Pub Date : 2010-01-18DOI: 10.1109/ASPDAC.2010.5419846
Janine Chen, Jing Zeng, Li-C. Wang, Michael Mateja
System test has been the standard measurement to evaluate performance variability of high-performance microprocessors. The question of whether or not many of the lower-cost alternative tests can be used to reduce system test has been studied for many years. This paper utilizes a data-learning approach for correlating three test datasets, structural test, ring oscillator test, and scan flush test, with system test. With the data-learning approach, higher correlation can be found without altering test measurements or test conditions. Rather, the approach utilizes new optimization algorithms to extract more useful information in the three test datasets, with particular success using the structural test data. To further minimize test cost, process monitoring measurements (ring oscillator and scan flush tests) are used to reduce the need for high-frequency structural test. We demonstrate our methodology on a recent high-performance microprocessor design.
{"title":"Correlating system test fmax with structural test fmax and process monitoring measurements","authors":"Janine Chen, Jing Zeng, Li-C. Wang, Michael Mateja","doi":"10.1109/ASPDAC.2010.5419846","DOIUrl":"https://doi.org/10.1109/ASPDAC.2010.5419846","url":null,"abstract":"System test has been the standard measurement to evaluate performance variability of high-performance microprocessors. The question of whether or not many of the lower-cost alternative tests can be used to reduce system test has been studied for many years. This paper utilizes a data-learning approach for correlating three test datasets, structural test, ring oscillator test, and scan flush test, with system test. With the data-learning approach, higher correlation can be found without altering test measurements or test conditions. Rather, the approach utilizes new optimization algorithms to extract more useful information in the three test datasets, with particular success using the structural test data. To further minimize test cost, process monitoring measurements (ring oscillator and scan flush tests) are used to reduce the need for high-frequency structural test. We demonstrate our methodology on a recent high-performance microprocessor design.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121379297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper focuses on generalized threshold gates (GTGs) that implement boolean logic functions using elements with negative differential resistance (NDR). GTGs are capable of implementing boolean functions, however, no effective synthesis algorithms have been proposed so far. We present that GTGs can be effectively implemented using unate functions. Our synthesis algorithm ensures that the circuit implementing n variable boolean function consists of at most n+2 NDR elements and can be further optimized by reducing the number of switching elements.
{"title":"Generalised threshold gate synthesis based on AND/OR/NOT representation of boolean function","authors":"Marek A. Bawiec, Maciej Nikodem","doi":"10.5555/1899721.1899918","DOIUrl":"https://doi.org/10.5555/1899721.1899918","url":null,"abstract":"This paper focuses on generalized threshold gates (GTGs) that implement boolean logic functions using elements with negative differential resistance (NDR). GTGs are capable of implementing boolean functions, however, no effective synthesis algorithms have been proposed so far. We present that GTGs can be effectively implemented using unate functions. Our synthesis algorithm ensures that the circuit implementing n variable boolean function consists of at most n+2 NDR elements and can be further optimized by reducing the number of switching elements.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128560688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-01-18DOI: 10.1109/ASPDAC.2010.5419920
P. Maidee, K. Bazargan
Circuit rewiring can be used to explore a larger solution space by modifying circuit structure to suit a given optimization problem. Among several rewiring techniques that have been proposed, SPFD-based rewiring has been shown to be more effective in terms of solution space coverage. However, its adoption in practice has been limited due to its long runtime. We propose a novel SAT-based algorithm that is much faster than the traditional BDD-based methods. Unlike BDD-based methods that completely specify all pairs of SPFD using BDDs, our algorithm uses a few SAT instances to perform rewiring for a given wire without explicitly enumerating all SPFDs. Experimental results show that our algorithm's runtime is only 13% of that of a conventional one when each wire has at most 25 candidate wires and the runtime scales well with the number of candidate wires considered. Our approach evaluates each rewiring instance independently in the order of milliseconds, rendering deployment of an SPFD-based rewiring inside the optimization loop of synthesis tools a possibility.
{"title":"A fast SPFD-based rewiring technique","authors":"P. Maidee, K. Bazargan","doi":"10.1109/ASPDAC.2010.5419920","DOIUrl":"https://doi.org/10.1109/ASPDAC.2010.5419920","url":null,"abstract":"Circuit rewiring can be used to explore a larger solution space by modifying circuit structure to suit a given optimization problem. Among several rewiring techniques that have been proposed, SPFD-based rewiring has been shown to be more effective in terms of solution space coverage. However, its adoption in practice has been limited due to its long runtime. We propose a novel SAT-based algorithm that is much faster than the traditional BDD-based methods. Unlike BDD-based methods that completely specify all pairs of SPFD using BDDs, our algorithm uses a few SAT instances to perform rewiring for a given wire without explicitly enumerating all SPFDs. Experimental results show that our algorithm's runtime is only 13% of that of a conventional one when each wire has at most 25 candidate wires and the runtime scales well with the number of candidate wires considered. Our approach evaluates each rewiring instance independently in the order of milliseconds, rendering deployment of an SPFD-based rewiring inside the optimization loop of synthesis tools a possibility.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"25 9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115997754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-01-18DOI: 10.1109/ASPDAC.2010.5419686
Hongbo Zhang, Martin D. F. Wong, Kai-Yuan Chao
When VLSI technology scales down to sub-40nm process node, systematic variation introduced by the lithography is a persistent challenge to the manufacturability. The limitation of the resolution enhancement technologies (RETs) forces people to adopt a regular cell design methodology. In this paper, targeted on 1-D cell design, we use simulation data to analyze the relationship between the line-end gap distribution and printability. Based on the gap distribution preferences, an optimal algorithm is provided to efficiently extend the line ends and insert dummies, which will significantly improve the gap distribution and help printability. Experimental results on 45nm and 32nm processes show that significant improvement can be obtained on edge placement error (EPE).
{"title":"On process-aware 1-D standard cell design","authors":"Hongbo Zhang, Martin D. F. Wong, Kai-Yuan Chao","doi":"10.1109/ASPDAC.2010.5419686","DOIUrl":"https://doi.org/10.1109/ASPDAC.2010.5419686","url":null,"abstract":"When VLSI technology scales down to sub-40nm process node, systematic variation introduced by the lithography is a persistent challenge to the manufacturability. The limitation of the resolution enhancement technologies (RETs) forces people to adopt a regular cell design methodology. In this paper, targeted on 1-D cell design, we use simulation data to analyze the relationship between the line-end gap distribution and printability. Based on the gap distribution preferences, an optimal algorithm is provided to efficiently extend the line ends and insert dummies, which will significantly improve the gap distribution and help printability. Experimental results on 45nm and 32nm processes show that significant improvement can be obtained on edge placement error (EPE).","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117038518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-01-18DOI: 10.1109/ASPDAC.2010.5419877
Rui He, Lihong Zhang
This paper presents a solution to handling complex multi-group symmetry constraints in the placement design using transitive closure graph (TCG) representation for analog layouts. We propose a set of symmetric-feasible conditions, which can automatically satisfy symmetry requirements. We also develop a new contour-based packing scheme with time complexity of O(g·n·lgn), where g is the number of symmetry groups and n is the number of the placed cells. Furthermore, we devise a set of perturbation operations with time complexity of O(n). Our experimental results show the effectiveness and superiority of this proposed scheme compared to the other state-of-the-art placement algorithms for analog layout design.
{"title":"Symmetry-aware TCG-based placement design under complex multi-group constraints for analog circuit layouts","authors":"Rui He, Lihong Zhang","doi":"10.1109/ASPDAC.2010.5419877","DOIUrl":"https://doi.org/10.1109/ASPDAC.2010.5419877","url":null,"abstract":"This paper presents a solution to handling complex multi-group symmetry constraints in the placement design using transitive closure graph (TCG) representation for analog layouts. We propose a set of symmetric-feasible conditions, which can automatically satisfy symmetry requirements. We also develop a new contour-based packing scheme with time complexity of O(g·n·lgn), where g is the number of symmetry groups and n is the number of the placed cells. Furthermore, we devise a set of perturbation operations with time complexity of O(n). Our experimental results show the effectiveness and superiority of this proposed scheme compared to the other state-of-the-art placement algorithms for analog layout design.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126620777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-01-18DOI: 10.1109/ASPDAC.2010.5419804
Jing-Jia Nian, Shihgeng Tsai, Chung-Yang Huang
In this paper, we proposed a unified multi-corner multi-mode (MCMM) static timing analysis (STA) engine that can efficiently compute the worst-case delay of the process corners in various very large scaled circuits. Our key contributions include: (1) a seamless integration of the path-and parameter-based branch-and-bound algorithms so that the engine is very robust for different kinds of circuits, (2) an improved search space pruning technique, (3) a simple yet efficient critical path delay bound for the initial search space pruning. Our experimental results show that our engine can significantly outperform the prior MCMM STA approaches in various benchmark circuits with different number of process parameters.
{"title":"A unified Multi-Corner Multi-Mode static timing analysis engine","authors":"Jing-Jia Nian, Shihgeng Tsai, Chung-Yang Huang","doi":"10.1109/ASPDAC.2010.5419804","DOIUrl":"https://doi.org/10.1109/ASPDAC.2010.5419804","url":null,"abstract":"In this paper, we proposed a unified multi-corner multi-mode (MCMM) static timing analysis (STA) engine that can efficiently compute the worst-case delay of the process corners in various very large scaled circuits. Our key contributions include: (1) a seamless integration of the path-and parameter-based branch-and-bound algorithms so that the engine is very robust for different kinds of circuits, (2) an improved search space pruning technique, (3) a simple yet efficient critical path delay bound for the initial search space pruning. Our experimental results show that our engine can significantly outperform the prior MCMM STA approaches in various benchmark circuits with different number of process parameters.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126823006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-01-18DOI: 10.1109/ASPDAC.2010.5419823
Kyu-Myung Choi
3D IC integration is very important to overcome the technology scaling barriers and to satisfy mobile devices' demand. In this paper, we describe the challenges we are facing in developing 3D IC design methodology, especially in the case of TSV-SiP (Logic-Memory die stacking). Also, appropriate development approaches are proposed. The EDA tools for TSV-SiP, which are initially provided by extending current conventional tools, will be gradually enhanced to better support 3D IC designs.
{"title":"An industrial perspective of 3D IC integration technology from the viewpoint of design technology","authors":"Kyu-Myung Choi","doi":"10.1109/ASPDAC.2010.5419823","DOIUrl":"https://doi.org/10.1109/ASPDAC.2010.5419823","url":null,"abstract":"3D IC integration is very important to overcome the technology scaling barriers and to satisfy mobile devices' demand. In this paper, we describe the challenges we are facing in developing 3D IC design methodology, especially in the case of TSV-SiP (Logic-Memory die stacking). Also, appropriate development approaches are proposed. The EDA tools for TSV-SiP, which are initially provided by extending current conventional tools, will be gradually enhanced to better support 3D IC designs.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126349225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents an embedded debugging/ performance monitoring engine (EDPME), which is capable of collect run time characteristics, detect AHB on-chip bus protocol error/inefficiency, and capture on-chip AHB bus traces at various abstraction levels with compression ratio up to 98% for a low cost tile-based 3D graphics SoC development.
{"title":"An embedded debugging/performance monitoring engine for a tile-based 3D graphics SoC development","authors":"Liang-Bi Chen, Tsung-Yu Ho, Jiun-Cheng Ju, Cheng-Lung Chiang, Chung-Nan Lee, Ing-Jer Huang","doi":"10.1109/ASPDAC.2010.5419865","DOIUrl":"https://doi.org/10.1109/ASPDAC.2010.5419865","url":null,"abstract":"This paper presents an embedded debugging/ performance monitoring engine (EDPME), which is capable of collect run time characteristics, detect AHB on-chip bus protocol error/inefficiency, and capture on-chip AHB bus traces at various abstraction levels with compression ratio up to 98% for a low cost tile-based 3D graphics SoC development.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124155127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An at-speed BIST delay testing technique is proposed. It differs from traditional circuit speed testing techniques by changing the system clock rate. This method supplies test pattern to the circuit using lower-speed clock frequency, then applies internal BIST circuit to adjust clock edge for circuit at-speed delay testing and speed binning. The self wide-range (26%∼76%), fine-scale (34ps) duty cycle adjustment technique with high-precision (28ps) calibration circuit is proposed for at-speed delay test and performance binning. The contribution of this work is the proposal of a feasible self at-speed delay testing technique. Test chip DFT strategies are fully validated by instruments and HOY wireless test system.
{"title":"Built-in self at-speed Delay Binning And Calibration Mechanism in wireless test platform","authors":"Chen-I Chung, Jyun-Sian Jhou, Ching-Hwa Cheng","doi":"10.5555/1899721.1899802","DOIUrl":"https://doi.org/10.5555/1899721.1899802","url":null,"abstract":"An at-speed BIST delay testing technique is proposed. It differs from traditional circuit speed testing techniques by changing the system clock rate. This method supplies test pattern to the circuit using lower-speed clock frequency, then applies internal BIST circuit to adjust clock edge for circuit at-speed delay testing and speed binning. The self wide-range (26%∼76%), fine-scale (34ps) duty cycle adjustment technique with high-precision (28ps) calibration circuit is proposed for at-speed delay test and performance binning. The contribution of this work is the proposal of a feasible self at-speed delay testing technique. Test chip DFT strategies are fully validated by instruments and HOY wireless test system.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124312289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Transaction Level Models (TLMs) are being increasingly used by multi-core system designers for design validation and embedded SW development. However, with well defined modeling semantics and TLM automation tools, it is also possible to use TLMs for multi-core design. This paper presents recent research in automatic generation of timed TLMs for early, yet reliable, evaluation of multi-core design decisions. The TLMs are automatically generated from a given mapping of a concurrent application to a multi-core platform. The application code is annotated with delays at the basic-block level of granularity. Similarly, the platform services, such as communication and scheduling, also include timing delays. The TLM automation methods have been implemented in the Embedded System Environment (ESE) toolset. Our experimental results with ESE demonstrate that multi-core TLMs can be generated in the order of seconds; they simulate close to host-compiled application execution speed, and are more than 90% accurate compared to board measurements on average for industrial size examples. Therefore, TLM automation enables early and reliable evaluation of multi-core design decisions.
{"title":"TLM automation for multi-core design","authors":"S. Abdi","doi":"10.5555/1899721.1899888","DOIUrl":"https://doi.org/10.5555/1899721.1899888","url":null,"abstract":"Transaction Level Models (TLMs) are being increasingly used by multi-core system designers for design validation and embedded SW development. However, with well defined modeling semantics and TLM automation tools, it is also possible to use TLMs for multi-core design. This paper presents recent research in automatic generation of timed TLMs for early, yet reliable, evaluation of multi-core design decisions. The TLMs are automatically generated from a given mapping of a concurrent application to a multi-core platform. The application code is annotated with delays at the basic-block level of granularity. Similarly, the platform services, such as communication and scheduling, also include timing delays. The TLM automation methods have been implemented in the Embedded System Environment (ESE) toolset. Our experimental results with ESE demonstrate that multi-core TLMs can be generated in the order of seconds; they simulate close to host-compiled application execution speed, and are more than 90% accurate compared to board measurements on average for industrial size examples. Therefore, TLM automation enables early and reliable evaluation of multi-core design decisions.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122732828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}