Derek S. Sheinberg, Ricky Almada, Marcelo Parra, Blaire V. Slavin, Nicholas A. Mirsky, Vasudev Vivekanand Nayak, Nick Tovar, Lukasz Witek, Paulo G. Coelho
Periodontitis is a bacteria-induced chronic inflammatory disease characterized by degradation of the supporting tissue and bone in the oral cavity. Treatment modalities seek to facilitate periodontal rehabilitation while simultaneously preventing further gingival tissue recession and potentially bone atrophy. The aim of this study was to compare two differently sourced membranes, a resorbable piscine collagen membrane and a porcine-derived collagen membrane, in the repair of soft tissue defects utilizing a preclinical canine model. This in vivo component consisted of 10 beagles which were subjected to bilateral maxillary canine mucogingival flap defects, as well as bilateral soft tissue defects (or pouches) with no periodontal ligament damage in the mandibular canines. Defects received either a piscine-derived dermal membrane, (Kerecis® Oral, Ísafjörður, Iceland) or porcine-derived dermal membrane (Geistlich Mucograft®, Wolhusen, Switzerland) in a randomized fashion (to avoid site bias) and were allowed to heal for 30, 60, or 90 days. Statistical evaluation of tissue thickness was performed using general linear mixed model analysis of variance and least significant difference (LSD) post hoc analyses with fixed factors of time and membrane. Semi-quantitative analysis employed for inflammation assessment was evaluated using a chi-squared test along with a heteroscedastic t-test and values were reported as mean and corresponding 95% confidence intervals. In both the mucogingival flap defects and soft tissue gingival pouches, no appreciable qualitative differences were observed in tissue healing between the membranes. Furthermore, no statistical differences were observed in the thickness measurements between piscine- and porcine-derived membranes in the mucogingival flap defects (1.05 mm [±0.17] and 1.29 mm [±0.17], respectively [p = .06]) or soft tissue pouches (1.36 mm [±0.14] and 1.47 mm [±0.14], respectively [p = .27]), collapsed over time. Independent of membrane source (i.e., piscine or porcine), similar inflammatory responses were observed in both the maxilla and mandible at the three time points (p = .88 and p = .79, respectively). Histologic and histomorphometric evaluation results indicated that both membranes yielded equivalent tissue responses, remodeling dynamics and healing patterns for the mucogingival flap as well as the soft tissue gingival pouch defect models.
牙周炎是一种由细菌引起的慢性炎症性疾病,以口腔支持组织和牙槽骨退化为特征。治疗方法旨在促进牙周康复,同时防止牙龈组织进一步萎缩和潜在的牙槽骨萎缩。本研究的目的是比较两种不同来源的膜,一种是可吸收的鱼胶原蛋白膜,另一种是源自猪的胶原蛋白膜。该活体模型由 10 只猎犬组成,这些猎犬的双侧上颌犬齿粘龈瓣缺损,以及下颌犬齿无牙周韧带损伤的双侧软组织缺损(或袋状缺损)。这些缺损以随机方式(以避免部位偏差)接受了源自鱼类的真皮膜(Kerecis® Oral,冰岛Ísafjörður)或源自猪类的真皮膜(Geistlich Mucograft®,瑞士Wolhusen),并在30、60或90天内愈合。组织厚度的统计评估采用一般线性混合模型方差分析和最小显著性差异(LSD)事后分析,时间和膜为固定因素。炎症评估所采用的半定量分析是通过卡方检验和异方差 t 检验进行评估的,数值以平均值和相应的 95% 置信区间报告。在粘龈瓣缺损和软组织龈袋中,没有观察到膜组织愈合的明显质量差异。此外,在粘龈瓣缺损(分别为 1.05 mm [±0.17] 和 1.29 mm [±0.17] [p=0.06])或软组织龈袋(分别为 1.36 mm [±0.14] 和 1.47 mm [±0.14] [p=0.27])的厚度测量中,也没有观察到粘龈瓣缺损和软组织龈袋随时间塌陷的统计学差异。无论膜的来源(即鱼膜还是猪膜)如何,在三个时间点,上颌骨和下颌骨都观察到了类似的炎症反应(p = .88 和 p = .79)。组织学和组织形态计量学评估结果表明,两种膜在粘龈瓣和软组织龈袋缺损模型中都产生了相同的组织反应、重塑动态和愈合模式。
{"title":"Preclinical evaluation of mucogingival defect treatment using piscine membranes: An in vivo assessment of wound healing","authors":"Derek S. Sheinberg, Ricky Almada, Marcelo Parra, Blaire V. Slavin, Nicholas A. Mirsky, Vasudev Vivekanand Nayak, Nick Tovar, Lukasz Witek, Paulo G. Coelho","doi":"10.1002/jbm.b.35468","DOIUrl":"10.1002/jbm.b.35468","url":null,"abstract":"<p>Periodontitis is a bacteria-induced chronic inflammatory disease characterized by degradation of the supporting tissue and bone in the oral cavity. Treatment modalities seek to facilitate periodontal rehabilitation while simultaneously preventing further gingival tissue recession and potentially bone atrophy. The aim of this study was to compare two differently sourced membranes, a resorbable piscine collagen membrane and a porcine-derived collagen membrane, in the repair of soft tissue defects utilizing a preclinical canine model. This in vivo component consisted of 10 beagles which were subjected to bilateral maxillary canine mucogingival flap defects, as well as bilateral soft tissue defects (or pouches) with no periodontal ligament damage in the mandibular canines. Defects received either a piscine-derived dermal membrane, (Kerecis® Oral, Ísafjörður, Iceland) or porcine-derived dermal membrane (Geistlich Mucograft®, Wolhusen, Switzerland) in a randomized fashion (to avoid site bias) and were allowed to heal for 30, 60, or 90 days. Statistical evaluation of tissue thickness was performed using general linear mixed model analysis of variance and least significant difference (LSD) post hoc analyses with fixed factors of time and membrane. Semi-quantitative analysis employed for inflammation assessment was evaluated using a chi-squared test along with a heteroscedastic <i>t</i>-test and values were reported as mean and corresponding 95% confidence intervals. In both the mucogingival flap defects and soft tissue gingival pouches, no appreciable qualitative differences were observed in tissue healing between the membranes. Furthermore, no statistical differences were observed in the thickness measurements between piscine- and porcine-derived membranes in the mucogingival flap defects (1.05 mm [±0.17] and 1.29 mm [±0.17], respectively [<i>p</i> = .06]) or soft tissue pouches (1.36 mm [±0.14] and 1.47 mm [±0.14], respectively [<i>p</i> = .27]), collapsed over time. Independent of membrane source (i.e., piscine or porcine), similar inflammatory responses were observed in both the maxilla and mandible at the three time points (<i>p</i> = .88 and <i>p</i> = .79, respectively). Histologic and histomorphometric evaluation results indicated that both membranes yielded equivalent tissue responses, remodeling dynamics and healing patterns for the mucogingival flap as well as the soft tissue gingival pouch defect models.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abhisek Gupta, Ananya Barui, Rupak K. Banerjee, Apurba Das, Amit Roy Chowdhury
Investigating the influence of different cellular mechanical and physical properties on cells in vitro is important for assessing cellular activities like differentiation, proliferation, and migration. Evaluating the mechanical response of the cells lodged on a scaffold due to variations in substrate roughness, substrate elasticity, fluid flow, and the shapes of the cells is the main goal of the study. In this comprehensive analysis, a combination of the fluid structure interaction method and the submodeled finite element technique was employed to anticipate the mechanical responses across various cells at the interface between cells and the substrate. Fluid inlet velocity, substrate roughness, and substrate material were varied in this analysis. Different cell shapes were considered along with various components such as cell membrane, cytoplasm, nucleus, and cytoskeletons. This analysis shows the effect of these individual parameters on the elastic strain and strain energy density of cells at the cell-substrate interface. The results highlight that substrate roughness has a more significant impact on the mechanical response of cells at the interface than substrate elasticity. However, effect of the substrate elasticity becomes crucial for extremely soft substrate materials. The results of this research can be applied to identify the optimal parameters for fluid flow and create a suitable condition for cell culture.
{"title":"A multiscale modeling to determine in vitro mechanical responses of different cells at the cell-substrate interface under fluid perfusion","authors":"Abhisek Gupta, Ananya Barui, Rupak K. Banerjee, Apurba Das, Amit Roy Chowdhury","doi":"10.1002/jbm.b.35462","DOIUrl":"10.1002/jbm.b.35462","url":null,"abstract":"<p>Investigating the influence of different cellular mechanical and physical properties on cells in vitro is important for assessing cellular activities like differentiation, proliferation, and migration. Evaluating the mechanical response of the cells lodged on a scaffold due to variations in substrate roughness, substrate elasticity, fluid flow, and the shapes of the cells is the main goal of the study. In this comprehensive analysis, a combination of the fluid structure interaction method and the submodeled finite element technique was employed to anticipate the mechanical responses across various cells at the interface between cells and the substrate. Fluid inlet velocity, substrate roughness, and substrate material were varied in this analysis. Different cell shapes were considered along with various components such as cell membrane, cytoplasm, nucleus, and cytoskeletons. This analysis shows the effect of these individual parameters on the elastic strain and strain energy density of cells at the cell-substrate interface. The results highlight that substrate roughness has a more significant impact on the mechanical response of cells at the interface than substrate elasticity. However, effect of the substrate elasticity becomes crucial for extremely soft substrate materials. The results of this research can be applied to identify the optimal parameters for fluid flow and create a suitable condition for cell culture.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bacterial infections already pose a significant threat to skin wounds, especially in diabetic patients who have difficulty healing wounds. However, wound or bacterial infections are known to produce excess reactive oxygen species (ROS), and hypoxia may further hinder wound healing and the development of chronic wounds. In this study, a multifunctional hydrogel for ROS scavenging and bacterial inhibition was developed by cross-linking polyvinyl alcohol (PVA) and sodium alginate (SA) with graphene oxide (GO) loaded with silver-platinum hybrid nanoparticles (GO@Ag-Pt). The PVA/SA hydrogel loaded with GO@Ag-Pt exhibited the ability to scavenge different types of ROS, generate O2, and kill a broad spectrum of bacteria in vitro. The silver-platinum hybrid nanoparticles significantly increased the antibacterial ability against Escherichia coli and Staphylococcus aureus compared with silver nanoparticles (AgNps). GO@Ag-Pt loaded hydrogel was effective in treating infections caused by S.aureus, thereby significantly promoting wound healing during the inflammatory phase. Hydrogel therapy significantly reduced the level of ROS and alleviated inflammation levels. Notably, our ROS-scavenging, antibacterial hydrogels can be used to effectively treat various types of wounds, including difficult-to-heal diabetic wounds with bacterial infections. Thus, this study proposes an effective strategy for various chronic wound healing based on ROS clearance and bacteriostatic hydrogels.
{"title":"Promoting the healing of infected diabetic wound by nanozyme-containing hydrogel with anti-bacterial inflammation suppressing, ROS-scavenging and oxygen-generating properties","authors":"Le-Ping Chen, Xin-Yu Wang, Ming-Jin Ren, Yuan Wang, Jia-Meng Zhao, Ti-Ti Qiang, Lin-Yi Dong, Xian-Hua Wang","doi":"10.1002/jbm.b.35458","DOIUrl":"10.1002/jbm.b.35458","url":null,"abstract":"<p>Bacterial infections already pose a significant threat to skin wounds, especially in diabetic patients who have difficulty healing wounds. However, wound or bacterial infections are known to produce excess reactive oxygen species (ROS), and hypoxia may further hinder wound healing and the development of chronic wounds. In this study, a multifunctional hydrogel for ROS scavenging and bacterial inhibition was developed by cross-linking polyvinyl alcohol (PVA) and sodium alginate (SA) with graphene oxide (GO) loaded with silver-platinum hybrid nanoparticles (GO@Ag-Pt). The PVA/SA hydrogel loaded with GO@Ag-Pt exhibited the ability to scavenge different types of ROS, generate O<sub>2</sub>, and kill a broad spectrum of bacteria in vitro. The silver-platinum hybrid nanoparticles significantly increased the antibacterial ability against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> compared with silver nanoparticles (AgNps). GO@Ag-Pt loaded hydrogel was effective in treating infections caused by <i>S.aureus</i>, thereby significantly promoting wound healing during the inflammatory phase. Hydrogel therapy significantly reduced the level of ROS and alleviated inflammation levels. Notably, our ROS-scavenging, antibacterial hydrogels can be used to effectively treat various types of wounds, including difficult-to-heal diabetic wounds with bacterial infections. Thus, this study proposes an effective strategy for various chronic wound healing based on ROS clearance and bacteriostatic hydrogels.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141912808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Secondary healing of fractured bones requires an application of an appropriate fixator. In general, steel or titanium devices are used mostly. However, in recent years, composite structures arise as an attractive alternative due to high strength to weight ratio and other advantages like, for example, radiolucency. According to Food and Drug Administration (FDA), the only unidirectionally reinforced composite allowed to be implanted in human bodies is carbon fiber (CF)-reinforced poly-ether-ether-ketone (PEEK). In this work, the healing process of long bone assembled with CF/PEEK plates with cross- and angle-ply lay-up configurations is studied in the framework of finite element method. The healing is simulated by making use of the mechanoregulation model basing on the Prendergast theory. Cells transformation is determined by the octahedral shear strain and interstitial fluid velocity. The process runs iteratively assuming single load cycle each day. The fracture is subjected to axial and transverse forces. In the computations, the Abaqus program is used. It is shown that the angle-ply lamination scheme of CF/PEEK composite seems to provide better conditions for the transformation of the soft callus into the bone tissue.
{"title":"Bone healing under different lay-up configuration of carbon fiber-reinforced PEEK composite plates","authors":"Agnieszka Sabik","doi":"10.1002/jbm.b.35463","DOIUrl":"10.1002/jbm.b.35463","url":null,"abstract":"<p>Secondary healing of fractured bones requires an application of an appropriate fixator. In general, steel or titanium devices are used mostly. However, in recent years, composite structures arise as an attractive alternative due to high strength to weight ratio and other advantages like, for example, radiolucency. According to Food and Drug Administration (FDA), the only unidirectionally reinforced composite allowed to be implanted in human bodies is carbon fiber (CF)-reinforced poly-ether-ether-ketone (PEEK). In this work, the healing process of long bone assembled with CF/PEEK plates with cross- and angle-ply lay-up configurations is studied in the framework of finite element method. The healing is simulated by making use of the mechanoregulation model basing on the Prendergast theory. Cells transformation is determined by the octahedral shear strain and interstitial fluid velocity. The process runs iteratively assuming single load cycle each day. The fracture is subjected to axial and transverse forces. In the computations, the Abaqus program is used. It is shown that the angle-ply lamination scheme of CF/PEEK composite seems to provide better conditions for the transformation of the soft callus into the bone tissue.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35463","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashish Kumar Meher, A. Jyotiraditya Srinivas, Vikash Kumar, Subrata Kumar Panda
The effect of strain rate and temperature on the hyperelastic material stress–strain characteristics of the damaged porcine brain tissue is evaluated in this present work. The desired constitutive responses are obtained using the commercially available finite element (FE) tool ABAQUS, utilizing 8-noded brick elements. The model's accuracy has been verified by comparing the results from the previously published literature. Further, the stress–strain behavior of the brain tissue is evaluated by varying the damages at various strain rates and temperatures (13, 20, 27, and 37°C) under compression test. Additionally, the sensitivity analysis of the model is computed to check the effect of input parameters, that is, the temperature, strain rate, and damages on the material properties (shear modulus). The modeling and discussion sections enumerate the inclusive features and model capabilities.
{"title":"Computational modeling and uncertainty prediction of hyperelastic constitutive responses of damaged brain tissue under different temperature and strain rates","authors":"Ashish Kumar Meher, A. Jyotiraditya Srinivas, Vikash Kumar, Subrata Kumar Panda","doi":"10.1002/jbm.b.35460","DOIUrl":"10.1002/jbm.b.35460","url":null,"abstract":"<p>The effect of strain rate and temperature on the hyperelastic material stress–strain characteristics of the damaged porcine brain tissue is evaluated in this present work. The desired constitutive responses are obtained using the commercially available finite element (FE) tool ABAQUS, utilizing 8-noded brick elements. The model's accuracy has been verified by comparing the results from the previously published literature. Further, the stress–strain behavior of the brain tissue is evaluated by varying the damages at various strain rates and temperatures (13, 20, 27, and 37°C) under compression test. Additionally, the sensitivity analysis of the model is computed to check the effect of input parameters, that is, the temperature, strain rate, and damages on the material properties (shear modulus). The modeling and discussion sections enumerate the inclusive features and model capabilities.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cícero Andrade Sigilião Celles, Andréa Cândido dos Reis
Dental implant surface properties such as roughness, wettability, and porosity ensure cell interaction and tissue integration. The clinical performance of dental implants depends on the crystallographic texture and protein and cell bonds to the substrates, where grain size, orientation, and inclination are parameters responsible for favoring osteoblast adhesion and limiting bacterial adhesion. The lack of consensus on the best crystallographic plan for cell adhesion prompted this systematic review, which aims to answer the following question: “What is the influence of the crystallographic plane on titanium surfaces on cell adhesion?” by evaluating the literature on the crystallographic characteristics of titanium and how these dictate topographical parameters and influence the cell adhesion of devices made from this material. It followed the Preferred Reporting Standards for Systematic Reviews and Meta-Analyses (PRISMA 2020) registered with the Open Science Framework (OSF) (osf.io/xq6kv). The search strategy was based on the PICOS method. It chose in vitro articles that analyzed crystallographic structure correlated with cell adhesion and investigated the microstructure and its effects on cell culture, different crystal orientation distributions, and the influence of crystallinity. The search strategies were applied to the different electronic databases: PubMed, Scopus, Science Direct, Embase, and Google Scholar, and the articles found were attached to the Rayyan digital platform and assessed blindly. The Joanna Bringgs Institute (JBI) tool assessed the risk of bias. A total of 248 articles were found. After removing duplicates, 192 were analyzed by title and abstract. Of these, 18 were selected for detailed reading in their entirety, 9 of which met the eligibility criteria. The included studies presented a low risk of bias. The role of the crystallographic orientation of the exposed faces in a multicrystalline material is little discussed in the scientific literature and its impact is recognized as dictating the topographical characteristics of the material that facilitate cell adhesion.
{"title":"Titanium: A systematic review of the relationship between crystallographic profile and cell adhesion","authors":"Cícero Andrade Sigilião Celles, Andréa Cândido dos Reis","doi":"10.1002/jbm.b.35450","DOIUrl":"10.1002/jbm.b.35450","url":null,"abstract":"<p>Dental implant surface properties such as roughness, wettability, and porosity ensure cell interaction and tissue integration. The clinical performance of dental implants depends on the crystallographic texture and protein and cell bonds to the substrates, where grain size, orientation, and inclination are parameters responsible for favoring osteoblast adhesion and limiting bacterial adhesion. The lack of consensus on the best crystallographic plan for cell adhesion prompted this systematic review, which aims to answer the following question: “What is the influence of the crystallographic plane on titanium surfaces on cell adhesion?” by evaluating the literature on the crystallographic characteristics of titanium and how these dictate topographical parameters and influence the cell adhesion of devices made from this material. It followed the Preferred Reporting Standards for Systematic Reviews and Meta-Analyses (PRISMA 2020) registered with the Open Science Framework (OSF) (osf.io/xq6kv). The search strategy was based on the PICOS method. It chose in vitro articles that analyzed crystallographic structure correlated with cell adhesion and investigated the microstructure and its effects on cell culture, different crystal orientation distributions, and the influence of crystallinity. The search strategies were applied to the different electronic databases: PubMed, Scopus, Science Direct, Embase, and Google Scholar, and the articles found were attached to the Rayyan digital platform and assessed blindly. The Joanna Bringgs Institute (JBI) tool assessed the risk of bias. A total of 248 articles were found. After removing duplicates, 192 were analyzed by title and abstract. Of these, 18 were selected for detailed reading in their entirety, 9 of which met the eligibility criteria. The included studies presented a low risk of bias. The role of the crystallographic orientation of the exposed faces in a multicrystalline material is little discussed in the scientific literature and its impact is recognized as dictating the topographical characteristics of the material that facilitate cell adhesion.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Verônica Ribeiro dos Santos, Tiago Moreira Bastos Campos, Caroline Anselmi, Joyce Rodrigues de Souza, Ana Paula Lemes, Gilmar Patrocínio Thim, Marco Cicero Bottino, Alexandre Luiz Souto Borges, Eliandra de Sousa Trichês
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibers embedded with borate glasses of 45B5 composition doped with Co2+, Cu2+, and Zn2+(46.1 B₂O₃26.9-X CaO24.4 Na₂O2.6 P₂O₅, X CoO/CuO/ZnO mol % (X = 0–5)) were produced by electrospinning for wound healing applications. Prior to their addition, the glasses exhibited two broad halos typical of a vitreous borate network, which were mainly composed of ring-type metaborate structural units. The particle distribution in the PHBV nanofibers embedded with 45B5 borate bioactive glasses is present in isolated and agglomerated states, being partially coated by a polymeric layer—except for the cobalt-doped glass, which resulted in a successful encapsulation with 100% embedding efficiency. The incorporation of the glasses reduced the PHBV crystallinity degree and its decomposition temperature, as well as its mechanical properties, including Young's modulus, tensile strength, and elongation at break. The neat PHBV fibers and those containing the cobalt-doped glasses demonstrated great cytocompatibility with human keratinocytes (HaCat), as suggested by the high cell viability after 7 days of exposure. Further studies are needed to fully understand the wound healing potential of these fibers, but our results significantly contribute to the area.
{"title":"Development of PHBV electrospun fibers containing a borate bioactive glass doped with Co, Cu, and Zn for wound dressings","authors":"Verônica Ribeiro dos Santos, Tiago Moreira Bastos Campos, Caroline Anselmi, Joyce Rodrigues de Souza, Ana Paula Lemes, Gilmar Patrocínio Thim, Marco Cicero Bottino, Alexandre Luiz Souto Borges, Eliandra de Sousa Trichês","doi":"10.1002/jbm.b.35459","DOIUrl":"10.1002/jbm.b.35459","url":null,"abstract":"<p>Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibers embedded with borate glasses of 45B5 composition doped with Co<sup>2+</sup>, Cu<sup>2+</sup>, and Zn<sup>2</sup><sup>+</sup>(46.1 B₂O₃<span></span>26.9-X CaO<span></span>24.4 Na₂O<span></span>2.6 P₂O₅, X CoO/CuO/ZnO mol % (<i>X</i> = 0–5)) were produced by electrospinning for wound healing applications. Prior to their addition, the glasses exhibited two broad halos typical of a vitreous borate network, which were mainly composed of ring-type metaborate structural units. The particle distribution in the PHBV nanofibers embedded with 45B5 borate bioactive glasses is present in isolated and agglomerated states, being partially coated by a polymeric layer—except for the cobalt-doped glass, which resulted in a successful encapsulation with 100% embedding efficiency. The incorporation of the glasses reduced the PHBV crystallinity degree and its decomposition temperature, as well as its mechanical properties, including Young's modulus, tensile strength, and elongation at break. The neat PHBV fibers and those containing the cobalt-doped glasses demonstrated great cytocompatibility with human keratinocytes (HaCat), as suggested by the high cell viability after 7 days of exposure. Further studies are needed to fully understand the wound healing potential of these fibers, but our results significantly contribute to the area.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zahra Pazhouhnia, Ali Farzin, Hossein Rastgar, Manoochehr Dadgarnezhad, Behrooz Jannat
The quality of life is negatively impacted by chronic wounds for more than 25 million people in the US. They are quite prone to infection, which may lead to the eventual loss of a limb. By exposing the ulcers to treatment agents at the appropriate time, the healing rate is increased. On-demand drug release in a closed-loop system will aid us in reaching our goal. In this study, we have developed a platform capable of real-time diagnosis of bacterial infection by wirelessly reading wound pH, as well as slow and on-demand local administration of antibiotics. The drug carrier microparticles, an electrical patch, a thermoresponsive hydrogel with an integrated microheater, and a flexible pH sensor comprised the closed-loop patch. Here it is reported that slow and smart release of cefazolin can be addressed by incorporation of drug encapsulated hydrophobic microparticles embedded into a thermo-responsive hydrogel. The utilization of a programmable bandage to provide antibiotic medication highlights the need of not only choosing appropriate therapeutic substances but also the controlled release of the medicine and its rate of release within the wound area. The results of our study indicate that the use of cefazolin encapsulated polycaprolactone (PCL) microparticles can effectively regulate the application of antibiotic treatment for chronic skin wounds. The results also showed a substantial gradual release of cefazolin from the thermo-responsive Pnipam hydrogel when the wound dressing was subjected to a temperature of 37°C. We believe that the developed flexible smart bandage can have a significant impact on chronic wound healing.
{"title":"Smart wireless flexible bandage containing drug loaded polycaprolactone microparticles for real-time monitoring and treatment of chronic wounds","authors":"Zahra Pazhouhnia, Ali Farzin, Hossein Rastgar, Manoochehr Dadgarnezhad, Behrooz Jannat","doi":"10.1002/jbm.b.35454","DOIUrl":"10.1002/jbm.b.35454","url":null,"abstract":"<p>The quality of life is negatively impacted by chronic wounds for more than 25 million people in the US. They are quite prone to infection, which may lead to the eventual loss of a limb. By exposing the ulcers to treatment agents at the appropriate time, the healing rate is increased. On-demand drug release in a closed-loop system will aid us in reaching our goal. In this study, we have developed a platform capable of real-time diagnosis of bacterial infection by wirelessly reading wound pH, as well as slow and on-demand local administration of antibiotics. The drug carrier microparticles, an electrical patch, a thermoresponsive hydrogel with an integrated microheater, and a flexible pH sensor comprised the closed-loop patch. Here it is reported that slow and smart release of cefazolin can be addressed by incorporation of drug encapsulated hydrophobic microparticles embedded into a thermo-responsive hydrogel. The utilization of a programmable bandage to provide antibiotic medication highlights the need of not only choosing appropriate therapeutic substances but also the controlled release of the medicine and its rate of release within the wound area. The results of our study indicate that the use of cefazolin encapsulated polycaprolactone (PCL) microparticles can effectively regulate the application of antibiotic treatment for chronic skin wounds. The results also showed a substantial gradual release of cefazolin from the thermo-responsive Pnipam hydrogel when the wound dressing was subjected to a temperature of 37°C. We believe that the developed flexible smart bandage can have a significant impact on chronic wound healing.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We have previously reported that a novel bioresorbable self-setting injectable bone paste composed of hydroxyapatite/collagen bone-like nanocomposite (HAp/Col) and (3-glycidoxypropyl)trimethoxysilane (GPTMS) was successfully prepared and was replaced with new bone within 3 months of implantation in defects created in porcine tibia. In this study, the HAp/Col-GPTMS paste was implanted into bone defects in rat tibiae to investigate the initial kinetics and bone tissue response. Even though more than 35% of GPTMS molecules should be eluted rapidly from directly injected pastes according to previously reported cell culture tests, in this study, energy-dispersive X-ray spectrometry did not detect Si (GPTMS) deposition in tissues surrounding the paste at 1 day postimplantation. Further, no abnormal inflammatory responses were observed in the surrounding tissues over the test period for both directly injected and prehardened pastes. Companying these observations with the results of the previous animal test (in which the paste was fully resorbed and was substituted with new bone), the eluted GPTMS resolved in no harm in vivo from the initial to final (completely resorbed) stages. Material resorption rates calculated from X-ray microcomputed tomography (μ-CT) images decreased with increasing in GPTMS concentration. Histological observations indicated that tartrate-resistant acid phosphatase (TRAP) active cells, (assumed to be osteoclasts), exist on the periphery of pastes. This result suggested that the paste was resorbed by osteoclasts in the same way as the HAp/Col. Since a good correlation was observed between TRAP active areas in histological sections and material resorption rate calculated from μ-CT, the TRAP activity coverage ratio offers the possibility to estimate the osteoclastic resorption ratio of materials, which are replaced with bone via bone remodeling process.
{"title":"Initial bone tissue reactions of hydroxyapatite/collagen–(3-glycidoxypropyl)trimethoxysilane injectable bone paste","authors":"Taira Sato, Yuki Shirosaki, Sho Oshima, Kanji Tsuru, Yoshihisa Koyama, Mamoru Aizawa, Masanori Kikuchi","doi":"10.1002/jbm.b.35451","DOIUrl":"10.1002/jbm.b.35451","url":null,"abstract":"<p>We have previously reported that a novel bioresorbable self-setting injectable bone paste composed of hydroxyapatite/collagen bone-like nanocomposite (HAp/Col) and (3-glycidoxypropyl)trimethoxysilane (GPTMS) was successfully prepared and was replaced with new bone within 3 months of implantation in defects created in porcine tibia. In this study, the HAp/Col-GPTMS paste was implanted into bone defects in rat tibiae to investigate the initial kinetics and bone tissue response. Even though more than 35% of GPTMS molecules should be eluted rapidly from directly injected pastes according to previously reported cell culture tests, in this study, energy-dispersive X-ray spectrometry did not detect Si (GPTMS) deposition in tissues surrounding the paste at 1 day postimplantation. Further, no abnormal inflammatory responses were observed in the surrounding tissues over the test period for both directly injected and prehardened pastes. Companying these observations with the results of the previous animal test (in which the paste was fully resorbed and was substituted with new bone), the eluted GPTMS resolved in no harm in vivo from the initial to final (completely resorbed) stages. Material resorption rates calculated from X-ray microcomputed tomography (μ-CT) images decreased with increasing in GPTMS concentration. Histological observations indicated that tartrate-resistant acid phosphatase (TRAP) active cells, (assumed to be osteoclasts), exist on the periphery of pastes. This result suggested that the paste was resorbed by osteoclasts in the same way as the HAp/Col. Since a good correlation was observed between TRAP active areas in histological sections and material resorption rate calculated from μ-CT, the TRAP activity coverage ratio offers the possibility to estimate the osteoclastic resorption ratio of materials, which are replaced with bone via bone remodeling process.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35451","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lisa Leyssens, Noémie Lapraille, Grzegorz Pyka, Pascal J. Jacques, Sandrine Horman, Jeremy Goldman, Greet Kerckhofs
In vitro testing for evaluating degradation mode and rate of candidate biodegradable metals to be used as intravascular stents is crucial before going to in vivo animal models. In this study, we show that X-ray microfocus computed tomography (microCT) presents a key added value to visualize degradation mode and to evaluate degradation rate and material surface properties in 3D and at high resolution of large regions of interest. The in vitro degradation behavior of three candidate biodegradable stent materials was evaluated: pure iron (Fe), pure zinc (Zn), and a quinary Zn alloy (ZnAgCuMnZr). These metals were compared to a reference biostable cobaltchromium (CoCr) alloy. To compare the degradation mode and degradation rate evaluated with microCT, scanning electron microscopy (SEM) and inductively-coupled plasma (ICP) were included. We confirmed that Fe degrades very slowly but with desirable uniform surface corrosion. Zn degrades faster but exhibits localized deep pitting corrosion. The Zn alloy degrades at a similar rate as the pure Zn, but more homogeneously. However, the formation of deep internal dendrites was observed. Our study provides a detailed microCT-based comparison of essential surface and corrosion properties, with a structural characterization of the corrosion behavior, of different candidate stent materials in 3D in a non-destructive way.
在使用体内动物模型之前,对用作血管内支架的候选生物可降解金属进行体外测试以评估其降解模式和降解速率至关重要。在这项研究中,我们发现 X 射线微聚焦计算机断层扫描(microCT)在可视化降解模式、评估降解率和材料表面特性方面具有重要的附加值,它能以三维和高分辨率观察大面积的相关区域。我们评估了三种候选生物降解支架材料的体外降解行为:纯铁(Fe)、纯锌(Zn)和二元锌合金(ZnAgCuMnZr)。这些金属与参考的生物稳定钴 铬(CoCr)合金进行了比较。为了比较使用 microCT 评估的降解模式和降解率,我们还使用了扫描电子显微镜(SEM)和电感耦合等离子体(ICP)。我们证实,铁的降解速度非常缓慢,但表面腐蚀非常均匀。锌的降解速度较快,但表现出局部深点蚀。锌合金的降解速度与纯锌相似,但更均匀。不过,也观察到了深层内部树枝状突起的形成。我们的研究以无损方式详细比较了不同候选支架材料的基本表面和腐蚀特性,并对其腐蚀行为进行了三维结构表征。
{"title":"Exploring the biodegradability of candidate metallic intravascular stent materials using X-ray microfocus computed tomography: An in vitro study","authors":"Lisa Leyssens, Noémie Lapraille, Grzegorz Pyka, Pascal J. Jacques, Sandrine Horman, Jeremy Goldman, Greet Kerckhofs","doi":"10.1002/jbm.b.35452","DOIUrl":"10.1002/jbm.b.35452","url":null,"abstract":"<p>In vitro testing for evaluating degradation mode and rate of candidate biodegradable metals to be used as intravascular stents is crucial before going to in vivo animal models. In this study, we show that X-ray microfocus computed tomography (microCT) presents a key added value to visualize degradation mode and to evaluate degradation rate and material surface properties in 3D and at high resolution of large regions of interest. The in vitro degradation behavior of three candidate biodegradable stent materials was evaluated: pure iron (Fe), pure zinc (Zn), and a quinary Zn alloy (Zn<span></span>Ag<span></span>Cu<span></span>Mn<span></span>Zr). These metals were compared to a reference biostable cobalt<span></span>chromium (Co<span></span>Cr) alloy. To compare the degradation mode and degradation rate evaluated with microCT, scanning electron microscopy (SEM) and inductively-coupled plasma (ICP) were included. We confirmed that Fe degrades very slowly but with desirable uniform surface corrosion. Zn degrades faster but exhibits localized deep pitting corrosion. The Zn alloy degrades at a similar rate as the pure Zn, but more homogeneously. However, the formation of deep internal dendrites was observed. Our study provides a detailed microCT-based comparison of essential surface and corrosion properties, with a structural characterization of the corrosion behavior, of different candidate stent materials in 3D in a non-destructive way.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}