首页 > 最新文献

Journal of Biomaterials Science, Polymer Edition最新文献

英文 中文
Correction. 修正。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-09 DOI: 10.1080/09205063.2024.2436824
{"title":"Correction.","authors":"","doi":"10.1080/09205063.2024.2436824","DOIUrl":"https://doi.org/10.1080/09205063.2024.2436824","url":null,"abstract":"","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1"},"PeriodicalIF":3.6,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142800822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Natural Fiber-Based Polymer Composites for Biomedical Applications. 生物医学应用的天然纤维基聚合物复合材料。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-09 DOI: 10.1080/09205063.2024.2435722
Emel Kuram

Natural fibers such as kenaf, sisal, ramie, jute, hemp, flax, coir, banana and bamboo have been employed in the production of biocomposites. A great strength-to-weight ratio, renewability and sustainability are some important properties of natural fibers. Biocomposites produced from natural fibers are employed in biomedical fields such as delivery of drug, orthopaedic applications, tissue engineering and wound dressing owing to their acceptability by the human body, moderate mechanical performance and environmental benefits. This study presents recent advances in the field of polymers and natural fiber-based polymer composites for potential biomedical applications. For this purpose, the properties of natural fibers are given and detailed examples from literature works for polymers and their composites used in biomedical applications are discussed.

天然纤维,如红麻、剑麻、苎麻、黄麻、大麻、亚麻、椰子、香蕉和竹子已被用于生产生物复合材料。强重比大、可再生性和可持续性是天然纤维的重要特性。由天然纤维制成的生物复合材料由于其人体可接受性、中等机械性能和环境效益,被应用于生物医学领域,如药物输送、骨科应用、组织工程和伤口敷料。本文介绍了聚合物和天然纤维基聚合物复合材料在生物医学领域的最新进展。为此,本文给出了天然纤维的特性,并从文献中详细介绍了聚合物及其复合材料在生物医学领域的应用。
{"title":"Natural Fiber-Based Polymer Composites for Biomedical Applications.","authors":"Emel Kuram","doi":"10.1080/09205063.2024.2435722","DOIUrl":"https://doi.org/10.1080/09205063.2024.2435722","url":null,"abstract":"<p><p>Natural fibers such as kenaf, sisal, ramie, jute, hemp, flax, coir, banana and bamboo have been employed in the production of biocomposites. A great strength-to-weight ratio, renewability and sustainability are some important properties of natural fibers. Biocomposites produced from natural fibers are employed in biomedical fields such as delivery of drug, orthopaedic applications, tissue engineering and wound dressing owing to their acceptability by the human body, moderate mechanical performance and environmental benefits. This study presents recent advances in the field of polymers and natural fiber-based polymer composites for potential biomedical applications. For this purpose, the properties of natural fibers are given and detailed examples from literature works for polymers and their composites used in biomedical applications are discussed.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-58"},"PeriodicalIF":3.6,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142800826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent developments in photothermal therapy: a bibliometric and visual analysis. 光热疗法的最新发展:文献计量学和视觉分析。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-08 DOI: 10.1080/09205063.2024.2434308
Runying Guo, Rongrong Zhang, Yuqi Xin, Zhonghao Wang, Zichen Xu, Jiaxuan Qiu

Photothermal therapy (PTT) has recently garnered significant attention as a prominent noninvasive treatment modality for a broad spectrum of diseases. Despite the increasing volume of scholarly output over the last 20 years, a holistic synthesis that delineates worldwide research trajectories remains elusive. We undertook a bibliometric analysis of the literature from 2004 to 2023, aiming to delineate the prevailing focal points and illuminate prospective research avenues. Research articles on PTT were retrieved from the Web of Science Core Collection. Using tools such as CiteSpace, VOSviewer, and Bibliometrix, we comprehensively analyzed and visualized 11,184 published academic PTT papers. China has the highest number of publications. Journals related to PTT are primarily comprised of interdisciplinary and comprehensive journals. Research associated with PTT has focused primarily on its antitumor properties. Current focal areas in this domain include the synergistic combination of PTT with photodynamic therapy, immunological mechanisms of PTT to enhance its therapeutic efficacy, integrated use of PTT with nanoenzyme catalysis, and the role of PTT in antimicrobial applications. This bibliometric analysis provides an initial comprehensive examination of the medical applications of PTT, offering insights into the global research landscape, key areas of interest, and emerging trends, thereby serving as a valuable reference for future studies in this field.

光热疗法(PTT)作为一种重要的非侵入性治疗方式,近年来引起了广泛的关注。尽管在过去的20年里,学术产出的数量不断增加,但描绘全球研究轨迹的整体综合仍然难以捉摸。我们对2004年至2023年的文献进行了文献计量学分析,旨在描绘流行的焦点并阐明未来的研究途径。关于PTT的研究文章检索自Web of Science Core Collection。利用CiteSpace、VOSviewer、Bibliometrix等工具,对已发表的11,184篇学术PTT论文进行了综合分析和可视化。中国的出版物数量最多。与PTT相关的期刊主要由跨学科和综合性期刊组成。与PTT相关的研究主要集中在其抗肿瘤特性上。目前该领域的研究热点包括PTT与光动力疗法的协同联合、PTT提高其治疗效果的免疫机制、PTT与纳米酶催化的综合应用以及PTT在抗菌应用中的作用。这一文献计量分析提供了PTT医学应用的初步综合考察,提供了对全球研究格局、关键兴趣领域和新兴趋势的见解,从而为该领域的未来研究提供了有价值的参考。
{"title":"Recent developments in photothermal therapy: a bibliometric and visual analysis.","authors":"Runying Guo, Rongrong Zhang, Yuqi Xin, Zhonghao Wang, Zichen Xu, Jiaxuan Qiu","doi":"10.1080/09205063.2024.2434308","DOIUrl":"https://doi.org/10.1080/09205063.2024.2434308","url":null,"abstract":"<p><p>Photothermal therapy (PTT) has recently garnered significant attention as a prominent noninvasive treatment modality for a broad spectrum of diseases. Despite the increasing volume of scholarly output over the last 20 years, a holistic synthesis that delineates worldwide research trajectories remains elusive. We undertook a bibliometric analysis of the literature from 2004 to 2023, aiming to delineate the prevailing focal points and illuminate prospective research avenues. Research articles on PTT were retrieved from the Web of Science Core Collection. Using tools such as CiteSpace, VOSviewer, and Bibliometrix, we comprehensively analyzed and visualized 11,184 published academic PTT papers. China has the highest number of publications. Journals related to PTT are primarily comprised of interdisciplinary and comprehensive journals. Research associated with PTT has focused primarily on its antitumor properties. Current focal areas in this domain include the synergistic combination of PTT with photodynamic therapy, immunological mechanisms of PTT to enhance its therapeutic efficacy, integrated use of PTT with nanoenzyme catalysis, and the role of PTT in antimicrobial applications. This bibliometric analysis provides an initial comprehensive examination of the medical applications of PTT, offering insights into the global research landscape, key areas of interest, and emerging trends, thereby serving as a valuable reference for future studies in this field.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-21"},"PeriodicalIF":3.6,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142791813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of inulin nanocarrier for effective oral delivery of insulin: synthesize, optimization, characterization, and biophysical study. 有效口服胰岛素的菊糖纳米载体的研制:合成、优化、表征及生物物理研究。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-04 DOI: 10.1080/09205063.2024.2436297
Achmad Ramadhanna'il Rasjava, Desy Kurniawati, Wa Ode Sri Rizki, Neng Fisheri Kurniati, Rukman Hertadi

The susceptibility of insulin against gastric acid degradation presents a major challenge for oral insulin delivery. The potential of biopolymer-based nanocarriers was investigated in order to address this issue. Inulin, a biopolymer produced by the halophilic bacterium Salinivibrio sp. GM01, has been evaluated for its effectiveness as an insulin nanocarrier. Using central composite design (CCD) method, the optimum condition of inulin-encapsulated insulin (I-In) was achieved at 53 mg of inulin stirred at 17,800 rpm for 10 min, resulting in spherical I-In nanoparticles (I-In NPs) with an average diameter of 416 ± 32 nm and encapsulation efficiency of 87.04 ± 3.01%. The insulin release profile of I-In NPs in simulated gastric fluid follows a burst pattern. Biophysical analysis revealed that insulin in I-In NPs had higher conformational stability than the free state (FS) insulin, as evidenced by an increase in denaturation half-life up to 60 min and the transition enthalpy by 0.29 and 1.53 kcal/mol for secondary and tertiary structures, respectively. Furthermore, preliminary in vivo studies showed that I-In NPs showed significant effect compared to FS insulin for up to 15% in blood glucose level reduction. This study demonstrates the potential of I-In NPs as a promising candidate for antidiabetic therapy and an effective oral delivery system.

胰岛素对胃酸降解的敏感性是口服胰岛素给药的主要挑战。为了解决这一问题,研究了生物聚合物基纳米载体的潜力。菊糖是一种由嗜盐菌GM01产生的生物聚合物,已被评估为胰岛素纳米载体的有效性。采用中心复合设计(CCD)方法,在53 mg菊粉的搅拌条件下,以17800 rpm搅拌10 min,获得了平均直径为416±32 nm、包封率为87.04±3.01%的球形胰岛素纳米颗粒(I-In NPs)。模拟胃液中I-In NPs的胰岛素释放曲线遵循爆发模式。生物物理分析表明,I-In NPs中的胰岛素具有更高的构象稳定性,其变性半衰期可达60 min,二级和三级结构的转变焓分别提高了0.29和1.53 kcal/mol。此外,初步的体内研究表明,与FS胰岛素相比,I-In NPs在血糖水平降低方面表现出高达15%的显著效果。本研究证明了I-In NPs作为抗糖尿病治疗和有效口服给药系统的潜力。
{"title":"Development of inulin nanocarrier for effective oral delivery of insulin: synthesize, optimization, characterization, and biophysical study.","authors":"Achmad Ramadhanna'il Rasjava, Desy Kurniawati, Wa Ode Sri Rizki, Neng Fisheri Kurniati, Rukman Hertadi","doi":"10.1080/09205063.2024.2436297","DOIUrl":"https://doi.org/10.1080/09205063.2024.2436297","url":null,"abstract":"<p><p>The susceptibility of insulin against gastric acid degradation presents a major challenge for oral insulin delivery. The potential of biopolymer-based nanocarriers was investigated in order to address this issue. Inulin, a biopolymer produced by the halophilic bacterium Salinivibrio sp. GM01, has been evaluated for its effectiveness as an insulin nanocarrier. Using central composite design (CCD) method, the optimum condition of inulin-encapsulated insulin (I-In) was achieved at 53 mg of inulin stirred at 17,800 rpm for 10 min, resulting in spherical I-In nanoparticles (I-In NPs) with an average diameter of 416 ± 32 nm and encapsulation efficiency of 87.04 ± 3.01%. The insulin release profile of I-In NPs in simulated gastric fluid follows a burst pattern. Biophysical analysis revealed that insulin in I-In NPs had higher conformational stability than the free state (FS) insulin, as evidenced by an increase in denaturation half-life up to 60 min and the transition enthalpy by 0.29 and 1.53 kcal/mol for secondary and tertiary structures, respectively. Furthermore, preliminary <i>in vivo</i> studies showed that I-In NPs showed significant effect compared to FS insulin for up to 15% in blood glucose level reduction. This study demonstrates the potential of I-In NPs as a promising candidate for antidiabetic therapy and an effective oral delivery system.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-24"},"PeriodicalIF":3.6,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142768899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the in vitro and in vivo effects of carvacrol zinc oxide quantum dots in breast cancer. 评价香芹酚氧化锌量子点在乳腺癌中的体内外作用。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-03 DOI: 10.1080/09205063.2024.2429325
Manoj Kumar Srinivasan, Nalini Namasivayam

The study investigates the molecular interactions and biological effects of carvacrol zinc oxide quantum dots (CVC-ZnO QDs) on breast cancer in vitro MCF-7 cell lines and in vivo mammary cancer models. Molecular docking using AutoDock Vina revealed binding energies of CVC with key proteins in the PI3K/AKT/mTOR pathway, including PI3K, AKT, PTEN, and mTOR. The results showed significant interaction with specific amino acids, indicating a strong binding affinity. In vitro studies demonstrated a dose-dependent cytotoxic effect of CVC-ZnO QDs on MCF-7 cells, with an IC50 of 20.02 µg/mL, while enhancing intracellular reactive oxygen species (ROS) and decreasing mitochondrial membrane potential (MMP), indicative of apoptosis induction. Antioxidant activity, lipid peroxidation, and nuclear morphological changes were assessed, revealing decreased antioxidant status and increased lipid peroxidation in treated cells. In vivo, CVC-ZnO QDs modulated the PI3K/AKT/mTOR signaling in DMBA-induced mammary cancer in rats, decreasing p-PI3K, p-AKT, and p-mTOR expression while upregulating PTEN. Immunohistochemistry, qRT-PCR, and Western blot analyses confirmed these molecular alterations. The study concludes that CVC-ZnO QDs exert cytotoxic and pro-apoptotic effects on breast cancer cells by modulating the PI3K/Akt/mTOR pathway and promoting oxidative stress, presenting a potential therapeutic strategy for breast cancer management.

本文研究了香芹酚氧化锌量子点(CVC-ZnO QDs)在体外MCF-7细胞系和体内乳腺癌模型中的分子相互作用和生物学效应。利用AutoDock Vina进行分子对接,揭示了CVC与PI3K/AKT/mTOR通路关键蛋白(包括PI3K、AKT、PTEN和mTOR)的结合能。结果显示与特定氨基酸有显著的相互作用,表明具有较强的结合亲和力。体外研究表明,CVC-ZnO QDs对MCF-7细胞具有剂量依赖性的细胞毒作用,IC50为20.02µg/mL,同时增强细胞内活性氧(ROS),降低线粒体膜电位(MMP),表明诱导凋亡。对抗氧化活性、脂质过氧化和核形态变化进行了评估,发现处理细胞的抗氧化状态下降,脂质过氧化增加。在体内,CVC-ZnO QDs调节dmba诱导的大鼠乳腺癌中PI3K/AKT/mTOR信号通路,降低p-PI3K、p-AKT和p-mTOR的表达,上调PTEN。免疫组织化学、qRT-PCR和Western blot分析证实了这些分子改变。本研究认为,CVC-ZnO量子点通过调控PI3K/Akt/mTOR通路,促进氧化应激,对乳腺癌细胞具有细胞毒和促凋亡作用,为乳腺癌治疗提供了潜在的治疗策略。
{"title":"Evaluating the <i>in vitro</i> and <i>in vivo</i> effects of carvacrol zinc oxide quantum dots in breast cancer.","authors":"Manoj Kumar Srinivasan, Nalini Namasivayam","doi":"10.1080/09205063.2024.2429325","DOIUrl":"10.1080/09205063.2024.2429325","url":null,"abstract":"<p><p>The study investigates the molecular interactions and biological effects of carvacrol zinc oxide quantum dots (CVC-ZnO QDs) on breast cancer <i>in vitro</i> MCF-7 cell lines and <i>in vivo</i> mammary cancer models. Molecular docking using AutoDock Vina revealed binding energies of CVC with key proteins in the PI3K/AKT/mTOR pathway, including PI3K, AKT, PTEN, and mTOR. The results showed significant interaction with specific amino acids, indicating a strong binding affinity. <i>In vitro</i> studies demonstrated a dose-dependent cytotoxic effect of CVC-ZnO QDs on MCF-7 cells, with an IC<sub>50</sub> of 20.02 µg/mL, while enhancing intracellular reactive oxygen species (ROS) and decreasing mitochondrial membrane potential (MMP), indicative of apoptosis induction. Antioxidant activity, lipid peroxidation, and nuclear morphological changes were assessed, revealing decreased antioxidant status and increased lipid peroxidation in treated cells. <i>In vivo</i>, CVC-ZnO QDs modulated the PI3K/AKT/mTOR signaling in DMBA-induced mammary cancer in rats, decreasing p-PI3K, p-AKT, and p-mTOR expression while upregulating PTEN. Immunohistochemistry, qRT-PCR, and Western blot analyses confirmed these molecular alterations. The study concludes that CVC-ZnO QDs exert cytotoxic and pro-apoptotic effects on breast cancer cells by modulating the PI3K/Akt/mTOR pathway and promoting oxidative stress, presenting a potential therapeutic strategy for breast cancer management.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-20"},"PeriodicalIF":3.6,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142769271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ionic conducting hydrogels as biomedical materials: classification, design strategies, and skin tissue engineering applications. 离子导电水凝胶作为生物医学材料:分类、设计策略和皮肤组织工程应用。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-02 DOI: 10.1080/09205063.2024.2434300
Wanping Zhang, Zhe Li, Qianjie Zhang, Shilian Zheng, Zijia Zhang, Simin Chen, Zixin Wang, Dongmei Zhang

Ionically conductive hydrogels (ICHs) are considered promising flexible electronic devices and various wearable sensors due to the integration of the conductive performance and soft nature of human tissue-like materials with mechanical and sensory traits. Recently, substantial progress has been made in the research of ICHs, including high conductivity, solution processability, strong adhesion, high stretchability, high self-healing ability, and good biocompatibility. These advanced researches also promote their excellent application prospects in medical monitoring, sports health, smart wear, and other fields. This article reviewed ICHs' current classification and design strategies in biomedical applications and the structure-activity relationship of the interface between biological systems and electronics. Furthermore, the typical cases of frontiers of skin interface applications of ICHs were elaborated in transdermal drug delivery, wound healing, disease diagnosis and treatment, and human-computer interaction. This article aims to inspire related research on ionically conductive hydrogels in the biomedical field and promote the innovation and application of flexible wearable electronic device technology.

离子导电水凝胶(ICHs)被认为是有前途的柔性电子器件和各种可穿戴传感器,因为它将导电性能和柔软的人体组织样材料与机械和感官特性相结合。近年来,ICHs的研究取得了实质性进展,包括高导电性、溶液可加工性、强粘附性、高拉伸性、高自愈能力和良好的生物相容性。这些先进的研究也促进了其在医疗监测、运动健康、智能穿戴等领域的良好应用前景。本文综述了ICHs在生物医学应用中的分类和设计策略,以及生物系统与电子学之间界面的构效关系。阐述了ICHs皮肤界面应用领域的典型案例,包括经皮给药、伤口愈合、疾病诊疗、人机交互等。本文旨在启发离子导电水凝胶在生物医学领域的相关研究,促进柔性可穿戴电子设备技术的创新与应用。
{"title":"Ionic conducting hydrogels as biomedical materials: classification, design strategies, and skin tissue engineering applications.","authors":"Wanping Zhang, Zhe Li, Qianjie Zhang, Shilian Zheng, Zijia Zhang, Simin Chen, Zixin Wang, Dongmei Zhang","doi":"10.1080/09205063.2024.2434300","DOIUrl":"https://doi.org/10.1080/09205063.2024.2434300","url":null,"abstract":"<p><p>Ionically conductive hydrogels (ICHs) are considered promising flexible electronic devices and various wearable sensors due to the integration of the conductive performance and soft nature of human tissue-like materials with mechanical and sensory traits. Recently, substantial progress has been made in the research of ICHs, including high conductivity, solution processability, strong adhesion, high stretchability, high self-healing ability, and good biocompatibility. These advanced researches also promote their excellent application prospects in medical monitoring, sports health, smart wear, and other fields. This article reviewed ICHs' current classification and design strategies in biomedical applications and the structure-activity relationship of the interface between biological systems and electronics. Furthermore, the typical cases of frontiers of skin interface applications of ICHs were elaborated in transdermal drug delivery, wound healing, disease diagnosis and treatment, and human-computer interaction. This article aims to inspire related research on ionically conductive hydrogels in the biomedical field and promote the innovation and application of flexible wearable electronic device technology.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-24"},"PeriodicalIF":3.6,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142769205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vitro chondrogenic potential of marine biocomposite hydrogel construct for cartilage tissue engineering. 用于软骨组织工程的海洋生物复合水凝胶构建体的体外软骨生成潜能。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-01 Epub Date: 2024-10-21 DOI: 10.1080/09205063.2024.2391223
Sumayya A S, Muraleedhara Kurup G

Cartilage tissue engineering (CTE) is a field of regenerative medicine focused on constructing ideal substitutes for injured cartilage by effectively combining cells, scaffolds, and stimulatory factors. In vitro CTE employing chondrocytes and biopolymer-based hydrogels has the potential to repair damaged cartilage. In this research, primary chondrocytes were extracted from the rib cartilage of rats and seeded on a hydrogel construct named HACF, which is made from hydroxyapatite, alginate, chitosan, and fucoidan. We then evaluated in vitro chondrogenesis on HACF cartilage construct. The results revealed that the primary chondrocytes were successfully isolated from rat rib cartilage by collagenase D digestion and HACF cartilage construct was effectively synthesized. Chondrocyte viability and its differentiation inside the scaffold HACF were determined by MTT assay, NRU assay, live/dead assay, DAPI nuclear staining, flow cytometry analysis (FCA), mRNA expression studies, and quantification of extracellular matrix components in the HACF scaffold. The findings indicated excellent chondrocyte viability within the HACF scaffold, with no noticeable changes in morphology. Apoptosis was not detected in the chondrocytes cultured on these hydrogels, as confirmed by DAPI staining, live/dead assay, and FCA. This demonstrates that the cells were capable of proliferating, dividing, multiplying, and maintaining their integrity on HACF scaffold. The results also showed more collagen deposition and glycosaminoglycan synthesis showing the good health of chondrocytes on the HACF construct. It indicates that HACF is an ideal scaffold supporting stable cartilage matrix production, highlighting its suitability for cartilage tissue engineering.

软骨组织工程(CTE)是再生医学的一个领域,其重点是通过有效结合细胞、支架和刺激因子,为受损软骨构建理想的替代物。采用软骨细胞和生物聚合物水凝胶的体外 CTE 具有修复受损软骨的潜力。在这项研究中,我们从大鼠的肋软骨中提取了原代软骨细胞,并将其播种在一种名为 HACF 的水凝胶构建物上,该构建物由羟基磷灰石、海藻酸盐、壳聚糖和褐藻糖胶制成。然后,我们对 HACF 软骨构建体进行了体外软骨生成评估。结果显示,通过胶原酶 D 消化法成功地从大鼠肋软骨中分离出了原始软骨细胞,并有效地合成了 HACF 软骨构建体。通过 MTT 试验、NRU 试验、活/死试验、DAPI 核染色、流式细胞仪分析(FCA)、mRNA 表达研究和 HACF 支架细胞外基质成分的定量分析,测定了软骨细胞的活力及其在支架 HACF 中的分化情况。研究结果表明,HACF 支架中的软骨细胞存活率极高,形态没有明显变化。通过 DAPI 染色、活/死试验和 FCA 证实,在这些水凝胶上培养的软骨细胞未发现凋亡。这表明细胞能够在 HACF 支架上增殖、分裂、繁殖并保持其完整性。结果还显示,HACF 构架上有更多的胶原沉积和糖胺聚糖合成,表明软骨细胞的健康状况良好。这表明 HACF 是一种理想的支架,可支持稳定的软骨基质生成,突出了其在软骨组织工程中的适用性。
{"title":"<i>In vitro</i> chondrogenic potential of marine biocomposite hydrogel construct for cartilage tissue engineering.","authors":"Sumayya A S, Muraleedhara Kurup G","doi":"10.1080/09205063.2024.2391223","DOIUrl":"10.1080/09205063.2024.2391223","url":null,"abstract":"<p><p>Cartilage tissue engineering (CTE) is a field of regenerative medicine focused on constructing ideal substitutes for injured cartilage by effectively combining cells, scaffolds, and stimulatory factors. <i>In vitro</i> CTE employing chondrocytes and biopolymer-based hydrogels has the potential to repair damaged cartilage. In this research, primary chondrocytes were extracted from the rib cartilage of rats and seeded on a hydrogel construct named HACF, which is made from hydroxyapatite, alginate, chitosan, and fucoidan. We then evaluated <i>in vitro</i> chondrogenesis on HACF cartilage construct. The results revealed that the primary chondrocytes were successfully isolated from rat rib cartilage by collagenase D digestion and HACF cartilage construct was effectively synthesized. Chondrocyte viability and its differentiation inside the scaffold HACF were determined by MTT assay, NRU assay, live/dead assay, DAPI nuclear staining, flow cytometry analysis (FCA), mRNA expression studies, and quantification of extracellular matrix components in the HACF scaffold. The findings indicated excellent chondrocyte viability within the HACF scaffold, with no noticeable changes in morphology. Apoptosis was not detected in the chondrocytes cultured on these hydrogels, as confirmed by DAPI staining, live/dead assay, and FCA. This demonstrates that the cells were capable of proliferating, dividing, multiplying, and maintaining their integrity on HACF scaffold. The results also showed more collagen deposition and glycosaminoglycan synthesis showing the good health of chondrocytes on the HACF construct. It indicates that HACF is an ideal scaffold supporting stable cartilage matrix production, highlighting its suitability for cartilage tissue engineering.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2845-2866"},"PeriodicalIF":3.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of the molar mass of chitosan and film casting solvents on the properties of chitosan films loaded with Mentha spicata essential oil for potential application as wound dressing. 壳聚糖摩尔质量和成膜溶剂对载入薄荷精油的壳聚糖薄膜性能的影响,该薄膜有望用作伤口敷料。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-01 Epub Date: 2024-08-21 DOI: 10.1080/09205063.2024.2390752
Fatima Zahra Gana, Yahia Harek, Nadia Aissaoui, Taib Nadjat, Sarra Abbad, Houria Rouabhi

Chitosan based films endowed with antibacterial features have witnessed remarkable progress as potential wound dressings. The current study aimed at appraising the effects of the molar mass of chitosan (MM) and the film casting acids on the properties of unplasticized chitosan films and plasticized MSO-embedded chitosan films in order to provide best suited film formulation as a potential candidate for wound dressing application. The prepared films were functionally characterized in terms of their qualitative assessment, thickness, density, swelling behavior, water vapor barrier, mechanical and antibacterial properties. Overall, all chitosan films displayed thickness lower than the human dermis even though thicker and denser films were produced with lactic acid. Assessment of the swelling behavior revealed that only high molar mass (HMM) chitosan films may be regarded as absorbent dressings. Moreover, unplasticized HMM lactate (HMM-LA) films furnished lower stiffness and higher percent strain break as compared to acetate films, due to the plasticizing effect of the remaining lactic acid as alluded by the FTIR analysis. Meanwhile, they provided suitable level of moisture and indicated substantial antibacterial activity against S. aureus and E. coli, the most commonly opportunistic bacteria found in infected skin wound. Plasticized chitosan films doped with MSO were significantly thicker and more permeable to water compared to unplasticized films. Furthermore, MSO significantly potentiate the antibacterial effect of chitosan-based films. Therefore, plasticized HMM-LA/MSO chitosan film flashing good swelling behavior, adequate WVTR and WVP, suitable mechanical properties and antibacterial performances substantiated to be a promising antibacterial dressing material for moderately exuding wounds.

具有抗菌功能的壳聚糖薄膜作为潜在的伤口敷料取得了显著进展。本研究旨在评估壳聚糖摩尔质量(MM)和薄膜浇注酸对未塑化壳聚糖薄膜和塑化 MSO 嵌入壳聚糖薄膜性能的影响,以提供最适合的薄膜配方,作为伤口敷料应用的潜在候选材料。制备的薄膜在质量评估、厚度、密度、膨胀行为、水蒸气阻隔性、机械和抗菌性能等方面都具有功能特征。总体而言,所有壳聚糖薄膜的厚度都低于人体真皮层,尽管使用乳酸制备的薄膜更厚更致密。对膨胀行为的评估表明,只有高摩尔质量(HMM)壳聚糖薄膜才能被视为吸水敷料。此外,与醋酸纤维薄膜相比,未塑化的乳酸 HMM(HMM-LA)薄膜刚度较低,应变断裂百分率较高,这是因为傅立叶变换红外光谱分析显示了剩余乳酸的塑化作用。同时,它们还提供了适当的湿度,并显示出对金黄色葡萄球菌和大肠杆菌(感染性皮肤伤口中最常见的机会性细菌)具有很强的抗菌活性。与未增塑的薄膜相比,掺入了 MSO 的增塑壳聚糖薄膜明显更厚,透水性更强。此外,MSO 还能明显增强壳聚糖薄膜的抗菌效果。因此,增塑的 HMM-LA/MSO 壳聚糖薄膜具有良好的溶胀性能、足够的 WVTR 和 WVP、合适的机械性能和抗菌性能,可作为中度渗出伤口的抗菌敷料。
{"title":"Effect of the molar mass of chitosan and film casting solvents on the properties of chitosan films loaded with <i>Mentha spicata</i> essential oil for potential application as wound dressing.","authors":"Fatima Zahra Gana, Yahia Harek, Nadia Aissaoui, Taib Nadjat, Sarra Abbad, Houria Rouabhi","doi":"10.1080/09205063.2024.2390752","DOIUrl":"10.1080/09205063.2024.2390752","url":null,"abstract":"<p><p>Chitosan based films endowed with antibacterial features have witnessed remarkable progress as potential wound dressings. The current study aimed at appraising the effects of the molar mass of chitosan (MM) and the film casting acids on the properties of unplasticized chitosan films and plasticized MSO-embedded chitosan films in order to provide best suited film formulation as a potential candidate for wound dressing application. The prepared films were functionally characterized in terms of their qualitative assessment, thickness, density, swelling behavior, water vapor barrier, mechanical and antibacterial properties. Overall, all chitosan films displayed thickness lower than the human dermis even though thicker and denser films were produced with lactic acid. Assessment of the swelling behavior revealed that only high molar mass (HMM) chitosan films may be regarded as absorbent dressings. Moreover, unplasticized HMM lactate (HMM-LA) films furnished lower stiffness and higher percent strain break as compared to acetate films, due to the plasticizing effect of the remaining lactic acid as alluded by the FTIR analysis. Meanwhile, they provided suitable level of moisture and indicated substantial antibacterial activity against <i>S. aureus</i> and <i>E. coli</i>, the most commonly opportunistic bacteria found in infected skin wound. Plasticized chitosan films doped with MSO were significantly thicker and more permeable to water compared to unplasticized films. Furthermore, MSO significantly potentiate the antibacterial effect of chitosan-based films. Therefore, plasticized HMM-LA/MSO chitosan film flashing good swelling behavior, adequate WVTR and WVP, suitable mechanical properties and antibacterial performances substantiated to be a promising antibacterial dressing material for moderately exuding wounds.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2807-2828"},"PeriodicalIF":3.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted polymeric primaquine nanoparticles: optimization, evaluation, and in-vivo liver uptake for improved malaria treatment. 靶向聚合伯氨喹纳米粒子:优化、评估和体内肝脏吸收,以改善疟疾治疗。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-01 Epub Date: 2024-09-01 DOI: 10.1080/09205063.2024.2391225
Sarvesh Bhargava, Hitesh Kumar Dewangan, Rohitas Deshmukh

Primaquine (PQ) is a widely used antimalarial drug, but its high dosage requirements can lead to significant tissue damage and adverse gastrointestinal and hematological effects. Recent studies have shown that nanoformulations can enhance the bioavailability of pharmaceuticals, thereby increasing efficacy, reducing dosing frequency, and minimizing toxicity. In this study, PQ-loaded PLGA nanoparticles (PQ-NPs) were prepared using a modified double emulsion solvent evaporation technique (w/o/w). The PQ-NPs exhibited a mean particle size of 228 ± 2.6 nm, a zeta potential of +27.4 mV, and an encapsulation efficiency of 81.3 ± 3.5%. Scanning electron microscopy (SEM) confirmed their spherical morphology, and the in vitro release profile demonstrated continuous drug release over 72 h. Differential scanning calorimetry (DSC) thermograms indicated that the drug was present in the nanoparticles, with improved physical stability. Fourier-transform infrared spectroscopy (FTIR) analysis showed no interactions between the various substances in the NPs. In vivo studies in Swiss albino mice infected with Plasmodium berghei revealed that the nanoformulated PQ was 20% more effective than the standard oral dose. Biodistribution studies indicated that 80% of the NPs accumulated in the liver, highlighting their potential for targeted drug delivery. This research demonstrates the successful development of a nanomedicine delivery system for antimalarial drugs, offering a promising strategy to enhance treatment efficacy while reducing adverse effects.

普利马喹(Primaquine,PQ)是一种广泛使用的抗疟药物,但其高剂量要求会导致严重的组织损伤,并对胃肠道和血液系统产生不良影响。最近的研究表明,纳米制剂可以提高药物的生物利用度,从而提高疗效、减少给药次数并将毒性降至最低。本研究采用改良的双乳液溶剂蒸发技术(w/o/w)制备了负载 PQ 的 PLGA 纳米粒子(PQ-NPs)。PQ-NPs 的平均粒径为 228 ± 2.6 nm,zeta 电位为 +27.4 mV,封装效率为 81.3 ± 3.5%。扫描电子显微镜(SEM)证实了它们的球形形态,体外释放曲线显示药物在 72 小时内持续释放。差示扫描量热法(DSC)热图显示药物存在于纳米颗粒中,并提高了物理稳定性。傅立叶变换红外光谱(FTIR)分析表明,纳米粒子中的各种物质之间没有相互作用。在感染了贝氏疟原虫的瑞士白化小鼠体内进行的研究表明,纳米化的 PQ 比标准口服剂量的效果高出 20%。生物分布研究表明,80% 的 NPs 聚集在肝脏中,突出了其靶向给药的潜力。这项研究表明,抗疟药物纳米药物递送系统的成功开发,为提高疗效、减少不良反应提供了一种前景广阔的策略。
{"title":"Targeted polymeric primaquine nanoparticles: optimization, evaluation, and in-vivo liver uptake for improved malaria treatment.","authors":"Sarvesh Bhargava, Hitesh Kumar Dewangan, Rohitas Deshmukh","doi":"10.1080/09205063.2024.2391225","DOIUrl":"10.1080/09205063.2024.2391225","url":null,"abstract":"<p><p>Primaquine (PQ) is a widely used antimalarial drug, but its high dosage requirements can lead to significant tissue damage and adverse gastrointestinal and hematological effects. Recent studies have shown that nanoformulations can enhance the bioavailability of pharmaceuticals, thereby increasing efficacy, reducing dosing frequency, and minimizing toxicity. In this study, PQ-loaded PLGA nanoparticles (PQ-NPs) were prepared using a modified double emulsion solvent evaporation technique (w/o/w). The PQ-NPs exhibited a mean particle size of 228 ± 2.6 nm, a zeta potential of +27.4 mV, and an encapsulation efficiency of 81.3 ± 3.5%. Scanning electron microscopy (SEM) confirmed their spherical morphology, and the <i>in vitro</i> release profile demonstrated continuous drug release over 72 h. Differential scanning calorimetry (DSC) thermograms indicated that the drug was present in the nanoparticles, with improved physical stability. Fourier-transform infrared spectroscopy (FTIR) analysis showed no interactions between the various substances in the NPs. <i>In vivo</i> studies in Swiss albino mice infected with <i>Plasmodium berghei</i> revealed that the nanoformulated PQ was 20% more effective than the standard oral dose. Biodistribution studies indicated that 80% of the NPs accumulated in the liver, highlighting their potential for targeted drug delivery. This research demonstrates the successful development of a nanomedicine delivery system for antimalarial drugs, offering a promising strategy to enhance treatment efficacy while reducing adverse effects.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2867-2883"},"PeriodicalIF":3.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of bacterial cellulose/acrylic acid-based pH-responsive smart dressings by graft copolymerization method. 用接枝共聚法制备细菌纤维素/丙烯酸基 pH 值响应型智能敷料。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-01 Epub Date: 2024-08-20 DOI: 10.1080/09205063.2024.2389689
Wen Zhang, Xinyue Hu, Fei Jiang, Yirui Li, Wenhao Chen, Ting Zhou

Conventional wound dressings used in trauma treatment have a single function and insufficient adaptability to the wound environment, making it difficult to meet the complex demands of the healing process. Stimuli-responsive hydrogels can respond specifically to the particular environment of the wound area and realize on-demand responsive release by loading active substances, which can effectively promote wound healing. In this paper, BC/PAA-pH responsive hydrogels (BPPRHs) were prepared by graft copolymerization of acrylic acid (AA) to the end of the molecular chain of bacterial cellulose (BC) network structure. Antibacterial pH-responsive 'smart' dressings were prepared by loading curcumin (Cur) onto the hydrogels. Surface morphology, chemical groups, crystallinity, rheological, and mechanical properties of BPPRHs were analyzed by different characterization methods. The drug release behavior under different physiological conditions and bacteriostatic properties of BPPRH-Cur dressings were also investigated. The results of structural characterization and performance studies show that the hydrogel has a three-dimensional mesh structure and can respond to wound pH in a 'smart' drug release capacity. The drug release behavior of the BPPRH-Cur dressings under different environmental conditions conformed to the logistic and Weibull kinetic models. BPPRH-Cur displayed good antimicrobial activity against common pathogens of wound infections such as E. coli, S. aureus, and P. aeruginosa by destroying the cell membrane and lysing the bacterial cells. This study lays the foundation for the development of new pharmaceutical dressings with positive health, economic and social benefits.

用于创伤治疗的传统伤口敷料功能单一,对伤口环境的适应性不足,难以满足伤口愈合过程中的复杂需求。刺激响应型水凝胶能对创面的特殊环境做出特异性响应,通过负载活性物质实现按需响应释放,能有效促进创面愈合。本文通过在细菌纤维素(BC)网络结构的分子链末端接枝共聚丙烯酸(AA),制备了BC/PAA-pH响应水凝胶(BPPRHs)。通过在水凝胶中添加姜黄素(Cur)制备了抗菌 pH 响应型 "智能 "敷料。通过不同的表征方法分析了 BPPRHs 的表面形态、化学基团、结晶度、流变学和机械性能。此外,还研究了 BPPRH-Cur 敷料在不同生理条件下的药物释放行为和抑菌特性。结构表征和性能研究结果表明,该水凝胶具有三维网状结构,能以 "智能 "药物释放能力响应伤口的 pH 值。BPPRH-Cur 敷料在不同环境条件下的药物释放行为符合逻辑动力学模型和 Weibull 动力学模型。BPPRH-Cur 通过破坏细胞膜和裂解细菌细胞,对大肠杆菌、金黄色葡萄球菌和绿脓杆菌等常见的伤口感染病原体具有良好的抗菌活性。这项研究为开发具有积极健康、经济和社会效益的新型药物敷料奠定了基础。
{"title":"Preparation of bacterial cellulose/acrylic acid-based pH-responsive smart dressings by graft copolymerization method.","authors":"Wen Zhang, Xinyue Hu, Fei Jiang, Yirui Li, Wenhao Chen, Ting Zhou","doi":"10.1080/09205063.2024.2389689","DOIUrl":"10.1080/09205063.2024.2389689","url":null,"abstract":"<p><p>Conventional wound dressings used in trauma treatment have a single function and insufficient adaptability to the wound environment, making it difficult to meet the complex demands of the healing process. Stimuli-responsive hydrogels can respond specifically to the particular environment of the wound area and realize on-demand responsive release by loading active substances, which can effectively promote wound healing. In this paper, BC/PAA-pH responsive hydrogels (BPPRHs) were prepared by graft copolymerization of acrylic acid (AA) to the end of the molecular chain of bacterial cellulose (BC) network structure. Antibacterial pH-responsive 'smart' dressings were prepared by loading curcumin (Cur) onto the hydrogels. Surface morphology, chemical groups, crystallinity, rheological, and mechanical properties of BPPRHs were analyzed by different characterization methods. The drug release behavior under different physiological conditions and bacteriostatic properties of BPPRH-Cur dressings were also investigated. The results of structural characterization and performance studies show that the hydrogel has a three-dimensional mesh structure and can respond to wound pH in a 'smart' drug release capacity. The drug release behavior of the BPPRH-Cur dressings under different environmental conditions conformed to the logistic and Weibull kinetic models. BPPRH-Cur displayed good antimicrobial activity against common pathogens of wound infections such as <i>E. coli, S. aureus,</i> and <i>P. aeruginosa</i> by destroying the cell membrane and lysing the bacterial cells. This study lays the foundation for the development of new pharmaceutical dressings with positive health, economic and social benefits.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2767-2789"},"PeriodicalIF":3.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Biomaterials Science, Polymer Edition
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1