首页 > 最新文献

Journal of cellular biochemistry最新文献

英文 中文
RETRACTION: Posttreatment of Melatonin With CCl4 Better Reduces Fibrogenic and Oxidative Changes in Liver Than Melatonin Co-treatment 回放:褪黑素与四氯化碳联合治疗比褪黑素联合治疗更能减轻肝脏的纤维化和氧化变化。
IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-27 DOI: 10.1002/jcb.30635

RETRACTION: K. Mortezaee, J. Majidpoor, E. Daneshi, M. Abouzaripour, and M. Abdi, “Posttreatment of Melatonin With CCl4 Better Reduces Fibrogenic and Oxidative Changes in Liver Than Melatonin Co-treatment,” Journal of Cellular Biochemistry 119, no. 2 (2018): 1716-1725, https://doi.org/10.1002/jcb.26331.

The above article, published online on 7 August 2017 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor-in-Chief, Christian Behl; and Wiley Periodicals LLC. The retraction has been agreed upon due to concerns about the accuracy of the data presented in the article. The authors informed the journal of significant errors in the compilation of Figure 2. Subsequent investigation by the publisher revealed that several image elements in Figure 2 had been previously published by the same author group to illustrate different staining and/or treatment. The authors acknowledged that these mistakes may have resulted from problems in data management while performing similar experiments for different research projects. Therefore, due to the concerns on data accuracy, the editors consider the conclusions of this article to be invalid.

撤回:K. Mortezaee, J. Majidpoor, E. Daneshi, M. Abouzaripour, and M. Abdi, "Posttreatment of Melatonin With CCl4 Better Reduces Fibrogenic and Oxidative Changes in Liver Than Melatonin Co-treatment," Journal of Cellular Biochemistry 119, no:1716-1725, https://doi.org/10.1002/jcb.26331.The 上述文章于2017年8月7日在线发表于Wiley Online Library (wileyonlinelibrary.com),经期刊主编Christian Behl和Wiley Periodicals LLC协议,已被撤回。同意撤稿的原因是对文章中数据准确性的担忧。作者告知期刊,图 2 的编制存在重大错误。出版商随后的调查显示,图 2 中的几个图像元素曾由同一作者小组发表过,用来说明不同的染色和/或处理方法。作者承认,这些错误可能是在不同研究项目中进行类似实验时数据管理出现问题所致。因此,出于对数据准确性的考虑,编辑认为这篇文章的结论无效。
{"title":"RETRACTION: Posttreatment of Melatonin With CCl4 Better Reduces Fibrogenic and Oxidative Changes in Liver Than Melatonin Co-treatment","authors":"","doi":"10.1002/jcb.30635","DOIUrl":"10.1002/jcb.30635","url":null,"abstract":"<p><b>RETRACTION:</b> K. Mortezaee, J. Majidpoor, E. Daneshi, M. Abouzaripour, and M. Abdi, “Posttreatment of Melatonin With CCl4 Better Reduces Fibrogenic and Oxidative Changes in Liver Than Melatonin Co-treatment,” <i>Journal of Cellular Biochemistry</i> 119, no. 2 (2018): 1716-1725, https://doi.org/10.1002/jcb.26331.</p><p>The above article, published online on 7 August 2017 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor-in-Chief, Christian Behl; and Wiley Periodicals LLC. The retraction has been agreed upon due to concerns about the accuracy of the data presented in the article. The authors informed the journal of significant errors in the compilation of Figure 2. Subsequent investigation by the publisher revealed that several image elements in Figure 2 had been previously published by the same author group to illustrate different staining and/or treatment. The authors acknowledged that these mistakes may have resulted from problems in data management while performing similar experiments for different research projects. Therefore, due to the concerns on data accuracy, the editors consider the conclusions of this article to be invalid.</p>","PeriodicalId":15219,"journal":{"name":"Journal of cellular biochemistry","volume":"125 10","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcb.30635","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142072941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RETRACTION: FV-429 Induced Apoptosis Through ROS-Mediated ERK2 Nuclear Translocation and p53 Activation in Gastric Cancer Cells 回归:FV-429 通过 ROS 介导的 ERK2 核转移和 p53 激活诱导胃癌细胞凋亡
IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-27 DOI: 10.1002/jcb.30640

RETRACTION: Y. Zhou, L. Wei, H. Zhang, Q. Dai, Z. Li, B. Yu, et al., “FV-429 Induced Apoptosis Through ROS-Mediated ERK2 Nuclear Translocation and p53 Activation in Gastric Cancer Cells,” Journal of Cellular Biochemistry 116, no. 8 (2015): 1624–1637, https://doi.org/10.1002/jcb.25118.

The above article, published online on 3 February 2015 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor-in-Chief, Christian Behl; and Wiley Periodicals LLC. The retraction has been agreed due to concerns raised by third parties related to the data presented in the article. Specifically, duplication of Western Blot images has been detected across Figures 5D and 6A; and 5B, 6B and 6I. Furthermore, inappropriate post-acquisition modifications have been detected within Figure 4B and 4F, and image elements in Figure 4B and 4E were found to have been previously published by the same author group in a different scientific context. The authors were unable to provide the relative raw data upon request. Finally, the cell lines used in this study (BGC-823 and MGC-803) have been reported as contaminated [1-4]. Therefore, retraction has been agreed upon as the editors consider the conclusions of this article to be invalid. The authors have been informed of the decision of retraction but unavailable for a final confirmation.

撤回:Y. Zhou, L. Wei, H. Zhang, Q. Dai, Z. Li, B. Yu, et al., "FV-429 Induced Apoptosis Through ROS-Mediated ERK2 Nuclear Translocation and p53 Activation in Gastric Cancer Cells," Journal of Cellular Biochemistry 116, no. 8 (2015): 1624-1637, https://doi.org/10.1002/jcb.25118.上述文章于 2015 年 2 月 3 日在线发表于 Wiley Online Library (wileyonlinelibrary.com),经期刊主编 Christian Behl 和 Wiley Periodicals LLC 协议,该文章已被撤回。同意撤稿的原因是第三方对文章中提供的数据提出了疑虑。具体来说,在图 5D 和 6A 以及图 5B、6B 和 6I 中发现了 Western Blot 图像的重复。此外,在图 4B 和图 4F 中发现了不恰当的采集后修改,图 4B 和图 4E 中的图像元素被发现之前已由同一作者小组在不同的科学背景下发表过。作者无法应要求提供相关原始数据。最后,本研究中使用的细胞系(BGC-823 和 MGC-803)已被报道为受到污染[1-4]。因此,由于编辑认为这篇文章的结论无效,同意撤回。作者已被告知撤稿决定,但尚未得到最终确认。
{"title":"RETRACTION: FV-429 Induced Apoptosis Through ROS-Mediated ERK2 Nuclear Translocation and p53 Activation in Gastric Cancer Cells","authors":"","doi":"10.1002/jcb.30640","DOIUrl":"10.1002/jcb.30640","url":null,"abstract":"<p><b>RETRACTION:</b> Y. Zhou, L. Wei, H. Zhang, Q. Dai, Z. Li, B. Yu, et al., “FV-429 Induced Apoptosis Through ROS-Mediated ERK2 Nuclear Translocation and p53 Activation in Gastric Cancer Cells,” <i>Journal of Cellular Biochemistry</i> 116, no. 8 (2015): 1624–1637, https://doi.org/10.1002/jcb.25118.</p><p>The above article, published online on 3 February 2015 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor-in-Chief, Christian Behl; and Wiley Periodicals LLC. The retraction has been agreed due to concerns raised by third parties related to the data presented in the article. Specifically, duplication of Western Blot images has been detected across Figures 5D and 6A; and 5B, 6B and 6I. Furthermore, inappropriate post-acquisition modifications have been detected within Figure 4B and 4F, and image elements in Figure 4B and 4E were found to have been previously published by the same author group in a different scientific context. The authors were unable to provide the relative raw data upon request. Finally, the cell lines used in this study (BGC-823 and MGC-803) have been reported as contaminated [<span>1-4</span>]. Therefore, retraction has been agreed upon as the editors consider the conclusions of this article to be invalid. The authors have been informed of the decision of retraction but unavailable for a final confirmation.</p>","PeriodicalId":15219,"journal":{"name":"Journal of cellular biochemistry","volume":"125 10","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcb.30640","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142072940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FOXO3 Activates MFN2 Expression to Maintain the Autophagy Response in Cancer Cells Under Amino Acid Deprivation FOXO3 激活 MFN2 表达以维持氨基酸匮乏条件下癌细胞的自噬反应
IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-22 DOI: 10.1002/jcb.30641
Xu Jiang, Jing Wang, Fang Ma, Yuyun Li

The lack of amino acids triggers the autophagic response. Some studies have shown such starvation conditions also induce mitochondrial fusion, revealing a close correlation between the two processes. Although Mitofusin-2 (MFN2) has been demonstrated to play a role in fusion regulation, its role in the autophagic response and the variables that activate MFN2 under stress remain unknown. In this investigation, we screened and confirmed that forkhead box protein O3 (FOXO3) participates in MFN2's expression during short periods of starvation. Luciferase reporter test proved that FOXO3 facilitates MFN2's transcription by binding to its promoter region, and FOXO3 downregulation directly depresses MFN2's expression. Consequently, inhibiting the FOXO3–MFN2 axis results in the loss of mitochondrial fusion, disrupting the normal morphology of mitochondria, impairing the degradation of substrates, and reducing autophagosome accumulation, ultimately leading to the blockage of the autophagy. In conclusion, our work demonstrates that the FOXO3–MFN2 pathway is essential for adaptive changes in mitochondrial morphology and cellular autophagy response under nutritional constraints.

氨基酸的缺乏会引发自噬反应。一些研究表明,这种饥饿条件也会诱导线粒体融合,揭示了这两个过程之间的密切联系。虽然已证实 Mitofusin-2(MFN2)在融合调控中发挥作用,但它在自噬反应中的作用以及在应激状态下激活 MFN2 的变量仍然未知。在这项研究中,我们筛选并证实叉头盒蛋白 O3(FOXO3)在短时间饥饿时参与了 MFN2 的表达。荧光素酶报告试验证明,FOXO3通过与其启动子区域结合促进MFN2的转录,而FOXO3的下调会直接抑制MFN2的表达。因此,抑制 FOXO3-MFN2 轴会导致线粒体融合的丧失,破坏线粒体的正常形态,影响底物的降解,减少自噬体的积累,最终导致自噬受阻。总之,我们的研究表明,FOXO3-MFN2 通路对于营养限制下线粒体形态的适应性变化和细胞自噬反应至关重要。
{"title":"FOXO3 Activates MFN2 Expression to Maintain the Autophagy Response in Cancer Cells Under Amino Acid Deprivation","authors":"Xu Jiang,&nbsp;Jing Wang,&nbsp;Fang Ma,&nbsp;Yuyun Li","doi":"10.1002/jcb.30641","DOIUrl":"10.1002/jcb.30641","url":null,"abstract":"<div>\u0000 \u0000 <p>The lack of amino acids triggers the autophagic response. Some studies have shown such starvation conditions also induce mitochondrial fusion, revealing a close correlation between the two processes. Although Mitofusin-2 (MFN2) has been demonstrated to play a role in fusion regulation, its role in the autophagic response and the variables that activate MFN2 under stress remain unknown. In this investigation, we screened and confirmed that forkhead box protein O3 (FOXO3) participates in <i>MFN2</i>'s expression during short periods of starvation. Luciferase reporter test proved that FOXO3 facilitates <i>MFN2</i>'s transcription by binding to its promoter region, and FOXO3 downregulation directly depresses MFN2's expression. Consequently, inhibiting the FOXO3–MFN2 axis results in the loss of mitochondrial fusion, disrupting the normal morphology of mitochondria, impairing the degradation of substrates, and reducing autophagosome accumulation, ultimately leading to the blockage of the autophagy. In conclusion, our work demonstrates that the FOXO3–MFN2 pathway is essential for adaptive changes in mitochondrial morphology and cellular autophagy response under nutritional constraints.</p></div>","PeriodicalId":15219,"journal":{"name":"Journal of cellular biochemistry","volume":"126 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PLM-T3SE: Accurate Prediction of Type III Secretion Effectors Using Protein Language Model Embeddings PLM-T3SE:利用蛋白质语言模型嵌入精确预测 III 型分泌效应因子。
IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-20 DOI: 10.1002/jcb.30642
Mengru Gao, Chen Song, Taigang Liu

The Type III secretion effectors (T3SEs) are bacterial proteins synthesized by Gram-negative pathogens and delivered into host cells via the Type III secretion system (T3SS). These effectors usually play a pivotal role in the interactions between bacteria and hosts. Hence, the precise identification of T3SEs aids researchers in exploring the pathogenic mechanisms of bacterial infections. Since the diversity and complexity of T3SE sequences often make traditional experimental methods time-consuming, it is imperative to explore more efficient and convenient computational approaches for T3SE prediction. Inspired by the promising potential exhibited by pre-trained language models in protein recognition tasks, we proposed a method called PLM-T3SE that utilizes protein language models (PLMs) for effective recognition of T3SEs. First, we utilized PLM embeddings and evolutionary features from the position-specific scoring matrix (PSSM) profiles to transform protein sequences into fixed-length vectors for model training. Second, we employed the extreme gradient boosting (XGBoost) algorithm to rank these features based on their importance. Finally, a MLP neural network model was used to predict T3SEs based on the selected optimal feature set. Experimental results from the cross-validation and independent test demonstrated that our model exhibited superior performance compared to the existing models. Specifically, our model achieved an accuracy of 98.1%, which is 1.8%–42.4% higher than the state-of-the-art predictors based on the same independent data set test. These findings highlight the superiority of the PLM-T3SE and the remarkable characterization ability of PLM embeddings for T3SE prediction.

III 型分泌效应物(T3SE)是革兰氏阴性病原体合成的细菌蛋白质,通过 III 型分泌系统(T3SS)输送到宿主细胞。这些效应物通常在细菌与宿主的相互作用中发挥关键作用。因此,精确鉴定 T3SE 有助于研究人员探索细菌感染的致病机制。由于 T3SE 序列的多样性和复杂性,传统的实验方法往往费时费力,因此探索更高效、更便捷的 T3SE 预测计算方法势在必行。受到预训练语言模型在蛋白质识别任务中展现出的巨大潜力的启发,我们提出了一种名为 PLM-T3SE 的方法,利用蛋白质语言模型(PLM)来有效识别 T3SE。首先,我们利用蛋白质语言模型嵌入和来自特定位置评分矩阵(PSSM)剖面的进化特征,将蛋白质序列转换成固定长度的向量,用于模型训练。其次,我们采用极端梯度提升(XGBoost)算法,根据这些特征的重要性对其进行排序。最后,我们使用 MLP 神经网络模型,根据选定的最优特征集预测 T3SE。交叉验证和独立测试的实验结果表明,与现有模型相比,我们的模型表现出更优越的性能。具体来说,基于相同的独立数据集测试,我们的模型达到了 98.1%的准确率,比最先进的预测器高出 1.8%-42.4%。这些发现凸显了 PLM-T3SE 的优越性,以及 PLM 嵌入对 T3SE 预测的显著表征能力。
{"title":"PLM-T3SE: Accurate Prediction of Type III Secretion Effectors Using Protein Language Model Embeddings","authors":"Mengru Gao,&nbsp;Chen Song,&nbsp;Taigang Liu","doi":"10.1002/jcb.30642","DOIUrl":"10.1002/jcb.30642","url":null,"abstract":"<div>\u0000 \u0000 <p>The Type III secretion effectors (T3SEs) are bacterial proteins synthesized by Gram-negative pathogens and delivered into host cells via the Type III secretion system (T3SS). These effectors usually play a pivotal role in the interactions between bacteria and hosts. Hence, the precise identification of T3SEs aids researchers in exploring the pathogenic mechanisms of bacterial infections. Since the diversity and complexity of T3SE sequences often make traditional experimental methods time-consuming, it is imperative to explore more efficient and convenient computational approaches for T3SE prediction. Inspired by the promising potential exhibited by pre-trained language models in protein recognition tasks, we proposed a method called PLM-T3SE that utilizes protein language models (PLMs) for effective recognition of T3SEs. First, we utilized PLM embeddings and evolutionary features from the position-specific scoring matrix (PSSM) profiles to transform protein sequences into fixed-length vectors for model training. Second, we employed the extreme gradient boosting (XGBoost) algorithm to rank these features based on their importance. Finally, a MLP neural network model was used to predict T3SEs based on the selected optimal feature set. Experimental results from the cross-validation and independent test demonstrated that our model exhibited superior performance compared to the existing models. Specifically, our model achieved an accuracy of 98.1%, which is 1.8%–42.4% higher than the state-of-the-art predictors based on the same independent data set test. These findings highlight the superiority of the PLM-T3SE and the remarkable characterization ability of PLM embeddings for T3SE prediction.</p>\u0000 </div>","PeriodicalId":15219,"journal":{"name":"Journal of cellular biochemistry","volume":"126 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dehydrocostus Lactone Ameliorates LPS-Induced Acute Lung Injury by Inhibiting PFKFB3-Mediated Glycolysis 脱氢木香烃内酯通过抑制 PFKFB3 介导的糖酵解改善 LPS 诱导的急性肺损伤
IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-15 DOI: 10.1002/jcb.30639
Yue Li, Xinrui Wang, Lirong Zhao, Boyu Pan, Xiao Xu, Dongrong Zhu

Acute lung injury (ALI) is a destructive respiratory disease characterized by alveolar structural destruction and excessive inflammation responses. Aerobic glycolysis of macrophages plays a crucial role in the pathophysiology of ALI. Previous studies have shown that the expression of the key rate-limiting enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in inflammatory cells is significantly increased, which promotes an increase in the rate of glycolysis in inflammatory cells. However, little is known about the biological functions of PFKFB3 in macrophage inflammation and ALI. In this study, we identified that PFKFB3 is markedly increased in lipopolysaccharide (LPS)-induced ALI mice and macrophages. Knockdown of pfkfb3 attenuated LPS-induced glycolytic flux, decreased the release of pro-inflammatory cytokines, and inactivated NF-κB signaling pathway in macrophages. Subsequently, we found that dehydrocostus lactone (DL), a natural sesquiterpene lactone, significantly decreased both the mRNA and protein levels of PFKFB3. Furthermore, it reduced the release of inflammatory cytokines and inactivated NF-κB pathways in vitro. Accordingly, DL alleviated LPS-induced pulmonary edema and reduced the infiltration of inflammatory cells in mouse lung tissue. In summary, our study reveals the vital role of PFKFB3 in LPS-induced inflammation and discovers a novel molecular mechanism underlying DL's protective effects on ALI.

急性肺损伤(ALI)是一种以肺泡结构破坏和过度炎症反应为特征的破坏性呼吸系统疾病。巨噬细胞的有氧糖酵解在 ALI 的病理生理学中起着至关重要的作用。以往的研究表明,炎症细胞中关键的限速酶 6-磷酸果糖-2-激酶/果糖-2,6-二磷酸酶 3(PFKFB3)的表达量显著增加,从而促进了炎症细胞中糖酵解速率的增加。然而,人们对 PFKFB3 在巨噬细胞炎症和 ALI 中的生物学功能知之甚少。在这项研究中,我们发现 PFKFB3 在脂多糖(LPS)诱导的 ALI 小鼠和巨噬细胞中明显增加。敲除 pfkfb3 可减轻 LPS 诱导的糖酵解通量,减少促炎细胞因子的释放,并使巨噬细胞中的 NF-κB 信号通路失活。随后,我们发现天然倍半萜内酯脱氢木内酯(DL)能显著降低 PFKFB3 的 mRNA 和蛋白水平。此外,它还减少了炎症细胞因子的释放,并使体外 NF-κB 通路失活。因此,DL 可减轻 LPS 诱导的肺水肿,并减少小鼠肺组织中炎性细胞的浸润。总之,我们的研究揭示了 PFKFB3 在 LPS 诱导的炎症中的重要作用,并发现了 DL 对 ALI 具有保护作用的新分子机制。
{"title":"Dehydrocostus Lactone Ameliorates LPS-Induced Acute Lung Injury by Inhibiting PFKFB3-Mediated Glycolysis","authors":"Yue Li,&nbsp;Xinrui Wang,&nbsp;Lirong Zhao,&nbsp;Boyu Pan,&nbsp;Xiao Xu,&nbsp;Dongrong Zhu","doi":"10.1002/jcb.30639","DOIUrl":"10.1002/jcb.30639","url":null,"abstract":"<div>\u0000 \u0000 <p>Acute lung injury (ALI) is a destructive respiratory disease characterized by alveolar structural destruction and excessive inflammation responses. Aerobic glycolysis of macrophages plays a crucial role in the pathophysiology of ALI. Previous studies have shown that the expression of the key rate-limiting enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in inflammatory cells is significantly increased, which promotes an increase in the rate of glycolysis in inflammatory cells. However, little is known about the biological functions of PFKFB3 in macrophage inflammation and ALI. In this study, we identified that PFKFB3 is markedly increased in lipopolysaccharide (LPS)-induced ALI mice and macrophages. Knockdown of <i>pfkfb3</i> attenuated LPS-induced glycolytic flux, decreased the release of pro-inflammatory cytokines, and inactivated NF-κB signaling pathway in macrophages. Subsequently, we found that dehydrocostus lactone (DL), a natural sesquiterpene lactone, significantly decreased both the mRNA and protein levels of PFKFB3. Furthermore, it reduced the release of inflammatory cytokines and inactivated NF-κB pathways in vitro. Accordingly, DL alleviated LPS-induced pulmonary edema and reduced the infiltration of inflammatory cells in mouse lung tissue. In summary, our study reveals the vital role of PFKFB3 in LPS-induced inflammation and discovers a novel molecular mechanism underlying DL's protective effects on ALI.</p>\u0000 </div>","PeriodicalId":15219,"journal":{"name":"Journal of cellular biochemistry","volume":"125 10","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuregulin 4 Attenuates Podocyte Injury and Proteinuria in Part by Activating AMPK/mTOR-Mediated Autophagy in Mice Neuregulin 4 在一定程度上通过激活 AMPK/mTOR 介导的小鼠自噬来减轻荚膜细胞损伤和蛋白尿。
IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-02 DOI: 10.1002/jcb.30634
Juntian Deng, Qiansheng Yang, Wanyu Zhu, Yanhua Zhang, Meng Lin, Juyan She, Jing Li, Yuxin Xiao, Jun Xiao, Xinyue Xu, Hebei He, Biao Zhu, Yan Ding

In this study, we investigate the effect of neuregulin 4 (NRG4) on podocyte damage in a mouse model of diabetic nephropathy (DN) and we elucidate the underlying molecular mechanisms. In vivo experiments were conducted using a C57BL/6 mouse model of DN to determine the effect of NRG4 on proteinuria and podocyte injury, and in vitro experiments were performed with conditionally immortalized mouse podocytes treated with high glucose and NRG4 to assess the protective effects of NRG4 on podocyte injury. Autophagy-related protein levels and related signaling pathways were evaluated both in vivo and in vitro. The involvement of the adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway was detected using chloroquine or AMPK inhibitors. The results showed that the AMPK/mTOR pathway was involved in the protective roles of NRG4 against high glucose-mediated podocyte injury. Also, NRG4 significantly decreased albuminuria in DN mice. PAS staining indicated that NRG4 mitigated glomerular volume and mesangium expansion in DN mice. Consistently, western blot and RT-PCR analyses confirmed that NRG4 decreased the expression of pro-fibrotic molecules in the glomeruli of DN mice. The immunofluorescence results showed that NRG4 retained expression of podocin and nephrin, whereas transmission electron microscopy revealed that NRG4 alleviated podocyte injury. In DN mice, NRG4 decreased podocyte apoptosis and increased expression of nephrin and podocin, while decreasing the expression of desmin and HIF1α. Overall, NRG4 improved albuminuria, glomerulosclerosis, glomerulomegaly, and hypoxia in DN mice. The in vitro experiments showed that NRG4 inhibited HG-induced podocyte injury and apoptosis. Furthermore, autophagy of the glomeruli decreased in DN mice, but reactivated following NRG4 intervention. NRG4 intervention was found to partially activate autophagy via the AMPK/mTOR signaling pathway. Consequently, when the AMPK/mTOR pathway was suppressed or autophagy was inhibited, the beneficial effects of NRG4 intervention on podocyte injury were diminished. These results indicate that NRG4 intervention attenuates podocyte injury and apoptosis by promoting autophagy in the kidneys of DN mice, in part, by activating the AMPK/mTOR signaling pathway.

在这项研究中,我们研究了神经胶质蛋白 4(NRG4)对糖尿病肾病(DN)小鼠模型中荚膜细胞损伤的影响,并阐明了其潜在的分子机制。我们使用 C57BL/6 DN 小鼠模型进行了体内实验,以确定 NRG4 对蛋白尿和荚膜细胞损伤的影响,并使用经高糖和 NRG4 处理的条件永生化小鼠荚膜细胞进行了体外实验,以评估 NRG4 对荚膜细胞损伤的保护作用。对体内和体外自噬相关蛋白水平和相关信号通路进行了评估。使用氯喹或 AMPK 抑制剂检测了单磷酸腺苷激活的蛋白激酶(AMPK)/哺乳动物雷帕霉素靶蛋白激酶(mTOR)通路的参与情况。结果表明,AMPK/mTOR通路参与了NRG4对高糖介导的荚膜细胞损伤的保护作用。此外,NRG4 还能明显降低 DN 小鼠的白蛋白尿。PAS 染色表明,NRG4 可减轻 DN 小鼠的肾小球体积和系膜扩张。同样,Western 印迹和 RT-PCR 分析证实,NRG4 可减少 DN 小鼠肾小球中促纤维化分子的表达。免疫荧光结果显示,NRG4保留了荚膜蛋白和肾素的表达,而透射电子显微镜则显示,NRG4减轻了荚膜细胞的损伤。在 DN 小鼠中,NRG4 可减少荚膜细胞凋亡,增加肾素和荚膜蛋白的表达,同时降低 desmin 和 HIF1α 的表达。总体而言,NRG4 可改善 DN 小鼠的白蛋白尿、肾小球硬化、肾小球肿大和缺氧状况。体外实验表明,NRG4 可抑制 HG 诱导的荚膜细胞损伤和凋亡。此外,DN小鼠肾小球的自噬功能下降,但在NRG4干预后又重新激活。研究发现,NRG4 可通过 AMPK/mTOR 信号通路部分激活自噬。因此,当 AMPK/mTOR 通路被抑制或自噬被抑制时,NRG4 干预对荚膜细胞损伤的有益作用就会减弱。这些结果表明,NRG4 通过促进 DN 小鼠肾脏中的自噬,部分地通过激活 AMPK/mTOR 信号通路来减轻荚膜损伤和凋亡。
{"title":"Neuregulin 4 Attenuates Podocyte Injury and Proteinuria in Part by Activating AMPK/mTOR-Mediated Autophagy in Mice","authors":"Juntian Deng,&nbsp;Qiansheng Yang,&nbsp;Wanyu Zhu,&nbsp;Yanhua Zhang,&nbsp;Meng Lin,&nbsp;Juyan She,&nbsp;Jing Li,&nbsp;Yuxin Xiao,&nbsp;Jun Xiao,&nbsp;Xinyue Xu,&nbsp;Hebei He,&nbsp;Biao Zhu,&nbsp;Yan Ding","doi":"10.1002/jcb.30634","DOIUrl":"10.1002/jcb.30634","url":null,"abstract":"<div>\u0000 \u0000 <p>In this study, we investigate the effect of neuregulin 4 (NRG4) on podocyte damage in a mouse model of diabetic nephropathy (DN) and we elucidate the underlying molecular mechanisms. In vivo experiments were conducted using a C57BL/6 mouse model of DN to determine the effect of NRG4 on proteinuria and podocyte injury, and in vitro experiments were performed with conditionally immortalized mouse podocytes treated with high glucose and NRG4 to assess the protective effects of NRG4 on podocyte injury. Autophagy-related protein levels and related signaling pathways were evaluated both in vivo and in vitro. The involvement of the adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway was detected using chloroquine or AMPK inhibitors. The results showed that the AMPK/mTOR pathway was involved in the protective roles of NRG4 against high glucose-mediated podocyte injury. Also, NRG4 significantly decreased albuminuria in DN mice. PAS staining indicated that NRG4 mitigated glomerular volume and mesangium expansion in DN mice. Consistently, western blot and RT-PCR analyses confirmed that NRG4 decreased the expression of pro-fibrotic molecules in the glomeruli of DN mice. The immunofluorescence results showed that NRG4 retained expression of podocin and nephrin, whereas transmission electron microscopy revealed that NRG4 alleviated podocyte injury. In DN mice, NRG4 decreased podocyte apoptosis and increased expression of nephrin and podocin, while decreasing the expression of desmin and HIF1α. Overall, NRG4 improved albuminuria, glomerulosclerosis, glomerulomegaly, and hypoxia in DN mice. The in vitro experiments showed that NRG4 inhibited HG-induced podocyte injury and apoptosis. Furthermore, autophagy of the glomeruli decreased in DN mice, but reactivated following NRG4 intervention. NRG4 intervention was found to partially activate autophagy via the AMPK/mTOR signaling pathway. Consequently, when the AMPK/mTOR pathway was suppressed or autophagy was inhibited, the beneficial effects of NRG4 intervention on podocyte injury were diminished. These results indicate that NRG4 intervention attenuates podocyte injury and apoptosis by promoting autophagy in the kidneys of DN mice, in part, by activating the AMPK/mTOR signaling pathway.</p></div>","PeriodicalId":15219,"journal":{"name":"Journal of cellular biochemistry","volume":"125 10","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RETRACTION: Downregulation of microRNA-23b Protects Against Ischemia-Reperfusion Injury via p53 Signaling Pathway by Upregulating MDM4 in Rats 回归:通过上调 MDM4,下调 microRNA-23b 可通过 p53 信号通路保护大鼠免受缺血再灌注损伤。
IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-17 DOI: 10.1002/jcb.30622

RETRACTION: Z. Zhao, J.-Z. Guan, M. Wu, G.-H. Lai, and Z.-L. Zhu. Downregulation of microRNA-23b Protects Against Ischemia-Reperfusion Injury via p53 Signaling Pathway by Upregulating MDM4 in Rats. Journal of Cellular Biochemistry 120, no. 3 (2019): 4599-4612, https://doi.org/10.1002/jcb.27748.

The above article, published online on 9 December 2018 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the authors; the journal Editor-in-Chief, Christian Behl; and Wiley Periodicals LLC. The retraction has been agreed due to concerns raised by third parties on the data presented in the article. Several flaws and inconsistencies between results presented and experimental methods described were found. Furthermore, the same sample used to depict the immunofluorescence staining in Figure 5B was found to have been used in a different scientific context in a previous publication from a different author group. Thus, the editors consider the conclusions of this article to be invalid.

撤回:Z. Zhao, J.-Z. Guan, M. Wu, G.-H.Guan, M. Wu, G.-H. Lai, and Z.-L.Lai, and Z.-L. Zhu.通过上调MDM4,下调microRNA-23b通过p53信号通路保护大鼠免受缺血再灌注损伤。Journal of Cellular Biochemistry 120, no.3 (2019):4599-4612, https://doi.org/10.1002/jcb.27748.上述文章于2018年12月9日在线发表于Wiley Online Library (wileyonlinelibrary.com),经作者、期刊主编Christian Behl和Wiley Periodicals LLC三方协商,已被撤回。之所以同意撤稿,是因为第三方对文章中的数据提出了质疑。我们发现,文章中介绍的结果与实验方法之间存在若干缺陷和不一致之处。此外,图 5B 中用于描绘免疫荧光染色的同一样本被发现在不同作者组之前发表的一篇文章中被用于不同的科学背景。因此,编者认为这篇文章的结论无效。
{"title":"RETRACTION: Downregulation of microRNA-23b Protects Against Ischemia-Reperfusion Injury via p53 Signaling Pathway by Upregulating MDM4 in Rats","authors":"","doi":"10.1002/jcb.30622","DOIUrl":"10.1002/jcb.30622","url":null,"abstract":"<p><b>RETRACTION:</b> Z. Zhao, J.-Z. Guan, M. Wu, G.-H. Lai, and Z.-L. Zhu. Downregulation of microRNA-23b Protects Against Ischemia-Reperfusion Injury via p53 Signaling Pathway by Upregulating MDM4 in Rats. <i>Journal of Cellular Biochemistry</i> 120, no. 3 (2019): 4599-4612, https://doi.org/10.1002/jcb.27748.</p><p>The above article, published online on 9 December 2018 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the authors; the journal Editor-in-Chief, Christian Behl; and Wiley Periodicals LLC. The retraction has been agreed due to concerns raised by third parties on the data presented in the article. Several flaws and inconsistencies between results presented and experimental methods described were found. Furthermore, the same sample used to depict the immunofluorescence staining in Figure 5B was found to have been used in a different scientific context in a previous publication from a different author group. Thus, the editors consider the conclusions of this article to be invalid.</p>","PeriodicalId":15219,"journal":{"name":"Journal of cellular biochemistry","volume":"125 10","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcb.30622","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141626837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RETRACTION: Methyl Helicterate Inhibits Hepatic Stellate Cell Activation through Downregulating the ERK1/2 Signaling Pathway 回放:氯杂环丁酸甲酯通过下调 ERK1/2 信号通路抑制肝星状细胞活化
IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-17 DOI: 10.1002/jcb.30623

RETRACTION: Y. Wei, X. Zhang, S. Wen, S. Huang, Q. Huang, S. Lu, F. Bai, J. Nie, J. Wei, Z. Lu, and X. Lin. Methyl Helicterate Inhibits Hepatic Stellate Cell Activation Through Downregulating the ERK1/2 Signaling Pathway. Journal of Cellular Biochemistry 120, no. 9 (2019): 14936-14945, https://doi.org/10.1002/jcb.28756.

The above article, published online on 22 April 2019 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the authors; the journal Editor-in-Chief, Christian Behl; and Wiley Periodicals LLC. The retraction has been agreed due to concerns raised by third parties on the data presented in the article. Multiple image elements in Figures 2A, 3B, and 4 were found to have been previously published by the same author group in a different scientific context. Furthermore, splicing affecting Figures 5B and 5C has been detected. The authors state that, due to inadequate data management, they were unable to verify whether Figures 2A, 3B, and 4 pertain to this study or to other works, and that Figure 5B and 5C were inappropriately employed. The article is retracted as the editors have lost confidence in the accuracy of the data presented and consider the conclusions of the article to be invalid. The authors agree with the decision to retract the article and would like to extend their sincere apologies for any inconvenience caused.

撤回:Y. Wei, X. Zhang, S. Wen, S. Huang, Q. Huang, S. Lu, F. Bai, J. Nie, J. Wei, Z. Lu, and X. Lin.通过下调 ERK1/2 信号通路抑制肝星状细胞活化。细胞生物化学杂志》120期,第9号(2019年):14936-14945, https://doi.org/10.1002/jcb.28756.上述文章于 2019 年 4 月 22 日在线发表于 Wiley Online Library (wileyonlinelibrary.com),经作者、期刊主编 Christian Behl 和 Wiley Periodicals LLC 协议撤回。之所以同意撤稿,是因为第三方对文章中的数据提出了质疑。图 2A、图 3B 和图 4 中的多个图像元素被发现曾由同一作者小组在不同的科学背景下发表过。此外,还发现了影响图 5B 和 5C 的拼接。作者表示,由于数据管理不完善,他们无法核实图 2A、3B 和 4 是否与本研究或其他作品有关,而且图 5B 和 5C 被不恰当地使用。由于编辑对文中数据的准确性失去信心,并认为文章的结论无效,因此撤稿。作者同意撤稿的决定,并对由此造成的不便表示诚挚的歉意。
{"title":"RETRACTION: Methyl Helicterate Inhibits Hepatic Stellate Cell Activation through Downregulating the ERK1/2 Signaling Pathway","authors":"","doi":"10.1002/jcb.30623","DOIUrl":"10.1002/jcb.30623","url":null,"abstract":"<p><b>RETRACTION:</b> Y. Wei, X. Zhang, S. Wen, S. Huang, Q. Huang, S. Lu, F. Bai, J. Nie, J. Wei, Z. Lu, and X. Lin. Methyl Helicterate Inhibits Hepatic Stellate Cell Activation Through Downregulating the ERK1/2 Signaling Pathway. <i>Journal of Cellular Biochemistry</i> 120, no. 9 (2019): 14936-14945, https://doi.org/10.1002/jcb.28756.</p><p>The above article, published online on 22 April 2019 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the authors; the journal Editor-in-Chief, Christian Behl; and Wiley Periodicals LLC. The retraction has been agreed due to concerns raised by third parties on the data presented in the article. Multiple image elements in Figures 2A, 3B, and 4 were found to have been previously published by the same author group in a different scientific context. Furthermore, splicing affecting Figures 5B and 5C has been detected. The authors state that, due to inadequate data management, they were unable to verify whether Figures 2A, 3B, and 4 pertain to this study or to other works, and that Figure 5B and 5C were inappropriately employed. The article is retracted as the editors have lost confidence in the accuracy of the data presented and consider the conclusions of the article to be invalid. The authors agree with the decision to retract the article and would like to extend their sincere apologies for any inconvenience caused.</p>","PeriodicalId":15219,"journal":{"name":"Journal of cellular biochemistry","volume":"125 10","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcb.30623","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141626838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activation of α7 Nicotinic Acetylcholine Receptor Improves Muscle Endurance by Upregulating Orosomucoid Expression and Glycogen Content in Mice 激活α7烟碱乙酰胆碱受体可通过上调小鼠的Orosomucoid表达和糖原含量提高肌肉耐力
IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-16 DOI: 10.1002/jcb.30630
Fei Chen, Zhen Zhang, Huimin Zhang, Pengyue Guo, Jiayi Feng, Hui Shen, Xia Liu

There are presently no acknowledged therapeutic targets or official drugs for the treatment of muscle fatigue. The alpha7 nicotinic acetylcholine receptor (α7nAChR) is expressed in skeletal muscle, with an unknown role in muscle endurance. Here, we try to explore whether α7nAChR could act as a potential therapeutic target for the treatment of muscle fatigue. Results showed that nicotine and PNU-282987 (PNU), as nonspecific and specific agonists of α7nAChR, respectively, could both significantly increase C57BL6/J mice treadmill-running time in a time- and dose-dependent manner. The improvement effect of PNU on running time and ex vivo muscle fatigue index disappeared when α7nAChR deletion. RNA sequencing revealed that the differential mRNAs affected by PNU were enriched in glycolysis/gluconeogenesis signaling pathways. Further studies found that PNU treatment significantly elevates glycogen content and ATP level in the muscle tissues of α7nAChR+/+ mice but not α7nAChR-/- mice. α7nAChR activation specifically increased endogenous glycogen-targeting protein orosomucoid (ORM) expression both in vivo skeletal muscle tissues and in vitro C2C12 skeletal muscle cells. In ORM1 deficient mice, the positive effects of PNU on running time, glycogen and ATP content, as well as muscle fatigue index, were abolished. Therefore, the activation of α7nAChR could enhance muscle endurance via elevating endogenous anti-fatigue protein ORM and might act as a promising therapeutic strategy for the treatment of muscle fatigue.

目前还没有公认的治疗目标或治疗肌肉疲劳的正式药物。α7烟碱乙酰胆碱受体(α7nAChR)在骨骼肌中表达,在肌肉耐力中的作用尚不清楚。在此,我们试图探讨α7nAChR是否可以作为治疗肌肉疲劳的潜在治疗靶点。结果表明,尼古丁和PNU-282987(PNU)分别作为α7nAChR的非特异性和特异性激动剂,均能以时间和剂量依赖的方式显著增加C57BL6/J小鼠的跑步机跑步时间。当α7nAChR缺失时,PNU对跑步时间和体外肌肉疲劳指数的改善作用消失。RNA测序显示,受PNU影响的不同mRNA富集于糖酵解/糖元生成信号通路。进一步的研究发现,PNU能显著提高α7nAChR+/+小鼠肌肉组织中的糖原含量和ATP水平,但不能提高α7nAChR-/-小鼠的糖原含量和ATP水平。在 ORM1 缺乏的小鼠中,PNU 对跑步时间、糖原和 ATP 含量以及肌肉疲劳指数的积极影响被取消。因此,激活α7nAChR可通过提高内源性抗疲劳蛋白ORM来增强肌肉耐力,并可能成为治疗肌肉疲劳的一种有前景的治疗策略。
{"title":"Activation of α7 Nicotinic Acetylcholine Receptor Improves Muscle Endurance by Upregulating Orosomucoid Expression and Glycogen Content in Mice","authors":"Fei Chen,&nbsp;Zhen Zhang,&nbsp;Huimin Zhang,&nbsp;Pengyue Guo,&nbsp;Jiayi Feng,&nbsp;Hui Shen,&nbsp;Xia Liu","doi":"10.1002/jcb.30630","DOIUrl":"10.1002/jcb.30630","url":null,"abstract":"<div>\u0000 \u0000 <p>There are presently no acknowledged therapeutic targets or official drugs for the treatment of muscle fatigue. The alpha7 nicotinic acetylcholine receptor (α7nAChR) is expressed in skeletal muscle, with an unknown role in muscle endurance. Here, we try to explore whether α7nAChR could act as a potential therapeutic target for the treatment of muscle fatigue. Results showed that nicotine and PNU-282987 (PNU), as nonspecific and specific agonists of α7nAChR, respectively, could both significantly increase C57BL6/J mice treadmill-running time in a time- and dose-dependent manner. The improvement effect of PNU on running time and ex vivo muscle fatigue index disappeared when α7nAChR deletion. RNA sequencing revealed that the differential mRNAs affected by PNU were enriched in glycolysis/gluconeogenesis signaling pathways. Further studies found that PNU treatment significantly elevates glycogen content and ATP level in the muscle tissues of α7nAChR<sup>+/+</sup> mice but not α7nAChR<sup>-/-</sup> mice. α7nAChR activation specifically increased endogenous glycogen-targeting protein orosomucoid (ORM) expression both in vivo skeletal muscle tissues and in vitro C2C12 skeletal muscle cells. In ORM1 deficient mice, the positive effects of PNU on running time, glycogen and ATP content, as well as muscle fatigue index, were abolished. Therefore, the activation of α7nAChR could enhance muscle endurance via elevating endogenous anti-fatigue protein ORM and might act as a promising therapeutic strategy for the treatment of muscle fatigue.</p></div>","PeriodicalId":15219,"journal":{"name":"Journal of cellular biochemistry","volume":"125 9","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141626835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Oridonin on Experimental Animal Model of Bronchopulmonary Dysplasia 奥利多宁对支气管肺发育不良实验动物模型的影响
IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-16 DOI: 10.1002/jcb.30632
Shanshan Zhang, Junfu Wang, Zhihong Xin, Chao Sun, Zhiye Ju, Xia Xue, Wen Jiang, Qian Xin, Jue Wang, Zhaohua Zhang, Yun Luan

Bronchopulmonary dysplasia (BPD) is a serious disease that occurs in premature and low-birth-weight infants. In recent years, the incidence of BPD has not decreased, and there is no effective treatment for it. Oridonin (Ori) is a traditional Chinese medicine with a wide range of biological activities, especially pharmacological and anti-inflammatory. It is well known that inflammation plays a key role in BPD. However, the therapeutic effect of Ori on BPD has not been studied. Therefore, in the present study, we will observe the anti-inflammatory activity of Ori in an experimental animal model of BPD. Here, we showed that Ori could significantly decrease hyperoxia-induced alveolar injury, inhibit neutrophil recruitment, myeloperoxidase concentrations, and release inflammatory factors in BPD neonatal rats. Taken together, the experimental results suggested that Ori can significantly improve BPD in neonatal rats by inhibiting inflammatory response.

支气管肺发育不良(BPD)是早产儿和低体重儿的一种严重疾病。近年来,支气管肺发育不良的发病率并未降低,且没有有效的治疗方法。奥利多宁(Ori)是一种传统中药,具有广泛的生物活性,尤其是药理作用和抗炎作用。众所周知,炎症在 BPD 中起着关键作用。然而,豨莶草对 BPD 的治疗效果尚未得到研究。因此,在本研究中,我们将观察 Ori 在 BPD 实验动物模型中的抗炎活性。实验结果表明,Ori 能显著降低高氧诱导的肺泡损伤,抑制中性粒细胞的招募、髓过氧化物酶的浓度以及 BPD 新生儿大鼠炎症因子的释放。综上所述,实验结果表明,Ori 可通过抑制炎症反应显著改善新生大鼠的 BPD。
{"title":"Effect of Oridonin on Experimental Animal Model of Bronchopulmonary Dysplasia","authors":"Shanshan Zhang,&nbsp;Junfu Wang,&nbsp;Zhihong Xin,&nbsp;Chao Sun,&nbsp;Zhiye Ju,&nbsp;Xia Xue,&nbsp;Wen Jiang,&nbsp;Qian Xin,&nbsp;Jue Wang,&nbsp;Zhaohua Zhang,&nbsp;Yun Luan","doi":"10.1002/jcb.30632","DOIUrl":"10.1002/jcb.30632","url":null,"abstract":"<div>\u0000 \u0000 <p>Bronchopulmonary dysplasia (BPD) is a serious disease that occurs in premature and low-birth-weight infants. In recent years, the incidence of BPD has not decreased, and there is no effective treatment for it. Oridonin (Ori) is a traditional Chinese medicine with a wide range of biological activities, especially pharmacological and anti-inflammatory. It is well known that inflammation plays a key role in BPD. However, the therapeutic effect of Ori on BPD has not been studied. Therefore, in the present study, we will observe the anti-inflammatory activity of Ori in an experimental animal model of BPD. Here, we showed that Ori could significantly decrease hyperoxia-induced alveolar injury, inhibit neutrophil recruitment, myeloperoxidase concentrations, and release inflammatory factors in BPD neonatal rats. Taken together, the experimental results suggested that Ori can significantly improve BPD in neonatal rats by inhibiting inflammatory response.</p></div>","PeriodicalId":15219,"journal":{"name":"Journal of cellular biochemistry","volume":"125 9","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141626836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of cellular biochemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1