Pub Date : 2024-12-08DOI: 10.1016/j.jconhyd.2024.104488
Xiaolei Hu, Linxian Huang, Huihua Chen, Liang Chen, Paul H Fallgren
High intensity agricultural activities can lead to a decrease in soil fertility and an increase in soil bulk density, which may significantly impact the migration and transformation of pesticides in soil. As a new widely-used micro-toxic pesticide, gibberellic acid (GA3) is more soluble and hydrophilic than most pesticides, which could readily migrate throughout the soil during water infiltration and impact groundwater quality. In this study, the leaching of GA3 in saturated soils with different bulk densities (1.15-1.75 g/cm3) and infiltration rates (0.2215-0.0017 mm/s) were analyzed using column experiments. The migration and distribution of GA3 in the soil with a depth of 50 cm were also investigated. The results indicated that GA3 could completely penetrate the soil with bulk densities less than 1.45 g/cm3, and GA3 mass variation in the effluent was normally distributed. The maximum mass of GA3 in the effluent was calculated using the equation Moutlet(max) = 79.01 t-0.97 (R2 = 0.9811), and 83.69-93.16 % mass of the added GA3 migrated downward in the soil. The analysis of the distribution of GA3 in the soil showed that GA3 accumulated in the upper soil layers with depths of 0-25 cm (the total depth of soil was 50 cm). In addition, the residual and hydrolyzed GA3 amounts in the soil were 75.07-96.47 % and 5-30 % of the added GA3, respectively. Overall, the soil bulk density and irrigation volume determine what type of impact that GA3 may potentially have on the environment.
{"title":"Effects of soil bulk density and corresponding soil infiltration rate on the migration and transformation of gibberellic acid.","authors":"Xiaolei Hu, Linxian Huang, Huihua Chen, Liang Chen, Paul H Fallgren","doi":"10.1016/j.jconhyd.2024.104488","DOIUrl":"https://doi.org/10.1016/j.jconhyd.2024.104488","url":null,"abstract":"<p><p>High intensity agricultural activities can lead to a decrease in soil fertility and an increase in soil bulk density, which may significantly impact the migration and transformation of pesticides in soil. As a new widely-used micro-toxic pesticide, gibberellic acid (GA<sub>3</sub>) is more soluble and hydrophilic than most pesticides, which could readily migrate throughout the soil during water infiltration and impact groundwater quality. In this study, the leaching of GA<sub>3</sub> in saturated soils with different bulk densities (1.15-1.75 g/cm<sup>3</sup>) and infiltration rates (0.2215-0.0017 mm/s) were analyzed using column experiments. The migration and distribution of GA<sub>3</sub> in the soil with a depth of 50 cm were also investigated. The results indicated that GA<sub>3</sub> could completely penetrate the soil with bulk densities less than 1.45 g/cm<sup>3</sup>, and GA<sub>3</sub> mass variation in the effluent was normally distributed. The maximum mass of GA<sub>3</sub> in the effluent was calculated using the equation M<sub>outlet</sub>(max) = 79.01 t<sup>-0.97</sup> (R<sup>2</sup> = 0.9811), and 83.69-93.16 % mass of the added GA<sub>3</sub> migrated downward in the soil. The analysis of the distribution of GA<sub>3</sub> in the soil showed that GA<sub>3</sub> accumulated in the upper soil layers with depths of 0-25 cm (the total depth of soil was 50 cm). In addition, the residual and hydrolyzed GA<sub>3</sub> amounts in the soil were 75.07-96.47 % and 5-30 % of the added GA<sub>3</sub>, respectively. Overall, the soil bulk density and irrigation volume determine what type of impact that GA<sub>3</sub> may potentially have on the environment.</p>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"269 ","pages":"104488"},"PeriodicalIF":3.5,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142818430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-08DOI: 10.1016/j.jconhyd.2024.104485
Seung Hyeon Lee, Sang-Jun Han, Jung-Ho Wee
The current increase in microplastic (MP) occurrence worldwide is predicted to cause severe environmental crises in the future. Therefore, it is imperative to develop innovative MP removal technologies that can effectively mitigate MP emissions in any given scenario. This review discusses recent environmentally friendly advances in MP removal technologies that aim to overcome the limitations of current technologies, prevent secondary pollution, and utilize low energy. It also explores the potential applicability of these technologies under the current environmental conditions in South Korea. The core principles of these technologies, such as adsorption or flocculation, focus on minimizing the energy required to initiate and sustain these processes and on reducing the usage of adsorbents and flocculants. Employing microalgae as flocculants and triboelectricity for electrophoresis are identified as promising technologies. Incinerating MP-adsorbed materials from the process could be a viable disposal method, potentially serving as a source of heat energy. Consequently, technologies based on biochar or microalgae are especially advantageous in this context. The location where these technologies are applied plays a crucial role in their overall energy consumption. Ideally, implementation should occur as close as possible to points where MPs are found or within wastewater treatment plants. Froth flotation, microalgae flocculation, and triboelectricity-based electrophoresis are suitable methods in this regard. Establishing and enforcing administrative systems, laws, and policies globally to prevent MP occurrence remains critical. However, while these measures are vital, the most effective method for reducing MP occurrence is lowering plastic consumption alongside implementing stringent segregation and collection procedures.
{"title":"A mini review of recent advances in environmentally friendly microplastic removal technologies in water systems.","authors":"Seung Hyeon Lee, Sang-Jun Han, Jung-Ho Wee","doi":"10.1016/j.jconhyd.2024.104485","DOIUrl":"https://doi.org/10.1016/j.jconhyd.2024.104485","url":null,"abstract":"<p><p>The current increase in microplastic (MP) occurrence worldwide is predicted to cause severe environmental crises in the future. Therefore, it is imperative to develop innovative MP removal technologies that can effectively mitigate MP emissions in any given scenario. This review discusses recent environmentally friendly advances in MP removal technologies that aim to overcome the limitations of current technologies, prevent secondary pollution, and utilize low energy. It also explores the potential applicability of these technologies under the current environmental conditions in South Korea. The core principles of these technologies, such as adsorption or flocculation, focus on minimizing the energy required to initiate and sustain these processes and on reducing the usage of adsorbents and flocculants. Employing microalgae as flocculants and triboelectricity for electrophoresis are identified as promising technologies. Incinerating MP-adsorbed materials from the process could be a viable disposal method, potentially serving as a source of heat energy. Consequently, technologies based on biochar or microalgae are especially advantageous in this context. The location where these technologies are applied plays a crucial role in their overall energy consumption. Ideally, implementation should occur as close as possible to points where MPs are found or within wastewater treatment plants. Froth flotation, microalgae flocculation, and triboelectricity-based electrophoresis are suitable methods in this regard. Establishing and enforcing administrative systems, laws, and policies globally to prevent MP occurrence remains critical. However, while these measures are vital, the most effective method for reducing MP occurrence is lowering plastic consumption alongside implementing stringent segregation and collection procedures.</p>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"269 ","pages":"104485"},"PeriodicalIF":3.5,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-08DOI: 10.1016/j.jconhyd.2024.104487
Mohammed Manik, Md Tauhid Hossain, Paolo Pastorino
Microplastics (MPs) have recently gained attention as emerging environmental contaminants, yet knowledge of their distribution, sources, and risks in freshwater lakes remains limited. This study examined the occurrence and risk of MPs in water and sediment samples from eight locations in Mohamaya Lake (Bangladesh) collected in April and May 2023. MPs were identified using stereomicroscopy and FTIR, revealing concentrations of 20-95 particles/L in water and 550-1900 particles/kg (d.w.) in sediment, with mean values of 50.62 ± 9.95 particles/L and 1068.75 ± 521.49 particles/kg (d.w.). Dominant MPs were blue fibers, 0-0.5 mm in size, with HDPE, PET and LDPE as the most common polymers. This study used four indices (nemerow pollution index-NPI, contamination factor-CF, pollution load index-PLI, and polymer hazard index-PHI) to assess MP pollution, revealing light to high contamination levels. While NPI indicated light pollution, CF, PLI, and PHI highlighted areas of moderate to high risk, with certain polymers showing high to extreme toxicity. This study deepens understanding of MP contamination in Bangladesh's freshwater lakes, underscoring the need for research on ecotoxicology, regulation, and associated challenges.
{"title":"Characterization and risk assessment of microplastics pollution in Mohamaya Lake, Bangladesh.","authors":"Mohammed Manik, Md Tauhid Hossain, Paolo Pastorino","doi":"10.1016/j.jconhyd.2024.104487","DOIUrl":"https://doi.org/10.1016/j.jconhyd.2024.104487","url":null,"abstract":"<p><p>Microplastics (MPs) have recently gained attention as emerging environmental contaminants, yet knowledge of their distribution, sources, and risks in freshwater lakes remains limited. This study examined the occurrence and risk of MPs in water and sediment samples from eight locations in Mohamaya Lake (Bangladesh) collected in April and May 2023. MPs were identified using stereomicroscopy and FTIR, revealing concentrations of 20-95 particles/L in water and 550-1900 particles/kg (d.w.) in sediment, with mean values of 50.62 ± 9.95 particles/L and 1068.75 ± 521.49 particles/kg (d.w.). Dominant MPs were blue fibers, 0-0.5 mm in size, with HDPE, PET and LDPE as the most common polymers. This study used four indices (nemerow pollution index-NPI, contamination factor-CF, pollution load index-PLI, and polymer hazard index-PHI) to assess MP pollution, revealing light to high contamination levels. While NPI indicated light pollution, CF, PLI, and PHI highlighted areas of moderate to high risk, with certain polymers showing high to extreme toxicity. This study deepens understanding of MP contamination in Bangladesh's freshwater lakes, underscoring the need for research on ecotoxicology, regulation, and associated challenges.</p>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"269 ","pages":"104487"},"PeriodicalIF":3.5,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142818368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-07DOI: 10.1016/j.jconhyd.2024.104482
Jiale Xu, Yuting Zhang, Shaoxin Zi, Xuanqi Zhang, Zhengtong Qian, Jin Liu
Tire wear particles (TWPs), as a prevalent form of microplastic pollution in aquatic environments, have been shown to adsorb antibiotics, potentially exacerbating their toxic effects. This study provides a comprehensive analysis of the adsorption of ofloxacin (OFL), ciprofloxacin (CIP), sulfadiazine (SDZ), and tetracycline (TC) on TWPs that have undergone various aging processes, including cyclic freeze-thaw and ozone aging. We observed a significant increase in the specific surface area (SBET) of TWPs after aging, from an initial 2.81 ± 0.29 to 6.63 ± 0.16 m2/g for ozone-aged TWPs. This enhancement in surface area and pore volume led to a respective 1.36-fold and 28-fold increase in adsorption capacity for OFL and CIP, highlighting the substantial impact of aging on TWPs' adsorptive properties. Conversely, the adsorption of SDZ and TC was reduced post-aging, suggesting a complex interaction between antibiotic physicochemical properties and TWPs' surface characteristics. The pseudo-second-order model, indicating chemisorption interactions, effectively described the adsorption kinetics, with the Freundlich isotherm model capturing the adsorption behavior more accurately than the Langmuir model. Our findings underscore the critical role of hydrophobic and electrostatic interactions in the adsorption process, particularly for SDZ and TC. This study's results offer crucial insights into the environmental implications of TWPs, emphasizing the need for further research on their role in the transport and fate of antibiotics in aquatic ecosystems.
{"title":"Aging-mediated selective adsorption of antibiotics by tire wear particles: Hydrophobic and electrostatic interactions effects.","authors":"Jiale Xu, Yuting Zhang, Shaoxin Zi, Xuanqi Zhang, Zhengtong Qian, Jin Liu","doi":"10.1016/j.jconhyd.2024.104482","DOIUrl":"https://doi.org/10.1016/j.jconhyd.2024.104482","url":null,"abstract":"<p><p>Tire wear particles (TWPs), as a prevalent form of microplastic pollution in aquatic environments, have been shown to adsorb antibiotics, potentially exacerbating their toxic effects. This study provides a comprehensive analysis of the adsorption of ofloxacin (OFL), ciprofloxacin (CIP), sulfadiazine (SDZ), and tetracycline (TC) on TWPs that have undergone various aging processes, including cyclic freeze-thaw and ozone aging. We observed a significant increase in the specific surface area (SBET) of TWPs after aging, from an initial 2.81 ± 0.29 to 6.63 ± 0.16 m<sup>2</sup>/g for ozone-aged TWPs. This enhancement in surface area and pore volume led to a respective 1.36-fold and 28-fold increase in adsorption capacity for OFL and CIP, highlighting the substantial impact of aging on TWPs' adsorptive properties. Conversely, the adsorption of SDZ and TC was reduced post-aging, suggesting a complex interaction between antibiotic physicochemical properties and TWPs' surface characteristics. The pseudo-second-order model, indicating chemisorption interactions, effectively described the adsorption kinetics, with the Freundlich isotherm model capturing the adsorption behavior more accurately than the Langmuir model. Our findings underscore the critical role of hydrophobic and electrostatic interactions in the adsorption process, particularly for SDZ and TC. This study's results offer crucial insights into the environmental implications of TWPs, emphasizing the need for further research on their role in the transport and fate of antibiotics in aquatic ecosystems.</p>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"269 ","pages":"104482"},"PeriodicalIF":3.5,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142813173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-07DOI: 10.1016/j.jconhyd.2024.104483
Kifayatullah Khan, Muhammad Sajawal Khan, Muhammad Younas, Muhammad Yaseen, Abdullah G Al-Sehemi, Yasar N Kavil, Chao Su, Niaz Ali, Afsheen Maryam, Ruoyu Liang
This study analyzed surface water from the River Swat, Pakistan, using inductively coupled plasma mass spectrometry, multivariate statistical techniques, and US-EPA risk assessment models to evaluate the concentrations, distribution, pathways, and potential risks of arsenic (As) and heavy metals, including chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), mercury (Hg), and lead (Pb). The results revealed significant correlations (p ≤ 0.01) among metals that indicated common pollution sources, likely influenced by anthropogenic point and non-point activities. Along the monitored sites (S1-S10), the mass flow of ∑metals showed a dynamic pattern: progressively increasing downstream, decreasing at S6-S7, rising again at S7-S8, and then steadily declining toward S10, with Ni being the most abundant metal, followed by Cr > As> Cu > Mn > Co > Zn > Hg > Cd > Pb. The As and Heavy Metal Pollution Index (HPI), As and Heavy Metal Evaluation Index (HEI), and Pollution Index (PI) revealed variations in pollution levels, ranking the metals in the orders of Co > As> Cr > Cd > Mn > Hg > Ni > Pb > Cu > Zn, As> Cr > Ni > Hg > Cd > Co > Mn > Cu > Zn > Pb, and Hg > Ni > As> Co > Cu > Cd > Mn > Zn > Pb, respectively. However, according to the risk assessment, overall individual metal contamination in the River Swat water was below the ecological risk threshold (ERI 〈110). Where, the Chronic Daily Intakes (CDIs), Hazard Quotients (HQs), Hazard Indices (HIs), Cancer Risks (CRs), and Total Cancer Risks (TCRs) of Cr, Mn, Co, Ni, Cu, Zn, As, Cd, Hg, and Pb associated with daily river water intake and dermal contact indicate that long-term exposure to untreated river water may pose both carcinogenic and non-carcinogenic health risks to residents.
本研究分析了巴基斯坦斯瓦特河的地表水,使用电感耦合等离子体质谱法、多元统计技术和US-EPA风险评估模型来评估砷(As)和重金属的浓度、分布、途径和潜在风险,包括铬(Cr)、锰(Mn)、钴(Co)、镍(Ni)、铜(Cu)、锌(Zn)、镉(Cd)、汞(Hg)和铅(Pb)。结果表明,各金属元素之间存在显著的相关性(p≤0.01),表明常见污染源可能受到人为点源和非点源活动的影响。沿监测点位(s1 ~ S10),∑金属的质量流表现为下游逐渐增加,在s6 ~ s7处下降,在s7 ~ s8处再次上升,然后向S10方向稳步下降,其中Ni含量最高,Cr > As> Cu > Mn > Co > Zn > Hg > Cd > Pb含量次之。和重金属污染指数(HPI),重金属评价指标(黑),和污染指数(PI)显示污染水平的变化,排名金属有限公司的订单> >铬>镉>锰> Hg >镍>铅>铜>锌、>铬>镍>汞>镉>有限公司>锰>铜>锌>铅、和Hg >镍> >有限公司>铜> Cd >锰>锌> Pb,分别。然而,根据风险评估,斯瓦特河水体中个体金属污染总体低于生态风险阈值(ERI < 110)。其中,Cr、Mn、Co、Ni、Cu、Zn、As、Cd、Hg、Pb的慢性每日摄入量(cdi)、危害商(HQs)、危害指数(HIs)、癌症风险(CRs)和总癌症风险(TCRs)与每日河流饮水量和皮肤接触的关系表明,长期暴露于未经处理的河流水可能对居民造成致癌和非致癌的健康风险。
{"title":"Pathways and risk analysis of arsenic and heavy metal pollution in riverine water: Application of multivariate statistics and USEPA-recommended risk assessment models.","authors":"Kifayatullah Khan, Muhammad Sajawal Khan, Muhammad Younas, Muhammad Yaseen, Abdullah G Al-Sehemi, Yasar N Kavil, Chao Su, Niaz Ali, Afsheen Maryam, Ruoyu Liang","doi":"10.1016/j.jconhyd.2024.104483","DOIUrl":"https://doi.org/10.1016/j.jconhyd.2024.104483","url":null,"abstract":"<p><p>This study analyzed surface water from the River Swat, Pakistan, using inductively coupled plasma mass spectrometry, multivariate statistical techniques, and US-EPA risk assessment models to evaluate the concentrations, distribution, pathways, and potential risks of arsenic (As) and heavy metals, including chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), mercury (Hg), and lead (Pb). The results revealed significant correlations (p ≤ 0.01) among metals that indicated common pollution sources, likely influenced by anthropogenic point and non-point activities. Along the monitored sites (S1-S10), the mass flow of ∑metals showed a dynamic pattern: progressively increasing downstream, decreasing at S6-S7, rising again at S7-S8, and then steadily declining toward S10, with Ni being the most abundant metal, followed by Cr > As> Cu > Mn > Co > Zn > Hg > Cd > Pb. The As and Heavy Metal Pollution Index (HPI), As and Heavy Metal Evaluation Index (HEI), and Pollution Index (PI) revealed variations in pollution levels, ranking the metals in the orders of Co > As> Cr > Cd > Mn > Hg > Ni > Pb > Cu > Zn, As> Cr > Ni > Hg > Cd > Co > Mn > Cu > Zn > Pb, and Hg > Ni > As> Co > Cu > Cd > Mn > Zn > Pb, respectively. However, according to the risk assessment, overall individual metal contamination in the River Swat water was below the ecological risk threshold (ERI 〈110). Where, the Chronic Daily Intakes (CDIs), Hazard Quotients (HQs), Hazard Indices (HIs), Cancer Risks (CRs), and Total Cancer Risks (TCRs) of Cr, Mn, Co, Ni, Cu, Zn, As, Cd, Hg, and Pb associated with daily river water intake and dermal contact indicate that long-term exposure to untreated river water may pose both carcinogenic and non-carcinogenic health risks to residents.</p>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"269 ","pages":"104483"},"PeriodicalIF":3.5,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142872261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-06DOI: 10.1016/j.jconhyd.2024.104481
Teng Xia, Johan Alexander Huisman, Chen Chao, Jing Li, Deqiang Mao
Dynamic monitoring of in-situ chemical oxidation (ISCO) of LNAPLs in groundwater is the foundation for evaluating remediation effectiveness. In this study, spectral (SIP) and time-domain induced polarization (TDIP) measurements are conducted in laboratory columns and sandboxes to monitor the ISCO of LNAPL for characterizing oxidant transport and quantifying contaminant consumption under different injection strategies. To support the interpretation, this was combined with total petroleum hydrocarbon (TPH), hydrochemistry and computed tomography (CT) measurements. Experiments were performed using two media, and the monitoring results showed similar variations in key parameters. The electrical resistivity, chargeability and TPH decreased significantly during ISCO remediation, while the hydrochemical parameters showed an increasing trend. Specifically, IP variations before and after injection revealed that more oxidant remained in the source area using a multiple-injection strategy compared to a single-injection strategy. The effect of contaminant consumption under well-controlled conditions on electrical resistivity was <3 % and the effect on chargeability was <8 %. In conditions with oxidant migration, the effect of oxidant on the resistivity and chargeability was similar at ∼89 % in the source area, whereas the oxidant had a greater effect on the resistivity (>58 %) than the chargeability (<40 %) outside the source area. Based on the experimental results, a conceptual model for the IP response during ISCO remediation is proposed and we delineate the pore structural characteristics of porous media based on the conceptual model. Oxidant injection develops a high conductivity environment and causes a decrease in LNAPLs content and number of interfaces, leading to the suppression of the IP response. In conclusion, IP measurement in combination with supporting information clearly enables the characterization of the ISCO remediation of LNAPLs in groundwater and facilitates the pore structure characterization of porous media based on the IP conceptual model.
{"title":"Induced polarization monitoring of in-situ chemical oxidation for quantification of contaminant consumption.","authors":"Teng Xia, Johan Alexander Huisman, Chen Chao, Jing Li, Deqiang Mao","doi":"10.1016/j.jconhyd.2024.104481","DOIUrl":"https://doi.org/10.1016/j.jconhyd.2024.104481","url":null,"abstract":"<p><p>Dynamic monitoring of in-situ chemical oxidation (ISCO) of LNAPLs in groundwater is the foundation for evaluating remediation effectiveness. In this study, spectral (SIP) and time-domain induced polarization (TDIP) measurements are conducted in laboratory columns and sandboxes to monitor the ISCO of LNAPL for characterizing oxidant transport and quantifying contaminant consumption under different injection strategies. To support the interpretation, this was combined with total petroleum hydrocarbon (TPH), hydrochemistry and computed tomography (CT) measurements. Experiments were performed using two media, and the monitoring results showed similar variations in key parameters. The electrical resistivity, chargeability and TPH decreased significantly during ISCO remediation, while the hydrochemical parameters showed an increasing trend. Specifically, IP variations before and after injection revealed that more oxidant remained in the source area using a multiple-injection strategy compared to a single-injection strategy. The effect of contaminant consumption under well-controlled conditions on electrical resistivity was <3 % and the effect on chargeability was <8 %. In conditions with oxidant migration, the effect of oxidant on the resistivity and chargeability was similar at ∼89 % in the source area, whereas the oxidant had a greater effect on the resistivity (>58 %) than the chargeability (<40 %) outside the source area. Based on the experimental results, a conceptual model for the IP response during ISCO remediation is proposed and we delineate the pore structural characteristics of porous media based on the conceptual model. Oxidant injection develops a high conductivity environment and causes a decrease in LNAPLs content and number of interfaces, leading to the suppression of the IP response. In conclusion, IP measurement in combination with supporting information clearly enables the characterization of the ISCO remediation of LNAPLs in groundwater and facilitates the pore structure characterization of porous media based on the IP conceptual model.</p>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"269 ","pages":"104481"},"PeriodicalIF":3.5,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-30DOI: 10.1016/j.jconhyd.2024.104471
Davide Sartirana, Chiara Zanotti, Alice Palazzi, Ilaria Pietrini, Paola Frattini, Andrea Franzetti, Tullia Bonomi, Marco Rotiroti
Monitoring of long-term contaminant concentrations trends is essential to verify that attenuation processes are effectively occurring at a site. However, monitoring data are often affected by extreme variability which prevents the identification of clear concentration trends. The variability is higher in long-screened monitoring wells, which are currently used at many contaminated sites, although it has been known since the 1980s that monitoring data from long-screened wells can be biased. Understanding the factors that may influence the variability of monitoring data is pivotal. To this end, following hydrochemical conceptual modelling using a multi-method approach, the variability of hydrocarbon concentrations from fully screened monitoring wells was assessed over eleven years at a former oil refinery located in Northern Italy. The proposed methodology combined factor analysis with multiple linear regression models. Results pointed out a higher variability in hydrocarbon concentrations at the plume fringe and a lower variability at the plume source and core. 44-46 % of the total variability in measured hydrocarbon concentrations is due to "intrinsic plume heterogeneity", related to the three-dimensional structure of a contaminant plume, which becomes thinner at the edge, creating a vertical heterogeneity of redox conditions at the plume fringe. This variability, expressed as increasing concentrations of sulfate and decreasing concentrations of methane, represents a background variability that cannot be reduced by improving sampling procedures. The remaining 56-54 % of the total variability may be due to the non-standardization of some purging and sampling operations, such as pump intake position, purging and sampling time/flow rates and variations in the analytical methods. This finding suggests that monitoring improvements in fully screened wells by standardizing all purging/sampling operations or using sampling techniques that can reduce the actual screen length (e.g., packers or separation/dual pumping techniques) would reduce data variability by more than half.
{"title":"Assessing data variability in groundwater quality monitoring of contaminated sites through factor analysis and multiple linear regression models.","authors":"Davide Sartirana, Chiara Zanotti, Alice Palazzi, Ilaria Pietrini, Paola Frattini, Andrea Franzetti, Tullia Bonomi, Marco Rotiroti","doi":"10.1016/j.jconhyd.2024.104471","DOIUrl":"https://doi.org/10.1016/j.jconhyd.2024.104471","url":null,"abstract":"<p><p>Monitoring of long-term contaminant concentrations trends is essential to verify that attenuation processes are effectively occurring at a site. However, monitoring data are often affected by extreme variability which prevents the identification of clear concentration trends. The variability is higher in long-screened monitoring wells, which are currently used at many contaminated sites, although it has been known since the 1980s that monitoring data from long-screened wells can be biased. Understanding the factors that may influence the variability of monitoring data is pivotal. To this end, following hydrochemical conceptual modelling using a multi-method approach, the variability of hydrocarbon concentrations from fully screened monitoring wells was assessed over eleven years at a former oil refinery located in Northern Italy. The proposed methodology combined factor analysis with multiple linear regression models. Results pointed out a higher variability in hydrocarbon concentrations at the plume fringe and a lower variability at the plume source and core. 44-46 % of the total variability in measured hydrocarbon concentrations is due to \"intrinsic plume heterogeneity\", related to the three-dimensional structure of a contaminant plume, which becomes thinner at the edge, creating a vertical heterogeneity of redox conditions at the plume fringe. This variability, expressed as increasing concentrations of sulfate and decreasing concentrations of methane, represents a background variability that cannot be reduced by improving sampling procedures. The remaining 56-54 % of the total variability may be due to the non-standardization of some purging and sampling operations, such as pump intake position, purging and sampling time/flow rates and variations in the analytical methods. This finding suggests that monitoring improvements in fully screened wells by standardizing all purging/sampling operations or using sampling techniques that can reduce the actual screen length (e.g., packers or separation/dual pumping techniques) would reduce data variability by more than half.</p>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"269 ","pages":"104471"},"PeriodicalIF":3.5,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142780260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-29DOI: 10.1016/j.jconhyd.2024.104470
Thomas Matteo Coscia, Francesco Di Maio, Enrico Zio
Non-stationarity of climatic variables (e.g., temperature and precipitation) due to Climate Change (CC) can affect the migration processes of radionuclides released from nuclear activities. In this paper, a framework of analysis is developed to predict the evolution in time of contaminant concentration and fluence under different Climatic Boundary Conditions (CBCs) of precipitation scenarios provided by a climate model integrated with an accurate physical coupled hydraulic-transport model. A case study is worked out with respect to the migration of a radioactive contaminant (232Th) at Kirtland Air Force Base (Albuquerque, New Mexico, USA), for which the different CBCs considered are: i) stationary and ii) non-stationary precipitation. The effects of such alternative hypotheses on the physical modelling results are analysed, using a cross-wavelet analysis. It is shown that fluence is strongly affected by precipitation extremes, more than concentration, and it is claimed that a daily scale on the information and data of CBCs is necessary to model, with sufficient accuracy, the migration process and properly assess the impact of future CC on groundwater contamination.
{"title":"A modelling framework to analyze climate change effects on radionuclide aquifer contamination.","authors":"Thomas Matteo Coscia, Francesco Di Maio, Enrico Zio","doi":"10.1016/j.jconhyd.2024.104470","DOIUrl":"https://doi.org/10.1016/j.jconhyd.2024.104470","url":null,"abstract":"<p><p>Non-stationarity of climatic variables (e.g., temperature and precipitation) due to Climate Change (CC) can affect the migration processes of radionuclides released from nuclear activities. In this paper, a framework of analysis is developed to predict the evolution in time of contaminant concentration and fluence under different Climatic Boundary Conditions (CBCs) of precipitation scenarios provided by a climate model integrated with an accurate physical coupled hydraulic-transport model. A case study is worked out with respect to the migration of a radioactive contaminant (<sup>232</sup>Th) at Kirtland Air Force Base (Albuquerque, New Mexico, USA), for which the different CBCs considered are: i) stationary and ii) non-stationary precipitation. The effects of such alternative hypotheses on the physical modelling results are analysed, using a cross-wavelet analysis. It is shown that fluence is strongly affected by precipitation extremes, more than concentration, and it is claimed that a daily scale on the information and data of CBCs is necessary to model, with sufficient accuracy, the migration process and properly assess the impact of future CC on groundwater contamination.</p>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"269 ","pages":"104470"},"PeriodicalIF":3.5,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-26DOI: 10.1016/j.jconhyd.2024.104469
Andrea Fenocchi , Nicolò Pella , Diego Copetti , Fabio Buzzi , Daniele Magni , Nico Salmaso , Claudia Dresti
Protection plans of lake waters are based on ecological and/or chemical targets, often simplified in terms of total phosphorus (TP) concentrations, customarily the depth-averaged ones at spring mixing for temperate environments. These target lake TP concentrations are then commonly employed to determine target external loading through reverse use of Vollenweider-OECD-type steady-state empirical models. Such models are also adopted in their direct form to estimate lake TP concentrations following hypothetical external load reductions. However, such approaches suffer from extreme parameterisation and often give inaccurate results. Process-based coupled ecological-hydrodynamic models offer a much wider flexibility and produce an extensive set of information, solving many of the issues of Vollenweider-OECD-type models. However, their application has been up to now restricted to single lakes due to calibration effort and data availability burdens. To overcome these obstacles, in this study we developed a simplified application of the process-based coupled model QWET over 9 lakes in Northern Italy, making use of the ParSAC automatic calibration tool and feeding the models only with general data available from public monitoring. QWET models were calibrated over past observations, simulating nutrient reduction scenarios for the near-future decades. The advantages over traditionally employed models for lake water protection planning at the regional scale were hence identified through a practical application, determining the strengths and limits of the herein-adopted simplified process-based approach over lakes with different features. Obtained results were also analysed considering the specific case study.
{"title":"Use of process-based coupled ecological-hydrodynamic models to support lake water ecosystem service protection planning at the regional scale","authors":"Andrea Fenocchi , Nicolò Pella , Diego Copetti , Fabio Buzzi , Daniele Magni , Nico Salmaso , Claudia Dresti","doi":"10.1016/j.jconhyd.2024.104469","DOIUrl":"10.1016/j.jconhyd.2024.104469","url":null,"abstract":"<div><div>Protection plans of lake waters are based on ecological and/or chemical targets, often simplified in terms of total phosphorus (<em>TP</em>) concentrations, customarily the depth-averaged ones at spring mixing for temperate environments. These target lake <em>TP</em> concentrations are then commonly employed to determine target external loading through reverse use of Vollenweider-OECD-type steady-state empirical models. Such models are also adopted in their direct form to estimate lake <em>TP</em> concentrations following hypothetical external load reductions. However, such approaches suffer from extreme parameterisation and often give inaccurate results. Process-based coupled ecological-hydrodynamic models offer a much wider flexibility and produce an extensive set of information, solving many of the issues of Vollenweider-OECD-type models. However, their application has been up to now restricted to single lakes due to calibration effort and data availability burdens. To overcome these obstacles, in this study we developed a simplified application of the process-based coupled model QWET over 9 lakes in Northern Italy, making use of the ParSAC automatic calibration tool and feeding the models only with general data available from public monitoring. QWET models were calibrated over past observations, simulating nutrient reduction scenarios for the near-future decades. The advantages over traditionally employed models for lake water protection planning at the regional scale were hence identified through a practical application, determining the strengths and limits of the herein-adopted simplified process-based approach over lakes with different features. Obtained results were also analysed considering the specific case study.</div></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"268 ","pages":"Article 104469"},"PeriodicalIF":3.5,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142746711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microplastic contamination of terrestrial and aquatic environment has gained immense research attention due to their potential ecotoxicity and biomagnification property when enterer into food chain. Heterogenous nature of microplastics coupled with their ability to combine with other emerging pollutants have increased the severity of this crisis. Existing detection methods often fails to accurately quantify the amount of microplastic components present in environmental and biological samples. Thus, a great deal of research gap always exists in our current understanding about microplastics including the limitations in screening, detection and mitigation. This review work presents a comprehensive out look on the impact of microplastics on both terrestrial and aquatic environment. Furthermore, an in-depth discussion on various microplastic detection techniques recently used for microplastic quantification along with their significance and limitations is summarised in this review. The review also elaborates various physical, chemical and biological methods used for the mitigation of microplastics from environmental samples.
{"title":"Potential health, environmental implication of microplastics: A review on its detection","authors":"Bhawana Yadav , Payal Gupta , Vinay Kumar , Mridul Umesh , Deepak Sharma , Jithin Thomas , Suraj Kumar Bhagat","doi":"10.1016/j.jconhyd.2024.104467","DOIUrl":"10.1016/j.jconhyd.2024.104467","url":null,"abstract":"<div><div>Microplastic contamination of terrestrial and aquatic environment has gained immense research attention due to their potential ecotoxicity and biomagnification property when enterer into food chain. Heterogenous nature of microplastics coupled with their ability to combine with other emerging pollutants have increased the severity of this crisis. Existing detection methods often fails to accurately quantify the amount of microplastic components present in environmental and biological samples. Thus, a great deal of research gap always exists in our current understanding about microplastics including the limitations in screening, detection and mitigation. This review work presents a comprehensive out look on the impact of microplastics on both terrestrial and aquatic environment. Furthermore, an in-depth discussion on various microplastic detection techniques recently used for microplastic quantification along with their significance and limitations is summarised in this review. The review also elaborates various physical, chemical and biological methods used for the mitigation of microplastics from environmental samples.</div></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"268 ","pages":"Article 104467"},"PeriodicalIF":3.5,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142746710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}