首页 > 最新文献

Journal of biomedical materials research. Part B, Applied biomaterials最新文献

英文 中文
Simvastatin-Loaded Chitosan Microspheres as a Biomaterial for Dentin Tissue Engineering
IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-29 DOI: 10.1002/jbm.b.35536
Erika Soares Bronze-Uhle, Camila Correa da Silva Braga de Melo, Isabela Sanches Pompeo da Silva, Vitor de Toledo Stuani, Victor Hugo Bueno, Daniel Rinaldo, Carlos Alberto de Souza Costa, Paulo Noronha Lisboa Filho, Diana Gabriela Soares

In the present study, chitosan microspheres (MSCH) loaded with different concentrations of simvastatin (2%, 5%, and 10%) were synthesized as a biomaterial for dentin tissue engineering. The microspheres were prepared by emulsion crosslinking method, and simvastatin was incorporated during the process. The microspheres were then physicochemically and morphologically characterized. Scanning electron microscopy and infrared spectroscopy confirmed the spherical morphology of synthesized microspheres and the chemical incorporation of simvastatin into MSCH, respectively. UV–visible absorption confirmed the controlled and continuous release pattern of the drug. To mimic the clinical application in vitro, the microspheres were applied onto three-dimensional (3D) cultures of human dental pulp cells (HDPCs). Cell viability, proliferation, and in situ-mineralized matrix deposition were evaluated. The results indicated no cytotoxic effects for all 3D cultures for all tested biomaterials, with cells being able to proliferate significantly over time. HDPCs showed a significant increase in the deposition of mineralization nodules when 3D cultures were in direct contact with chitosan microspheres in comparison to control; nevertheless, the highest expression was observed for MSCH encapsulated with 5% and 10% simvastatin, which was significantly higher than plain MSCH. Therefore, chitosan microsphere systems loaded with 5%–10% simvastatin provided the development of a controlled release system in bioactive dosages for dentin tissue engineering.

{"title":"Simvastatin-Loaded Chitosan Microspheres as a Biomaterial for Dentin Tissue Engineering","authors":"Erika Soares Bronze-Uhle,&nbsp;Camila Correa da Silva Braga de Melo,&nbsp;Isabela Sanches Pompeo da Silva,&nbsp;Vitor de Toledo Stuani,&nbsp;Victor Hugo Bueno,&nbsp;Daniel Rinaldo,&nbsp;Carlos Alberto de Souza Costa,&nbsp;Paulo Noronha Lisboa Filho,&nbsp;Diana Gabriela Soares","doi":"10.1002/jbm.b.35536","DOIUrl":"10.1002/jbm.b.35536","url":null,"abstract":"<div>\u0000 \u0000 <p>In the present study, chitosan microspheres (MSCH) loaded with different concentrations of simvastatin (2%, 5%, and 10%) were synthesized as a biomaterial for dentin tissue engineering. The microspheres were prepared by emulsion crosslinking method, and simvastatin was incorporated during the process. The microspheres were then physicochemically and morphologically characterized. Scanning electron microscopy and infrared spectroscopy confirmed the spherical morphology of synthesized microspheres and the chemical incorporation of simvastatin into MSCH, respectively. UV–visible absorption confirmed the controlled and continuous release pattern of the drug. To mimic the clinical application in vitro, the microspheres were applied onto three-dimensional (3D) cultures of human dental pulp cells (HDPCs). Cell viability, proliferation, and in situ-mineralized matrix deposition were evaluated. The results indicated no cytotoxic effects for all 3D cultures for all tested biomaterials, with cells being able to proliferate significantly over time. HDPCs showed a significant increase in the deposition of mineralization nodules when 3D cultures were in direct contact with chitosan microspheres in comparison to control; nevertheless, the highest expression was observed for MSCH encapsulated with 5% and 10% simvastatin, which was significantly higher than plain MSCH. Therefore, chitosan microsphere systems loaded with 5%–10% simvastatin provided the development of a controlled release system in bioactive dosages for dentin tissue engineering.</p>\u0000 </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143064662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Silk Fibroin Based Bilayer Scaffolds for Bioabsorbable Internal Biliary Stenting
IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-29 DOI: 10.1002/jbm.b.35499
Benedetta Isella, Nourhan Hassan, Aleksander Drinic, Roman M. Eickhoff, Nadja Kröger, Ted J. Vaughan, Alexander Kopp

Biliary duct reconstruction is one of the most challenging parts of liver transplantation and accounts for 40%–60% of complications. While current stent-based devices on the market show promising results in reducing complications, they are manufactured from permanent synthetic materials and require a second reintervention for their removal. This exposes the patients to other potential complications and increases healthcare costs. This study develops a fabrication technique to produce a bioabsorbable biliary stent based on silk fibroin. The process used a dip-coating procedure for silk fibroin that produced highly smooth monolayer tubular specimens without the use of any additional surfactants during removal. This process was combined with an electrospinning step to produce bilayer structures through the deposition of electrospun silk fibroin on the outer surface. The structures proved to have promising mechanical, morphological, and cytocompatibility properties for use in the field of biliary stenting. Furthermore, the technique investigated proved to be reproducible, achieving an important requirement for large-scale use even in the presence of a biomaterial derived from a natural source. These results show the possibility of obtaining a completely bioabsorbable internal biliary stent that does not require any second reintervention. This study can be the starting point for further investigations both in vitro and in vivo to assess the suitability of silk fibroin biliary stents for clinical applications.

{"title":"Novel Silk Fibroin Based Bilayer Scaffolds for Bioabsorbable Internal Biliary Stenting","authors":"Benedetta Isella,&nbsp;Nourhan Hassan,&nbsp;Aleksander Drinic,&nbsp;Roman M. Eickhoff,&nbsp;Nadja Kröger,&nbsp;Ted J. Vaughan,&nbsp;Alexander Kopp","doi":"10.1002/jbm.b.35499","DOIUrl":"10.1002/jbm.b.35499","url":null,"abstract":"<p>Biliary duct reconstruction is one of the most challenging parts of liver transplantation and accounts for 40%–60% of complications. While current stent-based devices on the market show promising results in reducing complications, they are manufactured from permanent synthetic materials and require a second reintervention for their removal. This exposes the patients to other potential complications and increases healthcare costs. This study develops a fabrication technique to produce a bioabsorbable biliary stent based on silk fibroin. The process used a dip-coating procedure for silk fibroin that produced highly smooth monolayer tubular specimens without the use of any additional surfactants during removal. This process was combined with an electrospinning step to produce bilayer structures through the deposition of electrospun silk fibroin on the outer surface. The structures proved to have promising mechanical, morphological, and cytocompatibility properties for use in the field of biliary stenting. Furthermore, the technique investigated proved to be reproducible, achieving an important requirement for large-scale use even in the presence of a biomaterial derived from a natural source. These results show the possibility of obtaining a completely bioabsorbable internal biliary stent that does not require any second reintervention. This study can be the starting point for further investigations both in vitro and in vivo to assess the suitability of silk fibroin biliary stents for clinical applications.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35499","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143065988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biological, Biomechanical, and Histopathological Evaluation of Polyetherketoneketone Bioactive Composite as Implant Material
IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-24 DOI: 10.1002/jbm.b.35535
Manar E. Al-Samaray, Abdalbseet A. Fatalla

While polyetherketoneketone is a high-performance thermoplastic polymer, its hydrophobicity and inertness limit bone adhesion. This study aimed to evaluate a novel PEKK/CaSiO3/TeO2 nanocomposite, comparing it to PEKK/15 wt.% CaSiO3 and PEKK groups. The in vitro study, involving 90 discs (n = 30), assessed the cytotoxicity of all groups after 24, 72, and 168 h. The in vivo animal study, using cylinder-type implants (n = 30), evaluated osseointegration through biomechanical push-out tests, descriptive histopathological examinations of decalcified sections stained with hematoxylin and eosin, and histomorphometric analysis of new bone formation area after 2- and 6-week healing intervals. The cytocompatibility of PEKK/15 wt.% CaSiO3/1 wt.% TeO2 composite confirmed its acceptance as a biomedical material. Additionally, in vivo study results showed that the PEKK/15 wt.% CaSiO3/1 wt.% TeO2 had the highest shear strength value and the highest new bone formation area compared to other experimental groups. The multimodal concept of adding CaSiO3 micro fillers and TeO2 nanofillers to PEKK produces a cytocompatible composite that enhances osseointegration and new bone formation in a rabbit's femur after 2- and 6-week healing intervals.

{"title":"Biological, Biomechanical, and Histopathological Evaluation of Polyetherketoneketone Bioactive Composite as Implant Material","authors":"Manar E. Al-Samaray,&nbsp;Abdalbseet A. Fatalla","doi":"10.1002/jbm.b.35535","DOIUrl":"10.1002/jbm.b.35535","url":null,"abstract":"<div>\u0000 \u0000 <p>While polyetherketoneketone is a high-performance thermoplastic polymer, its hydrophobicity and inertness limit bone adhesion. This study aimed to evaluate a novel PEKK/CaSiO<sub>3</sub>/TeO<sub>2</sub> nanocomposite, comparing it to PEKK/15 wt.% CaSiO<sub>3</sub> and PEKK groups. The in vitro study, involving 90 discs (<i>n</i> = 30), assessed the cytotoxicity of all groups after 24, 72, and 168 h. The in vivo animal study, using cylinder-type implants (<i>n</i> = 30), evaluated osseointegration through biomechanical push-out tests, descriptive histopathological examinations of decalcified sections stained with hematoxylin and eosin, and histomorphometric analysis of new bone formation area after 2- and 6-week healing intervals. The cytocompatibility of PEKK/15 wt.% CaSiO<sub>3</sub>/1 wt.% TeO<sub>2</sub> composite confirmed its acceptance as a biomedical material. Additionally, in vivo study results showed that the PEKK/15 wt.% CaSiO<sub>3</sub>/1 wt.% TeO<sub>2</sub> had the highest shear strength value and the highest new bone formation area compared to other experimental groups. The multimodal concept of adding CaSiO<sub>3</sub> micro fillers and TeO<sub>2</sub> nanofillers to PEKK produces a cytocompatible composite that enhances osseointegration and new bone formation in a rabbit's femur after 2- and 6-week healing intervals.</p>\u0000 </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biosynthesis of Zinc Oxide Nanoparticles by Origanum majorana Aqueous Leaves Extracts, Characterization and Evaluated Against to Schistosoma haematobium
IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-24 DOI: 10.1002/jbm.b.35538
Samah S. Eldera, Lila A. Alkhtaby, Reem Al-Wafi, Mohamed Abou El-Nour

Schistosomiasis, caused by Schistosoma worms, is a major neglected tropical disease in Africa, this disease is ranked as second after malaria. Nanotechnology is important for treating schistosomiasis while minimizing chemotherapy side effects. The current investigate aimed to assess the effectiveness of biosynthesized zinc oxide nanoparticles (ZnO NPs), which were used for the first time in an attempt to find alternative treatment for schistosomiasis and synthesized by Origanum majorana, and to compare them with praziquantel (PZQ), the only chemical treatment approved by the World Health Organization. The study included evaluations both in the laboratory and in vivo. In the laboratory experiment, adult worms exposed to ZnO nanoparticles at concentrations of 100, 50, 25, 12.5, 6.25, and 3.125 μg/mL showed the highest complete mortality rates at concentrations of 100 and 50 μg/mL after 6 and 12 h, respectively. Combinations of ZnO nanoparticles at concentrations of 12.5 + 0.4, 25 + 0.3, 50 + 0.2, and 75 + 0.1 μg/mL with PZQ were also tested. In vivo, four groups of hamsters infected with Schistosoma haematobium were treated. In hamsters, the number of eggs present in the tissues as well as the size and number of granulomas significantly decreased when ZnO nanoparticles combined with PZQ were administered. The properties of ZnO particles synthesized by Origanum majorana were consistent and confirmed by all previous studies. These results indicate that green ZnO nanoparticles with PZQ showed high activity against S. haematobium in laboratory experiments.

{"title":"Biosynthesis of Zinc Oxide Nanoparticles by Origanum majorana Aqueous Leaves Extracts, Characterization and Evaluated Against to Schistosoma haematobium","authors":"Samah S. Eldera,&nbsp;Lila A. Alkhtaby,&nbsp;Reem Al-Wafi,&nbsp;Mohamed Abou El-Nour","doi":"10.1002/jbm.b.35538","DOIUrl":"10.1002/jbm.b.35538","url":null,"abstract":"<div>\u0000 \u0000 <p>Schistosomiasis, caused by <i>Schistosoma</i> worms, is a major neglected tropical disease in Africa, this disease is ranked as second after malaria. Nanotechnology is important for treating schistosomiasis while minimizing chemotherapy side effects. The current investigate aimed to assess the effectiveness of biosynthesized zinc oxide nanoparticles (ZnO NPs), which were used for the first time in an attempt to find alternative treatment for schistosomiasis and synthesized by <i>Origanum majorana</i>, and to compare them with praziquantel (PZQ), the only chemical treatment approved by the World Health Organization. The study included evaluations both in the laboratory and in vivo. In the laboratory experiment, adult worms exposed to ZnO nanoparticles at concentrations of 100, 50, 25, 12.5, 6.25, and 3.125 μg/mL showed the highest complete mortality rates at concentrations of 100 and 50 μg/mL after 6 and 12 h, respectively. Combinations of ZnO nanoparticles at concentrations of 12.5 + 0.4, 25 + 0.3, 50 + 0.2, and 75 + 0.1 μg/mL with PZQ were also tested. In vivo, four groups of hamsters infected with <i>Schistosoma haematobium</i> were treated. In hamsters, the number of eggs present in the tissues as well as the size and number of granulomas significantly decreased when ZnO nanoparticles combined with PZQ were administered. The properties of ZnO particles synthesized by <i>Origanum majorana</i> were consistent and confirmed by all previous studies. These results indicate that green ZnO nanoparticles with PZQ showed high activity against <i>S</i>. <i>haematobium</i> in laboratory experiments.</p>\u0000 </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Biological Properties of Co-Doped Monetite Are Influenced by Thermal Treatment
IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-24 DOI: 10.1002/jbm.b.35531
Gerson Santos de Almeida, Luisa Camilo Suter, Thais Silva Pinto, Maria Gabriela Jacheto Carra, Géorgia da Silva Feltran, Julia Ferreira de Moraes, Diego Rafael Nespeque Corrêa, Margarida Juri Saeki, Paulo Noronha Lisboa-Filho, Willian Fernando Zambuzzi

Calcium phosphates, notably monetite, are valued biomaterials for bone applications owing to their osteogenic properties and rapid uptake by bone cells. This study investigates the enhancement of these properties through Cobalt doping, which is known to induce hypoxia and promote bone cell differentiation. Heat treatments at 700°C, 900°C, and 1050°C are applied to both monetite and Cobalt-doped monetite, facilitating the development of purer, more crystalline phases with varied particle sizes and optimized cellular responses. Comprehensive physicochemical characterization through XRD, FTIR, Raman, SEM/EDS, and ASAP analyses shows significant phase transformations into pyrophosphate, influencing the materials' structural and functional attributes. When utilized to condition a culture medium for MC3T3-E1 cells, these materials demonstrate non-cytotoxic behavior and provoke specific gene responses associated with the osteoblastic phenotype, angiogenesis, adhesion, and extracellular matrix remodeling. Significantly, non-heat-treated Cobalt-doped Monetite retains properties advantageous for clinical applications such as dental and orthopedic implants, where lower processing temperatures are crucial. This attribute, combined with the material's straightforward production, highlights its practicality and potential cost-effectiveness. Further research is essential to assess the long-term safety and efficacy of these materials in clinical settings. Our findings underscore the promising role of Cobalt-doped Monetite in advancing bone repair and regeneration, setting the stage for future innovations in treating bone lesions, enhancing implant integration, and developing advanced prosthetic coatings within the field of tissue engineering.

{"title":"The Biological Properties of Co-Doped Monetite Are Influenced by Thermal Treatment","authors":"Gerson Santos de Almeida,&nbsp;Luisa Camilo Suter,&nbsp;Thais Silva Pinto,&nbsp;Maria Gabriela Jacheto Carra,&nbsp;Géorgia da Silva Feltran,&nbsp;Julia Ferreira de Moraes,&nbsp;Diego Rafael Nespeque Corrêa,&nbsp;Margarida Juri Saeki,&nbsp;Paulo Noronha Lisboa-Filho,&nbsp;Willian Fernando Zambuzzi","doi":"10.1002/jbm.b.35531","DOIUrl":"10.1002/jbm.b.35531","url":null,"abstract":"<div>\u0000 \u0000 <p>Calcium phosphates, notably monetite, are valued biomaterials for bone applications owing to their osteogenic properties and rapid uptake by bone cells. This study investigates the enhancement of these properties through Cobalt doping, which is known to induce hypoxia and promote bone cell differentiation. Heat treatments at 700°C, 900°C, and 1050°C are applied to both monetite and Cobalt-doped monetite, facilitating the development of purer, more crystalline phases with varied particle sizes and optimized cellular responses. Comprehensive physicochemical characterization through XRD, FTIR, Raman, SEM/EDS, and ASAP analyses shows significant phase transformations into pyrophosphate, influencing the materials' structural and functional attributes. When utilized to condition a culture medium for MC3T3-E1 cells, these materials demonstrate non-cytotoxic behavior and provoke specific gene responses associated with the osteoblastic phenotype, angiogenesis, adhesion, and extracellular matrix remodeling. Significantly, non-heat-treated Cobalt-doped Monetite retains properties advantageous for clinical applications such as dental and orthopedic implants, where lower processing temperatures are crucial. This attribute, combined with the material's straightforward production, highlights its practicality and potential cost-effectiveness. Further research is essential to assess the long-term safety and efficacy of these materials in clinical settings. Our findings underscore the promising role of Cobalt-doped Monetite in advancing bone repair and regeneration, setting the stage for future innovations in treating bone lesions, enhancing implant integration, and developing advanced prosthetic coatings within the field of tissue engineering.</p>\u0000 </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solution Blow Spinning: An Emerging Nanomaterials-Based Wound-Care Technology
IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-24 DOI: 10.1002/jbm.b.35513
Md Salauddin Sk, Ruth Mwangomo, Luke Daniel, Jordon Gilmore

Application of one-dimensional nanofibers have witnessed exponential growth over the past few decades and are still emerging with their excellent physicochemical and electrical properties. The driving force behind this intriguing transition lies in their unique high surface-to-volume ratio, ubiquitous nanodomains, improved tensile strength, and flexibility to incorporate deliberate functionalities required for specific and advanced applications. Besides numerous benefits, nanomaterials may adversely interact with biological tissues and potentially be cytotoxic and carcinogenic. However, precisely engineered design can outperform the risk with myriad benefits. Wound care technologies are evolving, and products involved in wound care management have a yearly market value of $15–22 billion. Solution blow spinning (SBS) is a facile technique to synthesize biocompatible nanofibers with scalable processing variables for multidirectional biomedical applications. SBS is feasible for a wide range of thermoplastic polymers and nanomaterials to fabricate nanocomposites. This review will focus on the relevance of SBS technology for wound care, including dressings, drug delivery, tissue engineering scaffolds, and sensors.

{"title":"Solution Blow Spinning: An Emerging Nanomaterials-Based Wound-Care Technology","authors":"Md Salauddin Sk,&nbsp;Ruth Mwangomo,&nbsp;Luke Daniel,&nbsp;Jordon Gilmore","doi":"10.1002/jbm.b.35513","DOIUrl":"10.1002/jbm.b.35513","url":null,"abstract":"<p>Application of one-dimensional nanofibers have witnessed exponential growth over the past few decades and are still emerging with their excellent physicochemical and electrical properties. The driving force behind this intriguing transition lies in their unique high surface-to-volume ratio, ubiquitous nanodomains, improved tensile strength, and flexibility to incorporate deliberate functionalities required for specific and advanced applications. Besides numerous benefits, nanomaterials may adversely interact with biological tissues and potentially be cytotoxic and carcinogenic. However, precisely engineered design can outperform the risk with myriad benefits. Wound care technologies are evolving, and products involved in wound care management have a yearly market value of $15–22 billion. Solution blow spinning (SBS) is a facile technique to synthesize biocompatible nanofibers with scalable processing variables for multidirectional biomedical applications. SBS is feasible for a wide range of thermoplastic polymers and nanomaterials to fabricate nanocomposites. This review will focus on the relevance of SBS technology for wound care, including dressings, drug delivery, tissue engineering scaffolds, and sensors.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35513","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photooxidation Cross-Linked, Glutaraldehyde Cross-Linked, or Enzyme and Hydrostatic Pressure Processed Decellularized Biomaterials for Cardiovascular Repair Do Not Affect Host Response in a Rat Right Ventricular Outflow Flow Tract Reconstruction (RVOT) Model
IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-24 DOI: 10.1002/jbm.b.35529
Parnaz Boodagh, Laura Modica De Mohac, Yasurani Hayashi, Danila Vella, Sang-Ho Ye, Federica Cosentino, Taro Fujii, Emily Gorge, Garrett Coyan, Joan Dario Laubrie Soto, Gaetano Burriesci, William R. Wagner, Antonio D'Amore
<div> <p>Cardiovascular diseases (CVDs) were responsible for approximately 19 million deaths in 2020, marking an increase of 18.7% since 2010. Biological decellularized patches are common therapeutic solutions for CVD such as cardiac and valve defects. The preparation of biomaterials for cardiac patches involves two main processing methods: glutaraldehyde or photooxidation cross-linking (fixation) and noncross-linked (nonfixation) processing. Despite the variety of products available in the market, cardiac patches still suffer from significant limitations, failing to adequately mimic the properties of biological tissue and restore its function. This study assesses the impact of different processing methodologies on the biological and biomechanical outcomes of three commercially available cardiac patches (CorPatch, CardioCel, PhotoFix) and one newly developed decellularized cardiac patch (Adeka) when implanted as right ventricular outflow tract (RVOT) repair material on a rat model. Four different patches for cardiovascular repair were selected based on their processing approaches and included: photooxidation crosslinked (PhotoFix), glutaraldehyde crosslinked (CardioCel), noncross-linked small intestine submucosa (CorPatch) or enzyme, and hydrostatic pressure (Adeka) processed decellularized biomaterials. Structure and function were characterized prior to implantation via thickness mapping, cross-section morphology, 2D surface topography, 3D volume microstructure, biaxial testing, uniaxial tensile testing, ball burst, and suture retention. Their host–biomaterials response was assessed in vivo using a relevant model for cardiovascular repair: a rat (RVOT) reconstruction with 8 and 16-week timepoints. Topological analysis showed that the crosslinked cardiac patches had a more homogeneous thickness distribution when compared to the noncrosslinked patches. This agreed with histological evaluation, where cross-linking processed materials better preserved collagen content than noncrosslinked patches who were also more delaminated. Biaxial data demonstrated that all patches, except CorPatch, recapitulated the anisotropic behavior of healthy left ventricle tissue. The Adeka patch in-plane mechanics at 16 weeks was the one who better resembled the mechanics of healthy cardiac tissue. All patches showed appropriate biocompatibility and function at 8- and 16-week timepoints for RVOT patching. This included echocardiographic assessment, biomechanics, macrophage infiltration and polarization, and angiogenesis. Consistently with a more porous laminae structure, explants histology showed higher cell infiltration in non-crosslinked Adeka when compared to the crosslinked PhotoFix. Overall, both in vitro and in vivo tests indicate that the material processing does not impact the function, biomechanical performance, and the host response of the patches that can be considered as equally effective as materials based cardiac repair solutions.</p>
{"title":"Photooxidation Cross-Linked, Glutaraldehyde Cross-Linked, or Enzyme and Hydrostatic Pressure Processed Decellularized Biomaterials for Cardiovascular Repair Do Not Affect Host Response in a Rat Right Ventricular Outflow Flow Tract Reconstruction (RVOT) Model","authors":"Parnaz Boodagh,&nbsp;Laura Modica De Mohac,&nbsp;Yasurani Hayashi,&nbsp;Danila Vella,&nbsp;Sang-Ho Ye,&nbsp;Federica Cosentino,&nbsp;Taro Fujii,&nbsp;Emily Gorge,&nbsp;Garrett Coyan,&nbsp;Joan Dario Laubrie Soto,&nbsp;Gaetano Burriesci,&nbsp;William R. Wagner,&nbsp;Antonio D'Amore","doi":"10.1002/jbm.b.35529","DOIUrl":"10.1002/jbm.b.35529","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 &lt;p&gt;Cardiovascular diseases (CVDs) were responsible for approximately 19 million deaths in 2020, marking an increase of 18.7% since 2010. Biological decellularized patches are common therapeutic solutions for CVD such as cardiac and valve defects. The preparation of biomaterials for cardiac patches involves two main processing methods: glutaraldehyde or photooxidation cross-linking (fixation) and noncross-linked (nonfixation) processing. Despite the variety of products available in the market, cardiac patches still suffer from significant limitations, failing to adequately mimic the properties of biological tissue and restore its function. This study assesses the impact of different processing methodologies on the biological and biomechanical outcomes of three commercially available cardiac patches (CorPatch, CardioCel, PhotoFix) and one newly developed decellularized cardiac patch (Adeka) when implanted as right ventricular outflow tract (RVOT) repair material on a rat model. Four different patches for cardiovascular repair were selected based on their processing approaches and included: photooxidation crosslinked (PhotoFix), glutaraldehyde crosslinked (CardioCel), noncross-linked small intestine submucosa (CorPatch) or enzyme, and hydrostatic pressure (Adeka) processed decellularized biomaterials. Structure and function were characterized prior to implantation via thickness mapping, cross-section morphology, 2D surface topography, 3D volume microstructure, biaxial testing, uniaxial tensile testing, ball burst, and suture retention. Their host–biomaterials response was assessed in vivo using a relevant model for cardiovascular repair: a rat (RVOT) reconstruction with 8 and 16-week timepoints. Topological analysis showed that the crosslinked cardiac patches had a more homogeneous thickness distribution when compared to the noncrosslinked patches. This agreed with histological evaluation, where cross-linking processed materials better preserved collagen content than noncrosslinked patches who were also more delaminated. Biaxial data demonstrated that all patches, except CorPatch, recapitulated the anisotropic behavior of healthy left ventricle tissue. The Adeka patch in-plane mechanics at 16 weeks was the one who better resembled the mechanics of healthy cardiac tissue. All patches showed appropriate biocompatibility and function at 8- and 16-week timepoints for RVOT patching. This included echocardiographic assessment, biomechanics, macrophage infiltration and polarization, and angiogenesis. Consistently with a more porous laminae structure, explants histology showed higher cell infiltration in non-crosslinked Adeka when compared to the crosslinked PhotoFix. Overall, both in vitro and in vivo tests indicate that the material processing does not impact the function, biomechanical performance, and the host response of the patches that can be considered as equally effective as materials based cardiac repair solutions.&lt;/p&gt;\u0000 ","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of Self-Healing Hydrogels in the Treatment of Intervertebral Disc Degeneration
IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-22 DOI: 10.1002/jbm.b.35532
Cunliang Guo, Xinyi Jiao, Xiaoxun Du, Tongxing Zhang, Bing Peng, Baoshan Xu

Intervertebral disc degeneration (IDD) is one of the leading causes of chronic pain and disability, and traditional treatment methods often struggle to restore its complex biomechanical properties. This article explores the innovative application of self-healing hydrogels in the treatment of IDD, offering new hope for disc repair due to their exceptional self-repair capabilities and adaptability. As a key support structure in the human body, intervertebral discs are often damaged by trauma or degenerative changes. Self-healing hydrogels not only mimic the mechanical properties of natural intervertebral discs but also self-repair when damaged, thereby maintaining stable functionality. This article reviews the self-healing mechanisms and design strategies of self-healing hydrogels and, for the first time, outlines their potential in the treatment of IDD. Furthermore, the article looks forward to future developments in the field, including intelligent material design, multifunctional integration, encapsulation and release of bioactive molecules, and innovative combinations with tissue engineering and stem cell therapy, offering new perspectives and strategies for IDD treatment.

{"title":"Application of Self-Healing Hydrogels in the Treatment of Intervertebral Disc Degeneration","authors":"Cunliang Guo,&nbsp;Xinyi Jiao,&nbsp;Xiaoxun Du,&nbsp;Tongxing Zhang,&nbsp;Bing Peng,&nbsp;Baoshan Xu","doi":"10.1002/jbm.b.35532","DOIUrl":"10.1002/jbm.b.35532","url":null,"abstract":"<div>\u0000 \u0000 <p>Intervertebral disc degeneration (IDD) is one of the leading causes of chronic pain and disability, and traditional treatment methods often struggle to restore its complex biomechanical properties. This article explores the innovative application of self-healing hydrogels in the treatment of IDD, offering new hope for disc repair due to their exceptional self-repair capabilities and adaptability. As a key support structure in the human body, intervertebral discs are often damaged by trauma or degenerative changes. Self-healing hydrogels not only mimic the mechanical properties of natural intervertebral discs but also self-repair when damaged, thereby maintaining stable functionality. This article reviews the self-healing mechanisms and design strategies of self-healing hydrogels and, for the first time, outlines their potential in the treatment of IDD. Furthermore, the article looks forward to future developments in the field, including intelligent material design, multifunctional integration, encapsulation and release of bioactive molecules, and innovative combinations with tissue engineering and stem cell therapy, offering new perspectives and strategies for IDD treatment.</p>\u0000 </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microfluidics Based Particle and Droplet Generation for Gene and Drug Delivery Approaches 基于微流体的颗粒和液滴的基因和药物传递方法。
IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-22 DOI: 10.1002/jbm.b.35530
Deniz Onan, Melike Özder, Meryem İrem Sipahi, Nazlıcan Poyraz, Ceylin Apaydın, Gülşah Erel-Akbaba, Hasan Akbaba

Microfluidics-based droplets have emerged as a powerful technology for biomedical research, offering precise control over droplet size and structure, optimal mixing of solutions, and prevention of cross-contamination. It is a major branch of microfluidic technology with applications in diagnostic testing, imaging, separation, and gene amplification. This review discusses the different aspects of microfluidic devices, droplet generation techniques, droplet types, and the production of micro/nano particles, along with their advantages and limitations. Passive and active methods for droplet formation are discussed, as well as the manipulation of droplet shape and content. This review also highlights the potential applications of droplet microfluidics in tissue engineering, cancer therapy, and drug delivery systems. The use of microfluidics in the production of lipid nanoparticles and polymeric microparticles is also presented, with emphasis on their potential in drug delivery and biomedical research. Finally, the contributions of microfluidics to vaccines, gene therapy, personalized medicine, and future perspectives are discussed, emphasizing the need for continuous innovation and integration with other technologies, such as AI and wearable devices, to further enhance its potential in personalized medicine and drug delivery. However, it is also noted that challenges in commercialization and widespread adoption still need to be addressed.

基于微流体的液滴已经成为生物医学研究的一项强大技术,可以精确控制液滴的大小和结构,优化溶液混合,防止交叉污染。它是微流控技术的一个重要分支,在诊断测试、成像、分离和基因扩增等方面都有应用。本文综述了微流控装置、微纳米微流体生成技术、微纳米微流体类型、微纳米微流体的制备及其优缺点。讨论了液滴形成的被动和主动方法,以及对液滴形状和含量的控制。本文还重点介绍了液滴微流体在组织工程、癌症治疗和药物输送系统中的潜在应用。还介绍了微流体在生产脂质纳米颗粒和聚合物微颗粒中的应用,重点介绍了它们在药物输送和生物医学研究中的潜力。最后,讨论了微流体在疫苗、基因治疗、个性化医疗和未来前景方面的贡献,强调需要不断创新并与其他技术(如人工智能和可穿戴设备)相结合,以进一步增强其在个性化医疗和药物输送方面的潜力。然而,也指出,在商业化和广泛采用方面的挑战仍然需要解决。
{"title":"Microfluidics Based Particle and Droplet Generation for Gene and Drug Delivery Approaches","authors":"Deniz Onan,&nbsp;Melike Özder,&nbsp;Meryem İrem Sipahi,&nbsp;Nazlıcan Poyraz,&nbsp;Ceylin Apaydın,&nbsp;Gülşah Erel-Akbaba,&nbsp;Hasan Akbaba","doi":"10.1002/jbm.b.35530","DOIUrl":"10.1002/jbm.b.35530","url":null,"abstract":"<p>Microfluidics-based droplets have emerged as a powerful technology for biomedical research, offering precise control over droplet size and structure, optimal mixing of solutions, and prevention of cross-contamination. It is a major branch of microfluidic technology with applications in diagnostic testing, imaging, separation, and gene amplification. This review discusses the different aspects of microfluidic devices, droplet generation techniques, droplet types, and the production of micro/nano particles, along with their advantages and limitations. Passive and active methods for droplet formation are discussed, as well as the manipulation of droplet shape and content. This review also highlights the potential applications of droplet microfluidics in tissue engineering, cancer therapy, and drug delivery systems. The use of microfluidics in the production of lipid nanoparticles and polymeric microparticles is also presented, with emphasis on their potential in drug delivery and biomedical research. Finally, the contributions of microfluidics to vaccines, gene therapy, personalized medicine, and future perspectives are discussed, emphasizing the need for continuous innovation and integration with other technologies, such as AI and wearable devices, to further enhance its potential in personalized medicine and drug delivery. However, it is also noted that challenges in commercialization and widespread adoption still need to be addressed.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35530","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143006173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Foamed Magnesium Phosphate Antimicrobial Bone Cement for Bone Augmentation 新型泡沫磷酸镁抗菌骨水泥增强骨。
IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-13 DOI: 10.1002/jbm.b.35492
Jie Chen, Ziqing Cheng, Jiawen Wang, Huifen Ding, Kai Wang, Ping Deng, Ling Xu, Jiao Huang

In dental implant surgery, infection is identified as the primary factor contributing to the failure of bone grafts. There is an urgent need to develop bone graft materials possessing antibacterial characteristics to facilitate bone regeneration. Magnesium phosphate bone cement (MPC) is highly desirable for bone regeneration due to its favorable biocompatibility, plasticity, and osteogenic capabilities. However, the limited porosity of conventional MPC hinders the nutrient supply, gas diffusion, and cell infiltration, thereby compromising its osteogenic efficacy. This research focused on the fabrication of a highly porous MPC (CaCO3/CA-MPC) by incorporating citric acid (CA) and calcium carbonate (CaCO3) as foaming agents. The resulting material demonstrated enhanced physicochemical properties, bioactivity, and antimicrobial effects. When compared with conventional MPC, human periodontal ligament stem cells (hPDLSCs) showed improved osteogenic differentiation when cultured with CaCO3/CA-MPC. The inclusion of foaming agents significantly enhanced the antimicrobial efficacy of MPC against both Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). The results of in vivo anti-infection experiments in rats revealed that 3%CaCO3/CA-MPC displayed superior bactericidal activity compared with Bio-Oss and control groups (p < 0.05), thereby enhancing the anti-infective outcomes post-bone grafting and stimulating osteogenesis in the infected bone defect region. The study demonstrated that MPC containing 3%CaCO3/CA exhibited excellent antimicrobial and osteogenic properties both in vitro and in vivo, suggesting its potential as a promising candidate as bone graft material for dental implant surgeries.

在植牙手术中,感染被认为是导致骨移植失败的主要因素。迫切需要开发具有抗菌特性的骨移植材料来促进骨再生。磷酸镁骨水泥(MPC)具有良好的生物相容性、可塑性和成骨能力,是骨再生的理想材料。然而,传统MPC有限的孔隙率阻碍了营养物质的供应、气体的扩散和细胞的浸润,从而影响了其成骨功效。本课题主要研究了以柠檬酸(CA)和碳酸钙(CaCO3)为发泡剂制备高孔MPC (CaCO3/CA-MPC)。所得材料表现出增强的物理化学特性、生物活性和抗菌作用。与常规MPC相比,CaCO3/CA-MPC培养的人牙周韧带干细胞(hPDLSCs)表现出更好的成骨分化。泡沫剂的加入显著增强了MPC对革兰氏阳性菌(金黄色葡萄球菌)和革兰氏阴性菌(大肠杆菌)的抑菌效果。大鼠体内抗感染实验结果显示,与Bio-Oss和对照组相比,3%CaCO3/CA- mpc在体外和体内均表现出优异的抗菌和成骨性能,表明其有潜力作为牙种植手术植骨材料。
{"title":"Novel Foamed Magnesium Phosphate Antimicrobial Bone Cement for Bone Augmentation","authors":"Jie Chen,&nbsp;Ziqing Cheng,&nbsp;Jiawen Wang,&nbsp;Huifen Ding,&nbsp;Kai Wang,&nbsp;Ping Deng,&nbsp;Ling Xu,&nbsp;Jiao Huang","doi":"10.1002/jbm.b.35492","DOIUrl":"10.1002/jbm.b.35492","url":null,"abstract":"<div>\u0000 \u0000 <p>In dental implant surgery, infection is identified as the primary factor contributing to the failure of bone grafts. There is an urgent need to develop bone graft materials possessing antibacterial characteristics to facilitate bone regeneration. Magnesium phosphate bone cement (MPC) is highly desirable for bone regeneration due to its favorable biocompatibility, plasticity, and osteogenic capabilities. However, the limited porosity of conventional MPC hinders the nutrient supply, gas diffusion, and cell infiltration, thereby compromising its osteogenic efficacy. This research focused on the fabrication of a highly porous MPC (CaCO<sub>3</sub>/CA-MPC) by incorporating citric acid (CA) and calcium carbonate (CaCO<sub>3</sub>) as foaming agents. The resulting material demonstrated enhanced physicochemical properties, bioactivity, and antimicrobial effects. When compared with conventional MPC, human periodontal ligament stem cells (hPDLSCs) showed improved osteogenic differentiation when cultured with CaCO<sub>3</sub>/CA-MPC. The inclusion of foaming agents significantly enhanced the antimicrobial efficacy of MPC against both Gram-positive bacteria (<i>Staphylococcus aureus</i>) and Gram-negative bacteria (<i>Escherichia coli</i>). The results of in vivo anti-infection experiments in rats revealed that 3%CaCO<sub>3</sub>/CA-MPC displayed superior bactericidal activity compared with Bio-Oss and control groups (<i>p</i> &lt; 0.05), thereby enhancing the anti-infective outcomes post-bone grafting and stimulating osteogenesis in the infected bone defect region. The study demonstrated that MPC containing 3%CaCO<sub>3</sub>/CA exhibited excellent antimicrobial and osteogenic properties both in vitro and in vivo, suggesting its potential as a promising candidate as bone graft material for dental implant surgeries.</p>\u0000 </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142978561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of biomedical materials research. Part B, Applied biomaterials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1