarity of 87.5% and a prediction accuracy of 70.97%. Additionally, XRD peak analysis revealed that the material was amorphous, as the peak appeared at 2<i>θ</i> = 24.62°, indicating the absence of well-defined crystalline areas. This characteristic makes the material more suitable for customization in many applications such as drug delivery and tissue engineering. FTIR, SEM, and TGA analysis were performed to gain a better understanding. These findings also emphasize the distinctive qualities and benefits of the oligosaccharides in this domain. Application of chitosan oligosaccharides in the development of efficient drug delivery systems. In the future, it would be more effective, targeted, and safe, with potent therapeutic efficacy for drug delivery.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-19"},"PeriodicalIF":3.6,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of bacterial cellulose/acrylic acid-based pH-responsive smart dressings by graft copolymerization method. 用接枝共聚法制备细菌纤维素/丙烯酸基 pH 值响应型智能敷料。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-20 DOI: 10.1080/09205063.2024.2389689
Wen Zhang, Xinyue Hu, Fei Jiang, Yirui Li, Wenhao Chen, Ting Zhou

Conventional wound dressings used in trauma treatment have a single function and insufficient adaptability to the wound environment, making it difficult to meet the complex demands of the healing process. Stimuli-responsive hydrogels can respond specifically to the particular environment of the wound area and realize on-demand responsive release by loading active substances, which can effectively promote wound healing. In this paper, BC/PAA-pH responsive hydrogels (BPPRHs) were prepared by graft copolymerization of acrylic acid (AA) to the end of the molecular chain of bacterial cellulose (BC) network structure. Antibacterial pH-responsive 'smart' dressings were prepared by loading curcumin (Cur) onto the hydrogels. Surface morphology, chemical groups, crystallinity, rheological, and mechanical properties of BPPRHs were analyzed by different characterization methods. The drug release behavior under different physiological conditions and bacteriostatic properties of BPPRH-Cur dressings were also investigated. The results of structural characterization and performance studies show that the hydrogel has a three-dimensional mesh structure and can respond to wound pH in a 'smart' drug release capacity. The drug release behavior of the BPPRH-Cur dressings under different environmental conditions conformed to the logistic and Weibull kinetic models. BPPRH-Cur displayed good antimicrobial activity against common pathogens of wound infections such as E. coli, S. aureus, and P. aeruginosa by destroying the cell membrane and lysing the bacterial cells. This study lays the foundation for the development of new pharmaceutical dressings with positive health, economic and social benefits.

用于创伤治疗的传统伤口敷料功能单一,对伤口环境的适应性不足,难以满足伤口愈合过程中的复杂需求。刺激响应型水凝胶能对创面的特殊环境做出特异性响应,通过负载活性物质实现按需响应释放,能有效促进创面愈合。本文通过在细菌纤维素(BC)网络结构的分子链末端接枝共聚丙烯酸(AA),制备了BC/PAA-pH响应水凝胶(BPPRHs)。通过在水凝胶中添加姜黄素(Cur)制备了抗菌 pH 响应型 "智能 "敷料。通过不同的表征方法分析了 BPPRHs 的表面形态、化学基团、结晶度、流变学和机械性能。此外,还研究了 BPPRH-Cur 敷料在不同生理条件下的药物释放行为和抑菌特性。结构表征和性能研究结果表明,该水凝胶具有三维网状结构,能以 "智能 "药物释放能力响应伤口的 pH 值。BPPRH-Cur 敷料在不同环境条件下的药物释放行为符合逻辑动力学模型和 Weibull 动力学模型。BPPRH-Cur 通过破坏细胞膜和裂解细菌细胞,对大肠杆菌、金黄色葡萄球菌和绿脓杆菌等常见的伤口感染病原体具有良好的抗菌活性。这项研究为开发具有积极健康、经济和社会效益的新型药物敷料奠定了基础。
{"title":"Preparation of bacterial cellulose/acrylic acid-based pH-responsive smart dressings by graft copolymerization method.","authors":"Wen Zhang, Xinyue Hu, Fei Jiang, Yirui Li, Wenhao Chen, Ting Zhou","doi":"10.1080/09205063.2024.2389689","DOIUrl":"https://doi.org/10.1080/09205063.2024.2389689","url":null,"abstract":"<p><p>Conventional wound dressings used in trauma treatment have a single function and insufficient adaptability to the wound environment, making it difficult to meet the complex demands of the healing process. Stimuli-responsive hydrogels can respond specifically to the particular environment of the wound area and realize on-demand responsive release by loading active substances, which can effectively promote wound healing. In this paper, BC/PAA-pH responsive hydrogels (BPPRHs) were prepared by graft copolymerization of acrylic acid (AA) to the end of the molecular chain of bacterial cellulose (BC) network structure. Antibacterial pH-responsive 'smart' dressings were prepared by loading curcumin (Cur) onto the hydrogels. Surface morphology, chemical groups, crystallinity, rheological, and mechanical properties of BPPRHs were analyzed by different characterization methods. The drug release behavior under different physiological conditions and bacteriostatic properties of BPPRH-Cur dressings were also investigated. The results of structural characterization and performance studies show that the hydrogel has a three-dimensional mesh structure and can respond to wound pH in a 'smart' drug release capacity. The drug release behavior of the BPPRH-Cur dressings under different environmental conditions conformed to the logistic and Weibull kinetic models. BPPRH-Cur displayed good antimicrobial activity against common pathogens of wound infections such as <i>E. coli, S. aureus,</i> and <i>P. aeruginosa</i> by destroying the cell membrane and lysing the bacterial cells. This study lays the foundation for the development of new pharmaceutical dressings with positive health, economic and social benefits.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-23"},"PeriodicalIF":3.6,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and optimization of acetazolamide nanoparticle-laden contact lens using statistical experimental design for controlled ocular drug delivery. 利用统计实验设计设计和优化含乙酰唑胺纳米颗粒的隐形眼镜,实现眼部药物的可控输送。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-19 DOI: 10.1080/09205063.2024.2391233
Disha Chawnani, Ketan Ranch, Chirag Patel, Harshilkumar Jani, Shery Jacob, Moawia M Al-Tabakha, Sai H S Boddu

This study aims to formulate and evaluate Eudragit nanoparticles-laden hydrogel contact lenses for controlled delivery of acetazolamide (ACZ) using experimental design. Eudragit S-100 was selected for the preparation of nanoparticles. The optimization of Eudragit S100 concentration (X1), polyvinyl alcohol concentration (X2), and the sonication time (X3) was attempted by applying a central composite experimental design. Mean size of nanoparticles (nm), percent in vitro drug release and drug leaching from the ACZ-ENs laden contact lens were considered as dependent variables. Nanoparticles-laden contact lens was prepared through the direct loading method and characterized. Optimum check-point formulation was selected based on validated quadratic polynomial equations developed using response surface methodology. The optimized formulation of ACZ-ENs exhibited spherical shape with a size of 244.3 nm and a zeta potential of -13.2 mV. The entrapment efficiency of nanoparticles was found to be 82.7 ± 1.21%. Transparent contact lenses loaded ACZ-ENs were successfully prepared using the free radical polymerization technique. ACZ-ENs incorporated in contact lens exhibited a swelling of 83.4 ± 0.82% and transmittance of 80.1 ± 1.23%. ACZ-ENs showed a significantly lower burst release of the drug when incorporated in the contact lens and release was sustained over a period of 24 h. The sterilized formulation of ACZ-ENs laden contact lens did not show any sign of toxicity in rabbit eyes. ACZ-ENs incorporated in contact lens could be considered as a potential alternative in glaucoma patients due to their ability to provide sustained drug release and thus enhance patient compliance.

本研究旨在通过实验设计,配制和评估用于控制乙酰唑胺(ACZ)给药的 Eudragit 纳米粒子水凝胶隐形眼镜。纳米颗粒的制备选择了 Eudragit S-100。通过采用中心复合实验设计,尝试优化 Eudragit S100 浓度(X1)、聚乙烯醇浓度(X2)和超声时间(X3)。纳米颗粒的平均尺寸(nm)、体外药物释放百分比和药物从添加 ACZ-ENs 的隐形眼镜中浸出被视为因变量。通过直接装载法制备了纳米颗粒载药隐形眼镜,并对其进行了表征。根据采用响应面方法建立的经过验证的二次多项式方程,选择了最佳检查点配方。优化后的 ACZ-ENs 配方呈球形,大小为 244.3 nm,zeta 电位为 -13.2 mV。纳米颗粒的夹带效率为 82.7 ± 1.21%。利用自由基聚合技术成功制备了含有 ACZ-ENs 的透明隐形眼镜。加入隐形眼镜中的 ACZ-ENs 的膨胀率为 83.4 ± 0.82%,透光率为 80.1 ± 1.23%。将 ACZ-ENs 加入隐形眼镜后,药物的迸发释放量明显降低,而且释放持续了 24 小时。将 ACZ-ENs 加入隐形眼镜中可作为青光眼患者的一种潜在替代品,因为它能够持续释放药物,从而提高患者的依从性。
{"title":"Design and optimization of acetazolamide nanoparticle-laden contact lens using statistical experimental design for controlled ocular drug delivery.","authors":"Disha Chawnani, Ketan Ranch, Chirag Patel, Harshilkumar Jani, Shery Jacob, Moawia M Al-Tabakha, Sai H S Boddu","doi":"10.1080/09205063.2024.2391233","DOIUrl":"https://doi.org/10.1080/09205063.2024.2391233","url":null,"abstract":"<p><p>This study aims to formulate and evaluate Eudragit nanoparticles-laden hydrogel contact lenses for controlled delivery of acetazolamide (ACZ) using experimental design. Eudragit S-100 was selected for the preparation of nanoparticles. The optimization of Eudragit S100 concentration (X1), polyvinyl alcohol concentration (X2), and the sonication time (X3) was attempted by applying a central composite experimental design. Mean size of nanoparticles (nm), percent <i>in vitro</i> drug release and drug leaching from the ACZ-ENs laden contact lens were considered as dependent variables. Nanoparticles-laden contact lens was prepared through the direct loading method and characterized. Optimum check-point formulation was selected based on validated quadratic polynomial equations developed using response surface methodology. The optimized formulation of ACZ-ENs exhibited spherical shape with a size of 244.3 nm and a zeta potential of -13.2 mV. The entrapment efficiency of nanoparticles was found to be 82.7 ± 1.21%. Transparent contact lenses loaded ACZ-ENs were successfully prepared using the free radical polymerization technique. ACZ-ENs incorporated in contact lens exhibited a swelling of 83.4 ± 0.82% and transmittance of 80.1 ± 1.23%. ACZ-ENs showed a significantly lower burst release of the drug when incorporated in the contact lens and release was sustained over a period of 24 h. The sterilized formulation of ACZ-ENs laden contact lens did not show any sign of toxicity in rabbit eyes. ACZ-ENs incorporated in contact lens could be considered as a potential alternative in glaucoma patients due to their ability to provide sustained drug release and thus enhance patient compliance.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-25"},"PeriodicalIF":3.6,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced osteogenesis and antibacterial activity of dual-functional PEEK implants via biomimetic polydopamine modification with chondroitin sulfate and levofloxacin. 通过硫酸软骨素和左氧氟沙星的生物仿生多巴胺修饰增强双功能聚醚醚酮植入物的成骨和抗菌活性。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-18 DOI: 10.1080/09205063.2024.2390745
Mengjue Li, Junyan Liu, Yutong Li, Wenyu Chen, Zhou Yang, Yayu Zou, Yi Liu, Yue Lu, Jianfei Cao

Polyetheretherketone (PEEK) implants have emerged as a clinically favored alternative to titanium alloy implants for cranial bone substitutes due to their excellent mechanical properties and biocompatibility. However, the biological inertness of PEEK has hindered its clinical application. To address this issue, we developed a dual-functional surface modification method aimed at enhancing both osteogenesis and antibacterial activity, which was achieved through the sustained release of chondroitin sulfate (CS) and levofloxacin (LVFX) from a biomimetic polydopamine (PDA) coating on the PEEK surface. CS was introduced to promote cell adhesion and osteogenic differentiation. Meanwhile, incorporation of antibiotic LVFX was essential to prevent infections, which are a critical concern in bone defect repairing. To our delight, experiment results demonstrated that the SPKD/CS-LVFX specimen exhibited enhanced hydrophilicity and sustained drug release profiles. Furthermore, in vitro experiments showed that cell growth and adhesion, cell viability, and osteogenic differentiation of mouse calvaria-derived osteoblast precursor (MC3T3-E1) cells were significantly improved on the SPKD/CS-LVFX coating. Antibacterial assays also confirmed that the SPKD/CS-LVFX specimen effectively inhibited the growth of Escherichia coli and Staphylococcus aureus, attributable to the antibiotic LVFX released from the PDA coating. To sum up, this dual-functional PEEK implant showed a promising potential for clinical application in bone defects repairing, providing excellent osteogenic and antibacterial properties through a synergistic approach.

聚醚醚酮(PEEK)植入物因其出色的机械性能和生物相容性,已成为钛合金植入物的临床首选颅骨替代物。然而,PEEK 的生物惰性阻碍了它的临床应用。为了解决这个问题,我们开发了一种双功能表面改性方法,旨在通过在 PEEK 表面的仿生物聚多巴胺(PDA)涂层中持续释放硫酸软骨素(CS)和左氧氟沙星(LVFX)来增强成骨和抗菌活性。引入 CS 是为了促进细胞粘附和成骨分化。同时,抗生素 LVFX 的加入对于防止感染至关重要,而感染是骨缺损修复中的一个关键问题。令人欣喜的是,实验结果表明 SPKD/CS-LVFX 试样具有更强的亲水性和持续的药物释放特性。此外,体外实验表明,SPKD/CS-LVFX 涂层显著改善了细胞生长和粘附性、细胞活力以及小鼠小腿源性成骨细胞前体(MC3T3-E1)的成骨分化。抗菌试验也证实,SPKD/CS-LVFX 试样能有效抑制大肠杆菌和金黄色葡萄球菌的生长,这归功于 PDA 涂层释放的抗生素 LVFX。总之,这种双功能聚醚醚酮植入体通过协同作用提供了优异的成骨和抗菌性能,在骨缺损修复方面具有广阔的临床应用前景。
{"title":"Enhanced osteogenesis and antibacterial activity of dual-functional PEEK implants via biomimetic polydopamine modification with chondroitin sulfate and levofloxacin.","authors":"Mengjue Li, Junyan Liu, Yutong Li, Wenyu Chen, Zhou Yang, Yayu Zou, Yi Liu, Yue Lu, Jianfei Cao","doi":"10.1080/09205063.2024.2390745","DOIUrl":"https://doi.org/10.1080/09205063.2024.2390745","url":null,"abstract":"<p><p>Polyetheretherketone (PEEK) implants have emerged as a clinically favored alternative to titanium alloy implants for cranial bone substitutes due to their excellent mechanical properties and biocompatibility. However, the biological inertness of PEEK has hindered its clinical application. To address this issue, we developed a dual-functional surface modification method aimed at enhancing both osteogenesis and antibacterial activity, which was achieved through the sustained release of chondroitin sulfate (CS) and levofloxacin (LVFX) from a biomimetic polydopamine (PDA) coating on the PEEK surface. CS was introduced to promote cell adhesion and osteogenic differentiation. Meanwhile, incorporation of antibiotic LVFX was essential to prevent infections, which are a critical concern in bone defect repairing. To our delight, experiment results demonstrated that the SPKD/CS-LVFX specimen exhibited enhanced hydrophilicity and sustained drug release profiles. Furthermore, <i>in vitro</i> experiments showed that cell growth and adhesion, cell viability, and osteogenic differentiation of mouse calvaria-derived osteoblast precursor (MC3T3-E1) cells were significantly improved on the SPKD/CS-LVFX coating. Antibacterial assays also confirmed that the SPKD/CS-LVFX specimen effectively inhibited the growth of <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>, attributable to the antibiotic LVFX released from the PDA coating. To sum up, this dual-functional PEEK implant showed a promising potential for clinical application in bone defects repairing, providing excellent osteogenic and antibacterial properties through a synergistic approach.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-17"},"PeriodicalIF":3.6,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Biomaterials Science, Polymer Edition
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1