首页 > 最新文献

Journal of Biomaterials Science, Polymer Edition最新文献

英文 中文
Enhanced osteogenesis and antibacterial activity of dual-functional PEEK implants via biomimetic polydopamine modification with chondroitin sulfate and levofloxacin. 通过硫酸软骨素和左氧氟沙星的生物仿生多巴胺修饰增强双功能聚醚醚酮植入物的成骨和抗菌活性。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-01 Epub Date: 2024-08-18 DOI: 10.1080/09205063.2024.2390745
Mengjue Li, Junyan Liu, Yutong Li, Wenyu Chen, Zhou Yang, Yayu Zou, Yi Liu, Yue Lu, Jianfei Cao

Polyetheretherketone (PEEK) implants have emerged as a clinically favored alternative to titanium alloy implants for cranial bone substitutes due to their excellent mechanical properties and biocompatibility. However, the biological inertness of PEEK has hindered its clinical application. To address this issue, we developed a dual-functional surface modification method aimed at enhancing both osteogenesis and antibacterial activity, which was achieved through the sustained release of chondroitin sulfate (CS) and levofloxacin (LVFX) from a biomimetic polydopamine (PDA) coating on the PEEK surface. CS was introduced to promote cell adhesion and osteogenic differentiation. Meanwhile, incorporation of antibiotic LVFX was essential to prevent infections, which are a critical concern in bone defect repairing. To our delight, experiment results demonstrated that the SPKD/CS-LVFX specimen exhibited enhanced hydrophilicity and sustained drug release profiles. Furthermore, in vitro experiments showed that cell growth and adhesion, cell viability, and osteogenic differentiation of mouse calvaria-derived osteoblast precursor (MC3T3-E1) cells were significantly improved on the SPKD/CS-LVFX coating. Antibacterial assays also confirmed that the SPKD/CS-LVFX specimen effectively inhibited the growth of Escherichia coli and Staphylococcus aureus, attributable to the antibiotic LVFX released from the PDA coating. To sum up, this dual-functional PEEK implant showed a promising potential for clinical application in bone defects repairing, providing excellent osteogenic and antibacterial properties through a synergistic approach.

聚醚醚酮(PEEK)植入物因其出色的机械性能和生物相容性,已成为钛合金植入物的临床首选颅骨替代物。然而,PEEK 的生物惰性阻碍了它的临床应用。为了解决这个问题,我们开发了一种双功能表面改性方法,旨在通过在 PEEK 表面的仿生物聚多巴胺(PDA)涂层中持续释放硫酸软骨素(CS)和左氧氟沙星(LVFX)来增强成骨和抗菌活性。引入 CS 是为了促进细胞粘附和成骨分化。同时,抗生素 LVFX 的加入对于防止感染至关重要,而感染是骨缺损修复中的一个关键问题。令人欣喜的是,实验结果表明 SPKD/CS-LVFX 试样具有更强的亲水性和持续的药物释放特性。此外,体外实验表明,SPKD/CS-LVFX 涂层显著改善了细胞生长和粘附性、细胞活力以及小鼠小腿源性成骨细胞前体(MC3T3-E1)的成骨分化。抗菌试验也证实,SPKD/CS-LVFX 试样能有效抑制大肠杆菌和金黄色葡萄球菌的生长,这归功于 PDA 涂层释放的抗生素 LVFX。总之,这种双功能聚醚醚酮植入体通过协同作用提供了优异的成骨和抗菌性能,在骨缺损修复方面具有广阔的临床应用前景。
{"title":"Enhanced osteogenesis and antibacterial activity of dual-functional PEEK implants via biomimetic polydopamine modification with chondroitin sulfate and levofloxacin.","authors":"Mengjue Li, Junyan Liu, Yutong Li, Wenyu Chen, Zhou Yang, Yayu Zou, Yi Liu, Yue Lu, Jianfei Cao","doi":"10.1080/09205063.2024.2390745","DOIUrl":"10.1080/09205063.2024.2390745","url":null,"abstract":"<p><p>Polyetheretherketone (PEEK) implants have emerged as a clinically favored alternative to titanium alloy implants for cranial bone substitutes due to their excellent mechanical properties and biocompatibility. However, the biological inertness of PEEK has hindered its clinical application. To address this issue, we developed a dual-functional surface modification method aimed at enhancing both osteogenesis and antibacterial activity, which was achieved through the sustained release of chondroitin sulfate (CS) and levofloxacin (LVFX) from a biomimetic polydopamine (PDA) coating on the PEEK surface. CS was introduced to promote cell adhesion and osteogenic differentiation. Meanwhile, incorporation of antibiotic LVFX was essential to prevent infections, which are a critical concern in bone defect repairing. To our delight, experiment results demonstrated that the SPKD/CS-LVFX specimen exhibited enhanced hydrophilicity and sustained drug release profiles. Furthermore, <i>in vitro</i> experiments showed that cell growth and adhesion, cell viability, and osteogenic differentiation of mouse calvaria-derived osteoblast precursor (MC3T3-E1) cells were significantly improved on the SPKD/CS-LVFX coating. Antibacterial assays also confirmed that the SPKD/CS-LVFX specimen effectively inhibited the growth of <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>, attributable to the antibiotic LVFX released from the PDA coating. To sum up, this dual-functional PEEK implant showed a promising potential for clinical application in bone defects repairing, providing excellent osteogenic and antibacterial properties through a synergistic approach.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2790-2806"},"PeriodicalIF":3.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and optimization of acetazolamide nanoparticle-laden contact lens using statistical experimental design for controlled ocular drug delivery. 利用统计实验设计设计和优化含乙酰唑胺纳米颗粒的隐形眼镜,实现眼部药物的可控输送。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-01 Epub Date: 2024-08-19 DOI: 10.1080/09205063.2024.2391233
Disha Chawnani, Ketan Ranch, Chirag Patel, Harshilkumar Jani, Shery Jacob, Moawia M Al-Tabakha, Sai H S Boddu

This study aims to formulate and evaluate Eudragit nanoparticles-laden hydrogel contact lenses for controlled delivery of acetazolamide (ACZ) using experimental design. Eudragit S-100 was selected for the preparation of nanoparticles. The optimization of Eudragit S100 concentration (X1), polyvinyl alcohol concentration (X2), and the sonication time (X3) was attempted by applying a central composite experimental design. Mean size of nanoparticles (nm), percent in vitro drug release and drug leaching from the ACZ-ENs laden contact lens were considered as dependent variables. Nanoparticles-laden contact lens was prepared through the direct loading method and characterized. Optimum check-point formulation was selected based on validated quadratic polynomial equations developed using response surface methodology. The optimized formulation of ACZ-ENs exhibited spherical shape with a size of 244.3 nm and a zeta potential of -13.2 mV. The entrapment efficiency of nanoparticles was found to be 82.7 ± 1.21%. Transparent contact lenses loaded ACZ-ENs were successfully prepared using the free radical polymerization technique. ACZ-ENs incorporated in contact lens exhibited a swelling of 83.4 ± 0.82% and transmittance of 80.1 ± 1.23%. ACZ-ENs showed a significantly lower burst release of the drug when incorporated in the contact lens and release was sustained over a period of 24 h. The sterilized formulation of ACZ-ENs laden contact lens did not show any sign of toxicity in rabbit eyes. ACZ-ENs incorporated in contact lens could be considered as a potential alternative in glaucoma patients due to their ability to provide sustained drug release and thus enhance patient compliance.

本研究旨在通过实验设计,配制和评估用于控制乙酰唑胺(ACZ)给药的 Eudragit 纳米粒子水凝胶隐形眼镜。纳米颗粒的制备选择了 Eudragit S-100。通过采用中心复合实验设计,尝试优化 Eudragit S100 浓度(X1)、聚乙烯醇浓度(X2)和超声时间(X3)。纳米颗粒的平均尺寸(nm)、体外药物释放百分比和药物从添加 ACZ-ENs 的隐形眼镜中浸出被视为因变量。通过直接装载法制备了纳米颗粒载药隐形眼镜,并对其进行了表征。根据采用响应面方法建立的经过验证的二次多项式方程,选择了最佳检查点配方。优化后的 ACZ-ENs 配方呈球形,大小为 244.3 nm,zeta 电位为 -13.2 mV。纳米颗粒的夹带效率为 82.7 ± 1.21%。利用自由基聚合技术成功制备了含有 ACZ-ENs 的透明隐形眼镜。加入隐形眼镜中的 ACZ-ENs 的膨胀率为 83.4 ± 0.82%,透光率为 80.1 ± 1.23%。将 ACZ-ENs 加入隐形眼镜后,药物的迸发释放量明显降低,而且释放持续了 24 小时。将 ACZ-ENs 加入隐形眼镜中可作为青光眼患者的一种潜在替代品,因为它能够持续释放药物,从而提高患者的依从性。
{"title":"Design and optimization of acetazolamide nanoparticle-laden contact lens using statistical experimental design for controlled ocular drug delivery.","authors":"Disha Chawnani, Ketan Ranch, Chirag Patel, Harshilkumar Jani, Shery Jacob, Moawia M Al-Tabakha, Sai H S Boddu","doi":"10.1080/09205063.2024.2391233","DOIUrl":"10.1080/09205063.2024.2391233","url":null,"abstract":"<p><p>This study aims to formulate and evaluate Eudragit nanoparticles-laden hydrogel contact lenses for controlled delivery of acetazolamide (ACZ) using experimental design. Eudragit S-100 was selected for the preparation of nanoparticles. The optimization of Eudragit S100 concentration (X1), polyvinyl alcohol concentration (X2), and the sonication time (X3) was attempted by applying a central composite experimental design. Mean size of nanoparticles (nm), percent <i>in vitro</i> drug release and drug leaching from the ACZ-ENs laden contact lens were considered as dependent variables. Nanoparticles-laden contact lens was prepared through the direct loading method and characterized. Optimum check-point formulation was selected based on validated quadratic polynomial equations developed using response surface methodology. The optimized formulation of ACZ-ENs exhibited spherical shape with a size of 244.3 nm and a zeta potential of -13.2 mV. The entrapment efficiency of nanoparticles was found to be 82.7 ± 1.21%. Transparent contact lenses loaded ACZ-ENs were successfully prepared using the free radical polymerization technique. ACZ-ENs incorporated in contact lens exhibited a swelling of 83.4 ± 0.82% and transmittance of 80.1 ± 1.23%. ACZ-ENs showed a significantly lower burst release of the drug when incorporated in the contact lens and release was sustained over a period of 24 h. The sterilized formulation of ACZ-ENs laden contact lens did not show any sign of toxicity in rabbit eyes. ACZ-ENs incorporated in contact lens could be considered as a potential alternative in glaucoma patients due to their ability to provide sustained drug release and thus enhance patient compliance.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2884-2908"},"PeriodicalIF":3.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D printing chronicles in medical devices and pharmaceuticals: tracing the evolution and historical milestones. 医疗设备和药品中的 3D 打印编年史:追溯演变和历史里程碑。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-01 Epub Date: 2024-08-05 DOI: 10.1080/09205063.2024.2386222
Riya Patel, Shivani Patel, Nehal Shah, Sakshi Shah, Ilyas Momin, Shreeraj Shah

The objective of this study is to collect the significant advancements of 3D printed medical devices in the biomedical area in recent years. Especially related to a range of diseases and the polymers employed in drug administration. To address the existing limitations and constraints associated with the method used for producing 3D printed medical devices, in order to optimize their suitability for degradation. The compilation and use of research papers, reports, and patents that are relevant to the key keywords are employed to improve comprehension. According to this thorough investigation, it can be inferred that the 3D Printing method, specifically Fuse Deposition Modeling (FDM), is the most suitable and convenient approach for preparing medical devices. This study provides an analysis and summary of the development trend of 3D printed implantable medical devices, focusing on the production process, materials specially the polymers, and typical items associated with 3D printing technology. This study offers a comprehensive examination of nanocarrier research and its corresponding discoveries. The FDM method, which is already facing significant challenges in terms of achieving optimal performance and cost reduction, will experience remarkable advantages from this highly valuable technology. The objective of this analysis is to showcase the efficacy and limitations of 3D-printing applications in medical devices through thorough research, highlighting the significant technological advancements it offers. This article provides a comprehensive overview of the most recent research and discoveries on 3D-printed medical devices, offering significant insights into their study.

本研究旨在收集近年来 3D 打印医疗设备在生物医学领域取得的重大进展。特别是与一系列疾病和用药中使用的聚合物相关的内容。解决与 3D 打印医疗设备生产方法相关的现有限制和制约因素,以优化其降解适用性。汇编和使用与关键字相关的研究论文、报告和专利,以提高理解能力。根据这项深入调查,可以推断出三维打印方法,特别是熔融沉积建模(FDM),是制备医疗器械最合适、最便捷的方法。本研究对三维打印植入式医疗器械的发展趋势进行了分析和总结,重点关注三维打印技术的生产工艺、高分子材料以及相关的典型项目。本研究全面考察了纳米载体研究及其相应发现。FDM 方法在实现最佳性能和降低成本方面已经面临重大挑战,而这项极具价值的技术将带来显著优势。本分析报告旨在通过深入研究,展示三维打印技术在医疗设备中应用的功效和局限性,突出其带来的重大技术进步。本文全面概述了有关 3D 打印医疗设备的最新研究和发现,为其研究提供了重要见解。
{"title":"3D printing chronicles in medical devices and pharmaceuticals: tracing the evolution and historical milestones.","authors":"Riya Patel, Shivani Patel, Nehal Shah, Sakshi Shah, Ilyas Momin, Shreeraj Shah","doi":"10.1080/09205063.2024.2386222","DOIUrl":"10.1080/09205063.2024.2386222","url":null,"abstract":"<p><p>The objective of this study is to collect the significant advancements of 3D printed medical devices in the biomedical area in recent years. Especially related to a range of diseases and the polymers employed in drug administration. To address the existing limitations and constraints associated with the method used for producing 3D printed medical devices, in order to optimize their suitability for degradation. The compilation and use of research papers, reports, and patents that are relevant to the key keywords are employed to improve comprehension. According to this thorough investigation, it can be inferred that the 3D Printing method, specifically Fuse Deposition Modeling (FDM), is the most suitable and convenient approach for preparing medical devices. This study provides an analysis and summary of the development trend of 3D printed implantable medical devices, focusing on the production process, materials specially the polymers, and typical items associated with 3D printing technology. This study offers a comprehensive examination of nanocarrier research and its corresponding discoveries. The FDM method, which is already facing significant challenges in terms of achieving optimal performance and cost reduction, will experience remarkable advantages from this highly valuable technology. The objective of this analysis is to showcase the efficacy and limitations of 3D-printing applications in medical devices through thorough research, highlighting the significant technological advancements it offers. This article provides a comprehensive overview of the most recent research and discoveries on 3D-printed medical devices, offering significant insights into their study.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2723-2766"},"PeriodicalIF":3.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing bioactivity of Callistemon citrinus (Curtis) essential oil through novel nanoemulsion formulation. 通过新型纳米乳液配方提高 Callistemon citrinus(Curtis)精油的生物活性。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-01 Epub Date: 2024-08-05 DOI: 10.1080/09205063.2024.2386787
Hamta Haghbayan, Roya Moghimi, Yaghoub Sarrafi, Akram Taleghani, Rahman Hosseinzadeh

The main focus of this study was to create a stable and efficient nanoemulsion (NE) using Callistemon citrinus essential oil (EO). Various factors affecting the NE's stability were optimized including oil %, Tween 80%, time of sonication, and its accelerated stability was examined. The research also considered the antibacterial, antifungal, and larvicidal effects of the optimized NE (B10). The optimum NE stood out for its stability, featuring a particle size of 33.15 ± 0.32 nm. Analysis via IR spectroscopy confirmed successful EO encapsulation in B10. The formulation remained stable for six months, with B10 showing significantly higher antibacterial and antifungal potency compared to the pure oil. When samples were subjected to tests against Fusarium oxysporum, B10 exhibited a MIC value of 62.5 mg/mL, whereas the pure oil showed a MIC value of 250 mg/mL. This indicates that the B10 formulation was 50 times more effective than the EO. In terms of antibacterial activity against Escherichia coli, the MIC value was 0.256 mg/mL for B10 and 4 mg/mL for the EO. Also, pure oil and B10 displayed larvicidal effects against Chilo suppressalis (Walker) larvae, with B10 eliminating 95.2% of larvae in 48 h. Overall, stable and optimum C. citrinus NE with its strong antimicrobial qualities, shows promise as an effective fungicide and insecticide.

本研究的重点是利用枸橼酸马蹄莲精油(EO)制成稳定高效的纳米乳液(NE)。对影响 NE 稳定性的各种因素进行了优化,包括油%、吐温 80%、超声时间,并对其加速稳定性进行了检验。研究还考虑了优化 NE(B10)的抗菌、抗真菌和杀幼虫剂效果。最佳 NE 的稳定性突出,其粒径为 33.15 ± 0.32 nm。红外光谱分析证实,B10 中成功封装了环氧乙烷。配方在六个月内保持稳定,与纯油相比,B10 的抗菌和抗真菌效力明显更高。在对镰孢菌进行测试时,B10 的 MIC 值为 62.5 毫克/毫升,而纯油的 MIC 值为 250 毫克/毫升。这表明 B10 配方的效果是环氧乙烷的 50 倍。在对大肠杆菌的抗菌活性方面,B10 的 MIC 值为 0.256 毫克/毫升,而环氧乙烷的 MIC 值为 4 毫克/毫升。此外,纯油和 B10 还对 Chilo suppressalis (Walker) 幼虫具有杀幼虫作用,其中 B10 在 48 小时内消灭了 95.2% 的幼虫。总体而言,稳定和最佳的 C. citrinus NE 具有很强的抗菌性,有望成为一种有效的杀真菌剂和杀虫剂。
{"title":"Enhancing bioactivity of <i>Callistemon citrinus</i> (Curtis) essential oil through novel nanoemulsion formulation.","authors":"Hamta Haghbayan, Roya Moghimi, Yaghoub Sarrafi, Akram Taleghani, Rahman Hosseinzadeh","doi":"10.1080/09205063.2024.2386787","DOIUrl":"10.1080/09205063.2024.2386787","url":null,"abstract":"<p><p>The main focus of this study was to create a stable and efficient nanoemulsion (NE) using <i>Callistemon citrinus</i> essential oil (EO). Various factors affecting the NE's stability were optimized including oil %, Tween 80%, time of sonication, and its accelerated stability was examined. The research also considered the antibacterial, antifungal, and larvicidal effects of the optimized NE (B10). The optimum NE stood out for its stability, featuring a particle size of 33.15 ± 0.32 nm. Analysis <i>via</i> IR spectroscopy confirmed successful EO encapsulation in B10. The formulation remained stable for six months, with B10 showing significantly higher antibacterial and antifungal potency compared to the pure oil. When samples were subjected to tests against <i>Fusarium oxysporum</i>, B10 exhibited a MIC value of 62.5 mg/mL, whereas the pure oil showed a MIC value of 250 mg/mL. This indicates that the B10 formulation was 50 times more effective than the EO. In terms of antibacterial activity against <i>Escherichia coli</i>, the MIC value was 0.256 mg/mL for B10 and 4 mg/mL for the EO. Also, pure oil and B10 displayed larvicidal effects against <i>Chilo suppressalis</i> (Walker) larvae, with B10 eliminating 95.2% of larvae in 48 h. Overall, stable and optimum <i>C. citrinus</i> NE with its strong antimicrobial qualities, shows promise as an effective fungicide and insecticide.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2660-2681"},"PeriodicalIF":3.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Composite hydrogels fabricated from CMC-PVA-GG incorporated with ZiF-8 for wound healing applications. 将 CMC-PVA-GG 与 ZiF-8 结合制成复合水凝胶,用于伤口愈合。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-01 Epub Date: 2024-08-07 DOI: 10.1080/09205063.2024.2386224
Tooba Yasin, Muhammad Azhar Aslam, Haamid Jamil, Abdalla Abdal-Hay, Hassan Fouad, Humaira Masood Siddiqi, Muhammad Umar Aslam Khan

The skin is at risk for injury to external factors since it serves as the body's first line of defense against the external environment. Hydrogels have drawn much interest due to their intrinsic extracellular matrix (ECM) properties and their biomimetic, structural, and durable mechanical characteristics. Hydrogels have enormous potential use in skin wound healing due to their ability to deliver bioactive substances easily. In this study, composite hydrogels were developed by blending guar gum (GG), polyvinyl alcohol (PVA), and carboxymethyl cellulose (CMC) with crosslinker TEOS for skin wound treatment. The structural, surface morphology, surface roughness, and stability features of the composite hydrogels were characterized by several techniques, such as FTIR, SEM-EDX, AFM, and DSC. The increasing ZiF-8 causes more surface roughness, with decreased swelling in different media (Aqueous > PBS > NaCl). The increasing ZiF-8 amount causes less hydrophilic behavior and biodegradation with increasing gel fraction. The cytocompatibility of Zinc imidazolate framework-8 (ZiF-8) based composites was evaluated against fibroblast cell lines by cell viability, proliferation, and cell morphology. The increasing ZiF-8 caused more cell viability and proliferation with proper cell morphology. Hence, the results show that synthesized composite hydrogels may be a potential candidate for numerous wound repair applications.

皮肤是人体抵御外界环境的第一道防线,因此有可能受到外界因素的伤害。水凝胶因其固有的细胞外基质(ECM)特性及其仿生、结构和持久的机械特性而备受关注。由于水凝胶能够方便地输送生物活性物质,因此在皮肤伤口愈合方面具有巨大的潜在用途。在这项研究中,通过将瓜尔胶(GG)、聚乙烯醇(PVA)和羧甲基纤维素(CMC)与交联剂 TEOS 混合,开发出了复合水凝胶,用于皮肤伤口治疗。傅立叶变换红外光谱(FTIR)、扫描电镜-电子显微镜(SEM-EDX)、原子力显微镜(AFM)和电导率扫描电镜(DSC)等多种技术对复合水凝胶的结构、表面形态、表面粗糙度和稳定性特征进行了表征。在不同介质中(水溶液 > PBS > NaCl),ZiF-8 的增加会导致表面粗糙度增加,溶胀度降低。随着 ZiF-8 含量的增加,凝胶的亲水性和生物降解性降低。通过细胞活力、增殖和细胞形态评估了基于咪唑酸锌骨架-8(ZiF-8)的复合材料与成纤维细胞系的细胞相容性。ZiF-8 越多,细胞活力和增殖越强,细胞形态越清晰。因此,研究结果表明,合成的复合水凝胶可能成为多种伤口修复应用的潜在候选材料。
{"title":"Composite hydrogels fabricated from CMC-PVA-GG incorporated with ZiF-8 for wound healing applications.","authors":"Tooba Yasin, Muhammad Azhar Aslam, Haamid Jamil, Abdalla Abdal-Hay, Hassan Fouad, Humaira Masood Siddiqi, Muhammad Umar Aslam Khan","doi":"10.1080/09205063.2024.2386224","DOIUrl":"10.1080/09205063.2024.2386224","url":null,"abstract":"<p><p>The skin is at risk for injury to external factors since it serves as the body's first line of defense against the external environment. Hydrogels have drawn much interest due to their intrinsic extracellular matrix (ECM) properties and their biomimetic, structural, and durable mechanical characteristics. Hydrogels have enormous potential use in skin wound healing due to their ability to deliver bioactive substances easily. In this study, composite hydrogels were developed by blending guar gum (GG), polyvinyl alcohol (PVA), and carboxymethyl cellulose (CMC) with crosslinker TEOS for skin wound treatment. The structural, surface morphology, surface roughness, and stability features of the composite hydrogels were characterized by several techniques, such as FTIR, SEM-EDX, AFM, and DSC. The increasing ZiF-8 causes more surface roughness, with decreased swelling in different media (Aqueous > PBS > NaCl). The increasing ZiF-8 amount causes less hydrophilic behavior and biodegradation with increasing gel fraction. The cytocompatibility of Zinc imidazolate framework-8 (ZiF-8) based composites was evaluated against fibroblast cell lines by cell viability, proliferation, and cell morphology. The increasing ZiF-8 caused more cell viability and proliferation with proper cell morphology. Hence, the results show that synthesized composite hydrogels may be a potential candidate for numerous wound repair applications.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2640-2659"},"PeriodicalIF":3.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing therapeutic effects alginate microencapsulation of thyme and calendula oils using ionic gelation for controlled drug delivery. 利用离子凝胶技术提高百里香和金盏花油的藻酸盐微胶囊治疗效果,实现可控给药。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-01 Epub Date: 2024-08-18 DOI: 10.1080/09205063.2024.2386220
Cengizhan Çakır, Elif Hatice Gürkan

This study focuses on encapsulating and characterizing essential oils such as thyme and calendula oils, which are known for their therapeutic properties but are limited in pharmaceutical formulations due to their low water solubility and instability, with alginate microspheres. Alginate presents an excellent option for microencapsulation due to its biocompatibility and biological degradability. The ionic gelation (IG) technique, based on the ionic binding between alginate and divalent cations, allows the formation of hydrogel materials with high water content, mechanical strength, and biocompatibility. The microspheres were characterized using FT-IR, SEM, and swelling analyses. After determining the encapsulation efficiency and drug loading capacity, the microspheres were subjected to dissolution studies under simulated digestion conditions. It was observed that the swelling percentage of the microspheres in simulated gastric fluid (SGF) ranged from ∼15% to 100%, while in simulated intestinal fluid (SIF) it ranged from ∼150% to 325%. Thyme oil, with low viscosity, exhibited higher encapsulation efficiency than marigold oil. The highest encapsulation efficiency was observed in A-TO-2 microspheres, while the highest drug loading capacity was observed in A-TO-5 microspheres. During the examination of the dissolution profiles of the microspheres, dissolution rates ranging from 10.98% to 23.56% in SGF and from 52.44% to 63.20% in SIF were observed.

百里香油和金盏花油等精油具有众所周知的治疗特性,但由于其水溶性低和不稳定性,在药物配方中的应用受到限制。本研究的重点是用海藻酸盐微球封装百里香油和金盏花油等精油并确定其特性。藻酸盐具有生物相容性和生物降解性,是微囊化的绝佳选择。离子凝胶化(IG)技术基于海藻酸盐和二价阳离子之间的离子结合,可以形成具有高含水量、机械强度和生物相容性的水凝胶材料。利用傅立叶变换红外光谱、扫描电镜和膨胀分析对微球进行了表征。在确定了封装效率和载药量后,对微球进行了模拟消化条件下的溶解研究。结果表明,微球在模拟胃液(SGF)中的溶胀率在∼15%至100%之间,而在模拟肠液(SIF)中的溶胀率在∼150%至325%之间。低粘度的百里香油比万寿菊油具有更高的封装效率。A-TO-2 微球的封装效率最高,而 A-TO-5 微球的载药量最高。在检查微球的溶解曲线时,观察到在 SGF 中的溶解率为 10.98% 至 23.56%,在 SIF 中的溶解率为 52.44% 至 63.20%。
{"title":"Enhancing therapeutic effects alginate microencapsulation of thyme and calendula oils using ionic gelation for controlled drug delivery.","authors":"Cengizhan Çakır, Elif Hatice Gürkan","doi":"10.1080/09205063.2024.2386220","DOIUrl":"10.1080/09205063.2024.2386220","url":null,"abstract":"<p><p>This study focuses on encapsulating and characterizing essential oils such as thyme and calendula oils, which are known for their therapeutic properties but are limited in pharmaceutical formulations due to their low water solubility and instability, with alginate microspheres. Alginate presents an excellent option for microencapsulation due to its biocompatibility and biological degradability. The ionic gelation (IG) technique, based on the ionic binding between alginate and divalent cations, allows the formation of hydrogel materials with high water content, mechanical strength, and biocompatibility. The microspheres were characterized using FT-IR, SEM, and swelling analyses. After determining the encapsulation efficiency and drug loading capacity, the microspheres were subjected to dissolution studies under simulated digestion conditions. It was observed that the swelling percentage of the microspheres in simulated gastric fluid (SGF) ranged from ∼15% to 100%, while in simulated intestinal fluid (SIF) it ranged from ∼150% to 325%. Thyme oil, with low viscosity, exhibited higher encapsulation efficiency than marigold oil. The highest encapsulation efficiency was observed in A-TO-2 microspheres, while the highest drug loading capacity was observed in A-TO-5 microspheres. During the examination of the dissolution profiles of the microspheres, dissolution rates ranging from 10.98% to 23.56% in SGF and from 52.44% to 63.20% in SIF were observed.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2611-2639"},"PeriodicalIF":3.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication, optimization, and in vitro validation of penicillin-loaded hydrogels for controlled drug delivery. 用于控制药物输送的青霉素负载水凝胶的制造、优化和体外验证。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-01 Epub Date: 2024-08-18 DOI: 10.1080/09205063.2024.2387953
Guiyue Wang, Susu An, Siru Huang, Alamgir, Abdul Wahab, Zahoor Ahmad, Muhammad Suhail, M Zubair Iqbal

Bacterial infections present a major global challenge. Penicillin, a widely used antibiotic known for its effectiveness and safety, is frequently prescribed. However, its short half-life necessitates multiple high-dose daily administrations, leading to severe side-effects. Therefore, this study aims to address these issues by developing hydrogels which control the release of penicillin and alleviate its adverse effects. Various combinations of aspartic acid and acrylamide were crosslinked by N', N'-methylene bisacrylamide through a free radical polymerization process to prepare aspartic acid/acrylamide (Asp/Am) hydrogels. The fabricated hydrogels underwent comprehensive characterization to assess physical properties and thermal stability. The soluble and insoluble fractions and porosity of the synthesized matrix were evaluated by sol-gel and porosity studies. Gel fraction was estimated at 88-96%, whereas sol fraction was found 12-4% and porosity found within the 63-78% range for fabricated hydrogel formulations. Maximum swelling and drug release were seen at pH 7.4, demonstrating a controlled drug release from hydrogel networks. The results showed that swelling, porosity, gel fraction, and drug release increased with higher concentrations of aspartic acid and acrylamide. However, integration of N', N'-methylene bisacrylamide exhibited the opposite effect on swelling and porosity, while increasing gel fraction. All formulations followed the Korsymer-Peppas model of kinetics with 'r' values within the range of 0.9740-0.9980. Furthermore, the cytotoxicity study indicated an effective and safe use of hydrogel because the cell viability was higher than 70%. Therefore, these prepared hydrogels show promise candidates for controlled release of Penicillin and are anticipated to be valuable in clinical applications.

细菌感染是全球面临的一大挑战。青霉素是一种广泛使用的抗生素,以其有效性和安全性著称,是常用的处方药。然而,青霉素的半衰期较短,必须每天多次大剂量给药,从而导致严重的副作用。因此,本研究旨在通过开发可控制青霉素释放并减轻其不良反应的水凝胶来解决这些问题。通过自由基聚合工艺,用 N',N'-亚甲基双丙烯酰胺交联天冬氨酸和丙烯酰胺的各种组合,制备天冬氨酸/丙烯酰胺(Asp/Am)水凝胶。对制备的水凝胶进行了全面的表征,以评估其物理性质和热稳定性。通过溶胶-凝胶和孔隙率研究评估了合成基质的可溶和不溶部分以及孔隙率。凝胶部分估计为 88-96%,而溶胶部分为 12-4%,孔隙率为 63-78%。在 pH 值为 7.4 时,溶胀和药物释放达到最大值,这表明水凝胶网络的药物释放是可控的。结果表明,随着天冬氨酸和丙烯酰胺浓度的增加,溶胀度、孔隙率、凝胶成分和药物释放量也随之增加。然而,N',N'-亚甲基双丙烯酰胺的加入对溶胀和孔隙率的影响恰恰相反,同时增加了凝胶部分。所有配方都遵循 Korsymer-Peppas 动力学模型,"r "值在 0.9740-0.9980 之间。此外,细胞毒性研究表明水凝胶的使用是有效和安全的,因为细胞存活率高于 70%。因此,这些制备的水凝胶有望用于青霉素的控制释放,并有望在临床应用中发挥重要作用。
{"title":"Fabrication, optimization, and <i>in vitro</i> validation of penicillin-loaded hydrogels for controlled drug delivery.","authors":"Guiyue Wang, Susu An, Siru Huang, Alamgir, Abdul Wahab, Zahoor Ahmad, Muhammad Suhail, M Zubair Iqbal","doi":"10.1080/09205063.2024.2387953","DOIUrl":"10.1080/09205063.2024.2387953","url":null,"abstract":"<p><p>Bacterial infections present a major global challenge. Penicillin, a widely used antibiotic known for its effectiveness and safety, is frequently prescribed. However, its short half-life necessitates multiple high-dose daily administrations, leading to severe side-effects. Therefore, this study aims to address these issues by developing hydrogels which control the release of penicillin and alleviate its adverse effects. Various combinations of aspartic acid and acrylamide were crosslinked by N', N'-methylene bisacrylamide through a free radical polymerization process to prepare aspartic acid/acrylamide (Asp/Am) hydrogels. The fabricated hydrogels underwent comprehensive characterization to assess physical properties and thermal stability. The soluble and insoluble fractions and porosity of the synthesized matrix were evaluated by sol-gel and porosity studies. Gel fraction was estimated at 88-96%, whereas sol fraction was found 12-4% and porosity found within the 63-78% range for fabricated hydrogel formulations. Maximum swelling and drug release were seen at pH 7.4, demonstrating a controlled drug release from hydrogel networks. The results showed that swelling, porosity, gel fraction, and drug release increased with higher concentrations of aspartic acid and acrylamide. However, integration of N', N'-methylene bisacrylamide exhibited the opposite effect on swelling and porosity, while increasing gel fraction. All formulations followed the Korsymer-Peppas model of kinetics with '<i>r</i>' values within the range of 0.9740-0.9980. Furthermore, the cytotoxicity study indicated an effective and safe use of hydrogel because the cell viability was higher than 70%. Therefore, these prepared hydrogels show promise candidates for controlled release of Penicillin and are anticipated to be valuable in clinical applications.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2682-2702"},"PeriodicalIF":3.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-dimensional porous polycaprolactone/chitosan/bioactive glass scaffold for bone tissue engineering. 用于骨组织工程的三维多孔聚己内酯/壳聚糖/生物活性玻璃支架。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-01 Epub Date: 2024-08-26 DOI: 10.1080/09205063.2024.2391218
Kiran Joy, Sathya Seeli David, Abinaya Shanmugavadivu, Nagarajan Selvamurugan, Prabaharan Mani

Three-dimensional (3D) porous scaffolds based on polycaprolactone (PCL)/chitosan (CS)/bioactive glass (BG) nanoparticle composites were fabricated by the freeze-drying technique for bone tissue engineering. The physiochemical properties of the developed PCL/CS/BG scaffolds were studied using FTIR, XRD, EDX and SEM. Furthermore, the swelling degree, porosity, water retention ability, compression strength, in vitro biodegradation, bioactivity and biocompatibility of the scaffolds were examined. The PCL/CS/BG scaffolds with 4 wt. % of BG content presented adequate pore size (106 μm), porosity (156%), water swelling degree (128%), water retention ability (179%), compressive strength (3.7 MPa) and controlled degradation behavior, which could be ideal for bone tissue engineering. The PCL/CS/BG composite scaffolds showed good antimicrobial activity against both test bacteria and fungi. The MTT assay demonstrated the biocompatibility of PCL/CS/BG scaffolds against C3H10T1/2 cell line. The Alizarin red staining assay confirmed the osteogenic activity of the PCL/CS/BG scaffolds.

通过冷冻干燥技术制备了基于聚己内酯(PCL)/壳聚糖(CS)/生物活性玻璃(BG)纳米颗粒复合材料的三维(3D)多孔支架,用于骨组织工程。利用傅立叶变换红外光谱(FTIR)、XRD、EDX和扫描电镜研究了所制备 PCL/CS/BG 支架的理化性质。此外,还考察了支架的溶胀度、孔隙率、保水能力、压缩强度、体外生物降解、生物活性和生物相容性。BG含量为4 wt.%的PCL/CS/BG支架具有足够的孔径(106 μm)、孔隙率(156%)、水膨胀度(128%)、保水能力(179%)、压缩强度(3.7 MPa)和可控降解行为,是骨组织工程的理想材料。PCL/CS/BG 复合材料支架对测试细菌和真菌都具有良好的抗菌活性。MTT 试验证明了 PCL/CS/BG 支架对 C3H10T1/2 细胞系的生物相容性。茜素红染色试验证实了 PCL/CS/BG 支架的成骨活性。
{"title":"Three-dimensional porous polycaprolactone/chitosan/bioactive glass scaffold for bone tissue engineering.","authors":"Kiran Joy, Sathya Seeli David, Abinaya Shanmugavadivu, Nagarajan Selvamurugan, Prabaharan Mani","doi":"10.1080/09205063.2024.2391218","DOIUrl":"10.1080/09205063.2024.2391218","url":null,"abstract":"<p><p>Three-dimensional (3D) porous scaffolds based on polycaprolactone (PCL)/chitosan (CS)/bioactive glass (BG) nanoparticle composites were fabricated by the freeze-drying technique for bone tissue engineering. The physiochemical properties of the developed PCL/CS/BG scaffolds were studied using FTIR, XRD, EDX and SEM. Furthermore, the swelling degree, porosity, water retention ability, compression strength, <i>in vitro</i> biodegradation, bioactivity and biocompatibility of the scaffolds were examined. The PCL/CS/BG scaffolds with 4 wt. % of BG content presented adequate pore size (106 μm), porosity (156%), water swelling degree (128%), water retention ability (179%), compressive strength (3.7 MPa) and controlled degradation behavior, which could be ideal for bone tissue engineering. The PCL/CS/BG composite scaffolds showed good antimicrobial activity against both test bacteria and fungi. The MTT assay demonstrated the biocompatibility of PCL/CS/BG scaffolds against C3H10T1/2 cell line. The Alizarin red staining assay confirmed the osteogenic activity of the PCL/CS/BG scaffolds.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2829-2844"},"PeriodicalIF":3.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and application of phenol-grafted rhamnan sulfate for 3D bioprinting. 用于三维生物打印的苯酚接枝鼠李糖硫酸盐的合成与应用。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-11-26 DOI: 10.1080/09205063.2024.2427499
Ryota Goto, Masahiro Terasawa, Masaru Kojima, Koichi Matsuda, Kaoru Nishiura, Shinji Sakai

Rhamnan sulfate (RS) is a sulfated polysaccharide extracted from the cell wall of the green alga Monostroma nitidum. Owing to its negative charge, RS interacts with a variety of proteins, enabling various biological activities, such as antiviral, anticoagulant, and antitumor effects. However, RS does not form a stable hydrogel under physiological conditions, which is required for its beneficial biological activities in tissue engineering. To address this limitation, we developed phenol-grafted rhamnan sulfate (RS-Ph), which allows hydrogelation via horseradish peroxidase (HRP)-mediated cross-linking reactions and can be used for 3D bioprinting. Specifically, we synthesized RS-Ph with three different -Ph content: RS-LPh (16.4 mmol/g), RS-MPh (21.3 mmol/g), and RS-HPh (31.7 mmol/g). Surface plasmon resonance measurements revealed that RS-Ph exhibited a maximum binding capacity of more than 8.3 times higher than that of sodium alginate as a negative control. Additionally, a 10% w/v RS-HPh solution formed a hydrogel within 8.2 ± 0.7 s in the presence of 10 U/mL HRP. Furthermore, high-fidelity 3D bioprinting was achieved using an RS-Ph/cellulose nanofiber composite bioink. Our results demonstrate the potential use of bioactive RS-Ph hydrogels in a wide range of tissue engineering fields, including not only bioprinting but also drug delivery systems and wound dressings.

硫酸鼠李糖(RS)是从绿色藻类 Monostroma nitidum 细胞壁中提取的硫酸化多糖。由于带有负电荷,RS 能与多种蛋白质相互作用,从而产生多种生物活性,如抗病毒、抗凝血和抗肿瘤作用。然而,RS 在生理条件下不能形成稳定的水凝胶,而这正是其在组织工程中发挥有益生物活性的必要条件。为了解决这一局限性,我们开发了苯酚接枝鼠李糖硫酸盐(RS-Ph),它可以通过辣根过氧化物酶(HRP)介导的交联反应形成水凝胶,并可用于三维生物打印。具体来说,我们合成了三种不同 -Ph 含量的 RS-Ph:RS-LPh(16.4 mmol/g)、RS-MPh(21.3 mmol/g)和 RS-HPh(31.7 mmol/g)。表面等离子共振测量显示,RS-Ph 的最大结合能力是作为阴性对照的海藻酸钠的 8.3 倍以上。此外,10% w/v RS-HPh 溶液在 10 U/mL HRP 存在下可在 8.2 ± 0.7 s 内形成水凝胶。此外,使用 RS-Ph/纤维素纳米纤维复合生物墨水还实现了高保真三维生物打印。我们的研究结果表明,生物活性 RS-Ph 水凝胶可广泛应用于组织工程领域,不仅包括生物打印,还包括药物输送系统和伤口敷料。
{"title":"Synthesis and application of phenol-grafted rhamnan sulfate for 3D bioprinting.","authors":"Ryota Goto, Masahiro Terasawa, Masaru Kojima, Koichi Matsuda, Kaoru Nishiura, Shinji Sakai","doi":"10.1080/09205063.2024.2427499","DOIUrl":"https://doi.org/10.1080/09205063.2024.2427499","url":null,"abstract":"<p><p>Rhamnan sulfate (RS) is a sulfated polysaccharide extracted from the cell wall of the green alga <i>Monostroma nitidum</i>. Owing to its negative charge, RS interacts with a variety of proteins, enabling various biological activities, such as antiviral, anticoagulant, and antitumor effects. However, RS does not form a stable hydrogel under physiological conditions, which is required for its beneficial biological activities in tissue engineering. To address this limitation, we developed phenol-grafted rhamnan sulfate (RS-Ph), which allows hydrogelation <i>via</i> horseradish peroxidase (HRP)-mediated cross-linking reactions and can be used for 3D bioprinting. Specifically, we synthesized RS-Ph with three different -Ph content: RS-LPh (16.4 mmol/g), RS-MPh (21.3 mmol/g), and RS-HPh (31.7 mmol/g). Surface plasmon resonance measurements revealed that RS-Ph exhibited a maximum binding capacity of more than 8.3 times higher than that of sodium alginate as a negative control. Additionally, a 10% w/v RS-HPh solution formed a hydrogel within 8.2 ± 0.7 s in the presence of 10 U/mL HRP. Furthermore, high-fidelity 3D bioprinting was achieved using an RS-Ph/cellulose nanofiber composite bioink. Our results demonstrate the potential use of bioactive RS-Ph hydrogels in a wide range of tissue engineering fields, including not only bioprinting but also drug delivery systems and wound dressings.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-17"},"PeriodicalIF":3.6,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142716197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano-enabled pharmacogenomics: revolutionizing personalized drug therapy. 纳米药物基因组学:个性化药物治疗的革命性变革。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-11-26 DOI: 10.1080/09205063.2024.2431426
Ruchi Tiwari, Dhruv Dev, Maharshi Thalla, Vaibhav Dagaji Aher, Anand Badrivishal Mundada, Pooja Anand Mundada, Krishna Vaghela

The combination of pharmacogenomics and nanotechnology science of pharmacogenomics into a highly advanced single entity has given birth to personalized medicine known as nano-enabled pharmacogenomics. This review article covers all aspects starting from pharmacogenomics to gene editing tools, how these have evolved or are likely to be evolved for pharmacogenomic application, and how these can be delivered using nanoparticle delivery systems. In this prior work, we explore the evolution of pharmacogenomics over the years, as well as new achievements in the field of genomic sciences, the challenges in drug creation, and application of the strategy of personalized medicine. Particular attention is paid to how nanotechnology helps avoid the problems that accompanied the development of pharmacogenomics earlier, for example, the question of drug resistance and targeted delivery. We also review the latest developments in nano-enabled pharmacogenomics, such as the coupling with other nanobio-technologies, artificial intelligence, and machine learning in pharmacogenomics, and the ethical and regulatory aspects of these developing technologies. The possible uses of nanotechnology in improving the chances of pated and treating drug-resistant cancers are exemplified by case studies together with the current clinical uses of nanotechnology. In the last section, we discuss the future trends and research prospects in this dynamically growing area, stressing the importance of further advancements and collaborations which will advance the nano-enabled pharmacogenomics to their maximum potential.

将药物基因组学与纳米药物基因组学科学结合为一个高度先进的整体,催生了被称为纳米药物基因组学的个性化医疗。这篇综述文章涵盖了从药物基因组学到基因编辑工具的方方面面,以及这些工具在药物基因组学应用中的演变或可能演变,以及如何使用纳米颗粒传输系统传输这些工具。在这之前的工作中,我们探讨了药物基因组学多年来的演变、基因组科学领域的新成就、药物创制中的挑战以及个性化医疗策略的应用。我们特别关注纳米技术如何帮助避免药物基因组学早期发展过程中出现的问题,例如耐药性和靶向给药问题。我们还回顾了纳米药物基因组学的最新发展,如与其他纳米生物技术、人工智能和机器学习在药物基因组学中的结合,以及这些发展中技术的伦理和监管方面。通过案例研究和纳米技术目前的临床应用,说明了纳米技术在提高耐药性癌症的治愈率和治疗效果方面的可能用途。最后,我们讨论了这一蓬勃发展领域的未来趋势和研究前景,强调了进一步发展和合作的重要性,这将推动纳米药物基因组学发挥最大潜力。
{"title":"Nano-enabled pharmacogenomics: revolutionizing personalized drug therapy.","authors":"Ruchi Tiwari, Dhruv Dev, Maharshi Thalla, Vaibhav Dagaji Aher, Anand Badrivishal Mundada, Pooja Anand Mundada, Krishna Vaghela","doi":"10.1080/09205063.2024.2431426","DOIUrl":"https://doi.org/10.1080/09205063.2024.2431426","url":null,"abstract":"<p><p>The combination of pharmacogenomics and nanotechnology science of pharmacogenomics into a highly advanced single entity has given birth to personalized medicine known as nano-enabled pharmacogenomics. This review article covers all aspects starting from pharmacogenomics to gene editing tools, how these have evolved or are likely to be evolved for pharmacogenomic application, and how these can be delivered using nanoparticle delivery systems. In this prior work, we explore the evolution of pharmacogenomics over the years, as well as new achievements in the field of genomic sciences, the challenges in drug creation, and application of the strategy of personalized medicine. Particular attention is paid to how nanotechnology helps avoid the problems that accompanied the development of pharmacogenomics earlier, for example, the question of drug resistance and targeted delivery. We also review the latest developments in nano-enabled pharmacogenomics, such as the coupling with other nanobio-technologies, artificial intelligence, and machine learning in pharmacogenomics, and the ethical and regulatory aspects of these developing technologies. The possible uses of nanotechnology in improving the chances of pated and treating drug-resistant cancers are exemplified by case studies together with the current clinical uses of nanotechnology. In the last section, we discuss the future trends and research prospects in this dynamically growing area, stressing the importance of further advancements and collaborations which will advance the nano-enabled pharmacogenomics to their maximum potential.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-26"},"PeriodicalIF":3.6,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142716186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Biomaterials Science, Polymer Edition
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1