D. Ikebuchi, N. Seki, Y. Kojima, M. Kamata, Lei Zhao, H. Amano, T. Shirai, S. Koyama, T. Hashida, Y. Umahashi, H. Masuda, K. Usami, S. Takeda, Hiroshi Nakamura, M. Namiki, Masaaki Kondo
Geyser-1 is a MIPS CPU which provides a fine-grained run-time power gating (PG) controlled by instructions. Unlike traditional PGs, it uses special standard cells in which the virtual ground (VGND) is separated from the real ground, and a certain number of the sleep transistors are inserted for quick power shut-down and wake-up. In Geyser-1, the fine-grained run-time PG is applied to computational modules in the execution stage. The power shut-down and wakeup are controlled with architectural and software level. This implementation is the first available CPU with this type of run-time PG technique. Geyser-1 has both time and spatial fine-grained PG and works well with a real chip.
{"title":"Geyser-1: A MIPS R3000 CPU core with fine-grained run-time power gating","authors":"D. Ikebuchi, N. Seki, Y. Kojima, M. Kamata, Lei Zhao, H. Amano, T. Shirai, S. Koyama, T. Hashida, Y. Umahashi, H. Masuda, K. Usami, S. Takeda, Hiroshi Nakamura, M. Namiki, Masaaki Kondo","doi":"10.5555/1899721.1899808","DOIUrl":"https://doi.org/10.5555/1899721.1899808","url":null,"abstract":"Geyser-1 is a MIPS CPU which provides a fine-grained run-time power gating (PG) controlled by instructions. Unlike traditional PGs, it uses special standard cells in which the virtual ground (VGND) is separated from the real ground, and a certain number of the sleep transistors are inserted for quick power shut-down and wake-up. In Geyser-1, the fine-grained run-time PG is applied to computational modules in the execution stage. The power shut-down and wakeup are controlled with architectural and software level. This implementation is the first available CPU with this type of run-time PG technique. Geyser-1 has both time and spatial fine-grained PG and works well with a real chip.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128336065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-01-18DOI: 10.1109/ASPDAC.2010.5419917
D. Das, Jia Wang, H. Zhou
Retiming is one of the most powerful sequential transformations that relocates flip-flops in a circuit without changing its functionality. The min-period retiming problem seeks a solution with the minimal clock period. Since most min-period retiming algorithms assume a simple constant delay model that does not take into account many prominent electrical effects in ultra deep sub micron vlsi designs, a general delay model was proposed to improve the accuracy of the retiming optimization. Due to the complexity of the general delay model, the formulation of min-period retiming under such model is based on integer linear programming (ILP). However, because the previous ILP formulation was derived on a dense path graph, it incurred huge storage and running time overhead for the ILP solvers and the application was limited to small circuits. In this paper, we present the iRetILP algorithm to solve the min-period retiming problem efficiently under the general delay model by formulating and solving the ILP problems incrementally. Experimental results show that iRetILP is on average 100× faster than the previous algorithm for small circuits and is highly scalable to large circuits in term of memory consumption and running time.
{"title":"iRetILP: An efficient incremental algorithm for min-period retiming under general delay model","authors":"D. Das, Jia Wang, H. Zhou","doi":"10.1109/ASPDAC.2010.5419917","DOIUrl":"https://doi.org/10.1109/ASPDAC.2010.5419917","url":null,"abstract":"Retiming is one of the most powerful sequential transformations that relocates flip-flops in a circuit without changing its functionality. The min-period retiming problem seeks a solution with the minimal clock period. Since most min-period retiming algorithms assume a simple constant delay model that does not take into account many prominent electrical effects in ultra deep sub micron vlsi designs, a general delay model was proposed to improve the accuracy of the retiming optimization. Due to the complexity of the general delay model, the formulation of min-period retiming under such model is based on integer linear programming (ILP). However, because the previous ILP formulation was derived on a dense path graph, it incurred huge storage and running time overhead for the ILP solvers and the application was limited to small circuits. In this paper, we present the iRetILP algorithm to solve the min-period retiming problem efficiently under the general delay model by formulating and solving the ILP problems incrementally. Experimental results show that iRetILP is on average 100× faster than the previous algorithm for small circuits and is highly scalable to large circuits in term of memory consumption and running time.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128842098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-01-18DOI: 10.1109/ASPDAC.2010.5419889
Jungseob Lee, Shiyu Zhou, N. Kim
Recently, semiconductor industries have integrated more cores in a single die, which substantially improves the throughput of the processors running highly-parallel applications. However, many existing applications do not have high enough parallelism to exploit multiple cores in a die, slowing the transition to many-core processors with smaller and more cores that benefit future applications with high parallelism. In this paper, we analyze the impact of multiple adaptive voltage scaling (AVS) and adaptive body biasing (ABB) domains on the throughput of power and thermal-constrained multi-core processors when they are combined with per-core power-gating (PCPG). Both AVS and ABB can be effectively used to either increase frequency (thus throughput) or decrease power consumption of the processors. Meanwhile, PCPG can provide extra power and thermal headroom when application's parallelism is limited. First, we analyze the throughput impact of applying AVS, ABB, and PCPG for power and thermal constrained multi-core processors. Second, we investigate the impact of multiple AVS and ABB domains on the throughput, and recommend the most cost-effective number of domains for AVS and ABB in 16 and 8-core processors. Our analysis using the 32nm predictive technology model considering within-die variations suggests that the most cost-effective number of domains for AVS and/or ABB should be one for each when they are combined with PCPG in both 16 and 8-core processors. Since within-die core-to-core variations provide many choices in terms of core frequency and power consumption for limited-parallelism applications, one AVS or ABB domain can leads to the throughput improvement by 1.77∼2.49x; more than one AVS and/or ABB domains only improve the throughput marginally.
{"title":"Analyzing impact of multiple ABB and AVS domains on throughput of power and thermal-constrained multi-core processors","authors":"Jungseob Lee, Shiyu Zhou, N. Kim","doi":"10.1109/ASPDAC.2010.5419889","DOIUrl":"https://doi.org/10.1109/ASPDAC.2010.5419889","url":null,"abstract":"Recently, semiconductor industries have integrated more cores in a single die, which substantially improves the throughput of the processors running highly-parallel applications. However, many existing applications do not have high enough parallelism to exploit multiple cores in a die, slowing the transition to many-core processors with smaller and more cores that benefit future applications with high parallelism. In this paper, we analyze the impact of multiple adaptive voltage scaling (AVS) and adaptive body biasing (ABB) domains on the throughput of power and thermal-constrained multi-core processors when they are combined with per-core power-gating (PCPG). Both AVS and ABB can be effectively used to either increase frequency (thus throughput) or decrease power consumption of the processors. Meanwhile, PCPG can provide extra power and thermal headroom when application's parallelism is limited. First, we analyze the throughput impact of applying AVS, ABB, and PCPG for power and thermal constrained multi-core processors. Second, we investigate the impact of multiple AVS and ABB domains on the throughput, and recommend the most cost-effective number of domains for AVS and ABB in 16 and 8-core processors. Our analysis using the 32nm predictive technology model considering within-die variations suggests that the most cost-effective number of domains for AVS and/or ABB should be one for each when they are combined with PCPG in both 16 and 8-core processors. Since within-die core-to-core variations provide many choices in terms of core frequency and power consumption for limited-parallelism applications, one AVS or ABB domain can leads to the throughput improvement by 1.77∼2.49x; more than one AVS and/or ABB domains only improve the throughput marginally.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123793974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-01-18DOI: 10.1109/ASPDAC.2010.5419896
Saket Gupta, S. Sapatnekar
With the increasing use of adaptive body biases in high-performance designs, it has become necessary to build timing models that can include these effects. State-of-the-art timing tools use current source models (CSMs), which have proven to be fast and accurate. However, a straightforward extension of CSMs to incorporate multiple body biases results in unreasonably large characterization tables for each cell. We propose a new approach to compactly capture body bias effects within a mainstream CSM framework. Our approach features a table reduction method for compact storage, and a fast and novel waveform sensitivity method for timing evaluation. On a 45nm technology, we demonstrate high accuracy, with worst-case errors of under 5% in both slew and delay as compared to HSPICE. We show a speedup of over five orders of magnitude over HSPICE and almost 70x over conventional CSMs.
{"title":"Current source modeling in the presence of body bias","authors":"Saket Gupta, S. Sapatnekar","doi":"10.1109/ASPDAC.2010.5419896","DOIUrl":"https://doi.org/10.1109/ASPDAC.2010.5419896","url":null,"abstract":"With the increasing use of adaptive body biases in high-performance designs, it has become necessary to build timing models that can include these effects. State-of-the-art timing tools use current source models (CSMs), which have proven to be fast and accurate. However, a straightforward extension of CSMs to incorporate multiple body biases results in unreasonably large characterization tables for each cell. We propose a new approach to compactly capture body bias effects within a mainstream CSM framework. Our approach features a table reduction method for compact storage, and a fast and novel waveform sensitivity method for timing evaluation. On a 45nm technology, we demonstrate high accuracy, with worst-case errors of under 5% in both slew and delay as compared to HSPICE. We show a speedup of over five orders of magnitude over HSPICE and almost 70x over conventional CSMs.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132630139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-01-18DOI: 10.1109/ASPDAC.2010.5419680
M. Rostami, K. Mohanram
This paper describes gate work function and oxide thickness tuning to realize novel circuits using dual-Vth independent-gate FinFETs. Dual-Vth FinFETs with independent gates enable series and parallel merge transformations in logic gates, realizing compact low power alternatives. Furthermore, they also enable the design of a new class of compact logic gates with higher expressive power and flexibility than conventional forms, e.g., implementing 12 unique Boolean functions using only four transistors. The gates are designed and calibrated using the University of Florida double-gate model into a technology library. Synthesis results for 14 benchmark circuits from the ISCAS and OpenSPARC suites indicate that on average, the enhanced library reduces delay, power, and area by 9%, 21%, and 27%, respectively, over a conventional library designed using FinFETs in 32nm technology.
{"title":"Novel dual-Vth independent-gate FinFET circuits","authors":"M. Rostami, K. Mohanram","doi":"10.1109/ASPDAC.2010.5419680","DOIUrl":"https://doi.org/10.1109/ASPDAC.2010.5419680","url":null,"abstract":"This paper describes gate work function and oxide thickness tuning to realize novel circuits using dual-Vth independent-gate FinFETs. Dual-Vth FinFETs with independent gates enable series and parallel merge transformations in logic gates, realizing compact low power alternatives. Furthermore, they also enable the design of a new class of compact logic gates with higher expressive power and flexibility than conventional forms, e.g., implementing 12 unique Boolean functions using only four transistors. The gates are designed and calibrated using the University of Florida double-gate model into a technology library. Synthesis results for 14 benchmark circuits from the ISCAS and OpenSPARC suites indicate that on average, the enhanced library reduces delay, power, and area by 9%, 21%, and 27%, respectively, over a conventional library designed using FinFETs in 32nm technology.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133655576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-01-18DOI: 10.1109/ASPDAC.2010.5419847
J. Choi, Byung Guk Kim, A. Dasgupta, K. Roy
This paper presents a stage-level clock-gating scheme for clock power improvement. The proposed technique efficiently implements the concept of transparent pipeline which improves clocking power by dynamically making pipeline registers transparent. We developed new control scheme for transparent pipeline which can be applied to any number of pipeline stages. A low-overhead flip-flop with transparent mode is also proposed to reduce implementation overhead. The proposed clock-gating control logic is extended to pipeline collapsing which allows energy/performance trade-off through dynamic frequency scaling. Simulation results on IBM 90nm technology show that the proposed approach has less overhead (∼25%) than the previous transparent pipeline scheme and improves up to 40% of clocking power in 64-bit 7-stage pipeline over traditional stage-level clock-gating technique.
{"title":"Improved clock-gating control scheme for transparent pipeline","authors":"J. Choi, Byung Guk Kim, A. Dasgupta, K. Roy","doi":"10.1109/ASPDAC.2010.5419847","DOIUrl":"https://doi.org/10.1109/ASPDAC.2010.5419847","url":null,"abstract":"This paper presents a stage-level clock-gating scheme for clock power improvement. The proposed technique efficiently implements the concept of transparent pipeline which improves clocking power by dynamically making pipeline registers transparent. We developed new control scheme for transparent pipeline which can be applied to any number of pipeline stages. A low-overhead flip-flop with transparent mode is also proposed to reduce implementation overhead. The proposed clock-gating control logic is extended to pipeline collapsing which allows energy/performance trade-off through dynamic frequency scaling. Simulation results on IBM 90nm technology show that the proposed approach has less overhead (∼25%) than the previous transparent pipeline scheme and improves up to 40% of clocking power in 64-bit 7-stage pipeline over traditional stage-level clock-gating technique.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117008147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asynchronous on-chip networks are power efficient and tolerant to process variation but they are slower than synchronous on-chip networks. A low latency asynchronous wormhole router is proposed using sliced sub-channels and the lookahead pipeline. Channel slicing removes the C-element tree in the completion detection circuit and converts a channel into multiple independent sub-channels reducing the cycle period. The lookahead pipeline uses the early evaluation protocol to reduce cycle period. Using the lookahead pipeline on the pipeline stages with the maximal cycle period improves the overall throughput. The router is a pure standard cell design implemented by a 0.13 µm technology. The cycle period of the router at the typical corner is 1.7 ns, providing 2.35GByte/sec throughput per port.
{"title":"A low latency wormhole router for asynchronous on-chip networks","authors":"Wei Song, D. Edwards","doi":"10.5555/1899721.1899827","DOIUrl":"https://doi.org/10.5555/1899721.1899827","url":null,"abstract":"Asynchronous on-chip networks are power efficient and tolerant to process variation but they are slower than synchronous on-chip networks. A low latency asynchronous wormhole router is proposed using sliced sub-channels and the lookahead pipeline. Channel slicing removes the C-element tree in the completion detection circuit and converts a channel into multiple independent sub-channels reducing the cycle period. The lookahead pipeline uses the early evaluation protocol to reduce cycle period. Using the lookahead pipeline on the pipeline stages with the maximal cycle period improves the overall throughput. The router is a pure standard cell design implemented by a 0.13 µm technology. The cycle period of the router at the typical corner is 1.7 ns, providing 2.35GByte/sec throughput per port.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132150815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-01-18DOI: 10.1109/ASPDAC.2010.5419862
Naoki Takayama, Kota Matsushita, Shogo Ito, Ning Li, K. Okada, A. Matsuzawa
This paper presents a 60 GHz direct-conversion transmitter in 65 nm CMOS technology. The power amplifier consists of 4-stage transistors. The circuit model of de-coupling capacitor is built as a transmission line to consider the physical length. In the measurement results, the conversion gain is above 9.6dB at 58–65GHz band, and the 1 dB compression point is 1.6 dBm with 60 GHz LO frequency and 1 dB LO power.
本文提出了一种采用65纳米CMOS技术的60 GHz直接转换发射机。功率放大器由4级晶体管组成。考虑物理长度,将解耦电容作为传输线建立电路模型。测量结果显示,在58 ~ 65ghz频段,转换增益大于9.6dB,在60 GHz LO频率和1 dB LO功率下,1db压缩点为1.6 dBm。
{"title":"A 60GHz direct-conversion transmitter in 65nm CMOS technology","authors":"Naoki Takayama, Kota Matsushita, Shogo Ito, Ning Li, K. Okada, A. Matsuzawa","doi":"10.1109/ASPDAC.2010.5419862","DOIUrl":"https://doi.org/10.1109/ASPDAC.2010.5419862","url":null,"abstract":"This paper presents a 60 GHz direct-conversion transmitter in 65 nm CMOS technology. The power amplifier consists of 4-stage transistors. The circuit model of de-coupling capacitor is built as a transmission line to consider the physical length. In the measurement results, the conversion gain is above 9.6dB at 58–65GHz band, and the 1 dB compression point is 1.6 dBm with 60 GHz LO frequency and 1 dB LO power.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"368 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134421390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-01-18DOI: 10.1109/ASPDAC.2010.5419859
Hiroyuki Morimoto, H. Koike, Kazuyuki Nakamura
This paper describes a new technique for 3-terminal regulators to adjust the output voltage level without additional terminals or extra off-chip components. By applying a serial control pattern using the intermediate voltage level between the supply voltage and the regulator output, the adjustment data in the internal nonvolatile memory are safely updated without noise disturbance. In an on-board test with a chip fabricated using a 0.35-µm standard CMOS process, we confirm successful output voltage adjustment with sub-10mV precision.
{"title":"An electrically adjustable 3-terminal regulator with post-fabrication level-trimming function","authors":"Hiroyuki Morimoto, H. Koike, Kazuyuki Nakamura","doi":"10.1109/ASPDAC.2010.5419859","DOIUrl":"https://doi.org/10.1109/ASPDAC.2010.5419859","url":null,"abstract":"This paper describes a new technique for 3-terminal regulators to adjust the output voltage level without additional terminals or extra off-chip components. By applying a serial control pattern using the intermediate voltage level between the supply voltage and the regulator output, the adjustment data in the internal nonvolatile memory are safely updated without noise disturbance. In an on-board test with a chip fabricated using a 0.35-µm standard CMOS process, we confirm successful output voltage adjustment with sub-10mV precision.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127996804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-01-18DOI: 10.1109/ASPDAC.2010.5419872
Y. Tashiro, Shun Kawada, Shin Sakai, S. Sugawa
Two wide dynamic range CMOS image sensors with lateral overflow integration capacitor have been developed. A checker-pattern image sensor has achieved high area efficiency by placing the color filters and on-chip microlens along the direction at an angle of 45°. A shared two pixels image sensor has achieved small pixel pitch by introducing a lateral overflow gate in each pixel. The fabricated image sensors exhibit high full well capacity, low noise, wide dynamic range and high resolution performance.
{"title":"Checker-pattern and shared two pixels LOFIC CMOS image sensors","authors":"Y. Tashiro, Shun Kawada, Shin Sakai, S. Sugawa","doi":"10.1109/ASPDAC.2010.5419872","DOIUrl":"https://doi.org/10.1109/ASPDAC.2010.5419872","url":null,"abstract":"Two wide dynamic range CMOS image sensors with lateral overflow integration capacitor have been developed. A checker-pattern image sensor has achieved high area efficiency by placing the color filters and on-chip microlens along the direction at an angle of 45°. A shared two pixels image sensor has achieved small pixel pitch by introducing a lateral overflow gate in each pixel. The fabricated image sensors exhibit high full well capacity, low noise, wide dynamic range and high resolution performance.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121288086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}