Maintaining both maximum temperature and temperature uniformity within the desirable limit is a crucial issue for high C-rating Li-ion batteries of electric vehicles, which can be achieved by the properly designed battery thermal management system (BTMS). In this research, three new designs of liquid-cooled micro-channeled BTMS are suggested for cylindrical batteries to address the issue of temperature variations and uneven temperature distribution. Using 3D numerical simulation, we investigate the impacts of volume flow rate and the usage of mono/hybrid nanofluids with varying concentrations on the thermal performance of the battery pack at a high C-rate by utilizing a two-phase mixture model. Effects on maximum temperature, temperature uniformity, pumping power and heat transfer coefficient to pressure drop ratio are investigated. Results demonstrate that the effectiveness of heat transmission and temperature uniformity of the battery pack are positively impacted by an increase in nanoparticle concentration in nanofluid and volume flow rate. Even at high C-rates (5C), the proposed design can effectively reduce both cell temperature and thermal gradient of the 21700-type cylindrical cell. Model 3 is the most favorable BTMS for Li-ion cylindrical battery in terms of both maximum temperature and temperature uniformity (maximum temperature of 304.72K and temperature difference of 4.7K).
{"title":"Assessment of newly-designed hybrid nanofluid-cooled micro-channeled thermal management system for Li-ion battery","authors":"K. Kumar, J. Sarkar, S. S. Mondal","doi":"10.1115/1.4062514","DOIUrl":"https://doi.org/10.1115/1.4062514","url":null,"abstract":"\u0000 Maintaining both maximum temperature and temperature uniformity within the desirable limit is a crucial issue for high C-rating Li-ion batteries of electric vehicles, which can be achieved by the properly designed battery thermal management system (BTMS). In this research, three new designs of liquid-cooled micro-channeled BTMS are suggested for cylindrical batteries to address the issue of temperature variations and uneven temperature distribution. Using 3D numerical simulation, we investigate the impacts of volume flow rate and the usage of mono/hybrid nanofluids with varying concentrations on the thermal performance of the battery pack at a high C-rate by utilizing a two-phase mixture model. Effects on maximum temperature, temperature uniformity, pumping power and heat transfer coefficient to pressure drop ratio are investigated. Results demonstrate that the effectiveness of heat transmission and temperature uniformity of the battery pack are positively impacted by an increase in nanoparticle concentration in nanofluid and volume flow rate. Even at high C-rates (5C), the proposed design can effectively reduce both cell temperature and thermal gradient of the 21700-type cylindrical cell. Model 3 is the most favorable BTMS for Li-ion cylindrical battery in terms of both maximum temperature and temperature uniformity (maximum temperature of 304.72K and temperature difference of 4.7K).","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46436890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Overcharge and discharge of power battery not only increase the battery loss, but also lead to fire and other accidents under harsh environmental conditions. Accurate estimation of battery parameters and status is an important reference in battery management system to prevent battery overcharge and discharge. In this paper, the following studies are carried out by focusing on the time separation scale and estimating parameters and state values online based on the improved particle filter: 1. The unscented transform and multi innovation were applied to particle filter to optimize the particle distribution and update the status value from the historical information, and the multi innovation unscented particle filter was formed to estimate the state of battery charge.; 2. Considering the influence of parameter variation on the estimation of battery state of charge. Due to the slow change characteristics of parameters and fast change characteristics of states, the parameters and states are jointly estimated from macro and micro time scales respectively.The capacity change estimated by unscented particle filter is used to characterize the battery health state, and finally the joint estimation of battery SOC and SOH is formed; 3. Three different working conditions are used to verify the algorithm. The joint algorithm accurately estimates the real-time changes of SOC and SOH, and the average error of SOC is less than 0.5%, which confirms the high accuracy of the joint algorithm.
{"title":"Joint estimation of SOC and SOH of lithium ion battery","authors":"Peng Chen, Xin Jin, Xue Feng Han","doi":"10.1115/1.4062385","DOIUrl":"https://doi.org/10.1115/1.4062385","url":null,"abstract":"\u0000 Overcharge and discharge of power battery not only increase the battery loss, but also lead to fire and other accidents under harsh environmental conditions. Accurate estimation of battery parameters and status is an important reference in battery management system to prevent battery overcharge and discharge. In this paper, the following studies are carried out by focusing on the time separation scale and estimating parameters and state values online based on the improved particle filter: 1. The unscented transform and multi innovation were applied to particle filter to optimize the particle distribution and update the status value from the historical information, and the multi innovation unscented particle filter was formed to estimate the state of battery charge.; 2. Considering the influence of parameter variation on the estimation of battery state of charge. Due to the slow change characteristics of parameters and fast change characteristics of states, the parameters and states are jointly estimated from macro and micro time scales respectively.The capacity change estimated by unscented particle filter is used to characterize the battery health state, and finally the joint estimation of battery SOC and SOH is formed; 3. Three different working conditions are used to verify the algorithm. The joint algorithm accurately estimates the real-time changes of SOC and SOH, and the average error of SOC is less than 0.5%, which confirms the high accuracy of the joint algorithm.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45555022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The performance and service life of ultracapacitors are highly dependent on accurate modeling and State-of-Charge (SOC) estimating. To overcome the model parameter errors caused by the various temperatures and different SOC intervals, the H infinity filter (HIF) is employed to estimate the ultracapacitor SOC based on a variable temperature model. For the application of HIF method, the Thevenin model is first developed with small terminal voltage estimation error. Then, the model parameters are optimally identified using the ant colony optimization (ACO) algorithm. Next, a variable temperature model is established to improve the adaptability of the ultracapacitor model, and the HIF is utilized for the ultracapacitor SOC estimation. Finally, to verify the performance of the variable temperature model and the proposed SOC estimation method, a series of experiments are conducted. The analysis results illustrate that the mean absolute error (MAE) of the SOC estimation values based on the variable temperature model is decreased by 39.62% comparing to the one based on the non-variable temperature model. Meanwhile, the proposed state estimation scheme based on the variable temperature model is accurate with estimation values maximum error (ME) and root mean squared error (RMSE) less than 0.80% and 0.60%, respectively. The HIF-based SOC estimation method also shows a good robustness with a short convergence time within 90.00s when the SOC initial error is set to 0.20.
{"title":"State-of-Charge estimation of ultracapacitor based on H infinity filter considering variable temperature","authors":"C. Wang, Qiang Zhang, A. Tang, W. Xu","doi":"10.1115/1.4062386","DOIUrl":"https://doi.org/10.1115/1.4062386","url":null,"abstract":"\u0000 The performance and service life of ultracapacitors are highly dependent on accurate modeling and State-of-Charge (SOC) estimating. To overcome the model parameter errors caused by the various temperatures and different SOC intervals, the H infinity filter (HIF) is employed to estimate the ultracapacitor SOC based on a variable temperature model. For the application of HIF method, the Thevenin model is first developed with small terminal voltage estimation error. Then, the model parameters are optimally identified using the ant colony optimization (ACO) algorithm. Next, a variable temperature model is established to improve the adaptability of the ultracapacitor model, and the HIF is utilized for the ultracapacitor SOC estimation. Finally, to verify the performance of the variable temperature model and the proposed SOC estimation method, a series of experiments are conducted. The analysis results illustrate that the mean absolute error (MAE) of the SOC estimation values based on the variable temperature model is decreased by 39.62% comparing to the one based on the non-variable temperature model. Meanwhile, the proposed state estimation scheme based on the variable temperature model is accurate with estimation values maximum error (ME) and root mean squared error (RMSE) less than 0.80% and 0.60%, respectively. The HIF-based SOC estimation method also shows a good robustness with a short convergence time within 90.00s when the SOC initial error is set to 0.20.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47346006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiujuan Gu, Yanjun Cai, Xiang Yao, Hualing Tian, Zhi Su
LiTiOPO4 was prepared by solid-phase combustion method using citric acid as fuel. The LiTiOPO4 materials were characterized by X-ray diffraction test (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The XRD test showed that the synthesized samples were pure phases and the addition of different weight fraction of the combustion agent citric acid did not change the phase structure of the LiTiOPO4. The microscopic observations revealed that the LiTiOPO4 prepared after the addition of citric acid as combustion agent was a sheet-like stacked structure. The electrochemical test results showed that the rate discharge capacity of LiTiOPO4 anode at 5000 mA g−1 maintains 184.7 mAh g−1 in the voltage range of 0.01-3.0 V, and keeps at 147.2 mAh g−1 after 500 cycles. The LiTiOPO4 anode exhibits excellent cycling stability and good reversibility, which is attributed to the high crystallinity of LiTiOPO4 prepared by solid-phase combustion and the lamellar stacked layer structure that facilitates lithium-ion insertion/de-insertion.
{"title":"Voltage Mediated Enhances Lithium-Ion Storage in LiTiOPO4 by combustion method","authors":"Xiujuan Gu, Yanjun Cai, Xiang Yao, Hualing Tian, Zhi Su","doi":"10.1115/1.4062343","DOIUrl":"https://doi.org/10.1115/1.4062343","url":null,"abstract":"\u0000 LiTiOPO4 was prepared by solid-phase combustion method using citric acid as fuel. The LiTiOPO4 materials were characterized by X-ray diffraction test (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The XRD test showed that the synthesized samples were pure phases and the addition of different weight fraction of the combustion agent citric acid did not change the phase structure of the LiTiOPO4. The microscopic observations revealed that the LiTiOPO4 prepared after the addition of citric acid as combustion agent was a sheet-like stacked structure. The electrochemical test results showed that the rate discharge capacity of LiTiOPO4 anode at 5000 mA g−1 maintains 184.7 mAh g−1 in the voltage range of 0.01-3.0 V, and keeps at 147.2 mAh g−1 after 500 cycles. The LiTiOPO4 anode exhibits excellent cycling stability and good reversibility, which is attributed to the high crystallinity of LiTiOPO4 prepared by solid-phase combustion and the lamellar stacked layer structure that facilitates lithium-ion insertion/de-insertion.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43017881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As two typical nickel-rich layered oxide cathodes, LiNi0.8Co0.15Al0.05O2 (NCA) and LiNi0.8Co0.1Mn0.1O2 (NCM811) are widely applicated in commercial high energy batteries for electric vehicles. However, a comprehensive assessment of their thermal characteristics in full cell is currently lacking. In this paper, we conducted monomer level thermal runaway test on NCA|SiC pouch cell and NCM811|SiC pouch cell through ARC test. The results showed that the {T1, T2, T3} of NCA|SiC pouch cell and NCM811|SiC pouch cell are {113.8 °C, 230.4 °C, 801.4 °C } and {91.3 °C, 202.1 °C, 745 °C}, respectively. Then the thermal stability of NCA and NCM811 was tested by DSC-TG-MS. The results showed that the phase transition temperature of NCA is higher than that of NCM811. However, when NCA and NCM811 were mixed with anode electrode materials or electrolyte, NCA produced significantly more heat than NCM811. By confirming the thermal properties of NCA|SiC pouch cell and NCM811|SiC pouch cell, a deeper understanding on battery thermal runaway was achieved, which is helpful for the design of high-safety lithium-ion batteries in the future.
{"title":"A Comparative Analysis on Thermal Stability of Delithiated Nickel-Rich NCA and NCM in Pouch Cells","authors":"","doi":"10.1115/1.4062318","DOIUrl":"https://doi.org/10.1115/1.4062318","url":null,"abstract":"\u0000 As two typical nickel-rich layered oxide cathodes, LiNi0.8Co0.15Al0.05O2 (NCA) and LiNi0.8Co0.1Mn0.1O2 (NCM811) are widely applicated in commercial high energy batteries for electric vehicles. However, a comprehensive assessment of their thermal characteristics in full cell is currently lacking. In this paper, we conducted monomer level thermal runaway test on NCA|SiC pouch cell and NCM811|SiC pouch cell through ARC test. The results showed that the {T1, T2, T3} of NCA|SiC pouch cell and NCM811|SiC pouch cell are {113.8 °C, 230.4 °C, 801.4 °C } and {91.3 °C, 202.1 °C, 745 °C}, respectively. Then the thermal stability of NCA and NCM811 was tested by DSC-TG-MS. The results showed that the phase transition temperature of NCA is higher than that of NCM811. However, when NCA and NCM811 were mixed with anode electrode materials or electrolyte, NCA produced significantly more heat than NCM811. By confirming the thermal properties of NCA|SiC pouch cell and NCM811|SiC pouch cell, a deeper understanding on battery thermal runaway was achieved, which is helpful for the design of high-safety lithium-ion batteries in the future.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46933008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The internal battery parameters of the lithium-ion battery (LIB) energy storage system may be inconsistent due to different aging degrees during the operation, and the thermal effect can also threaten the safety of the system. In this paper, based on the second-order resistor-capacitor (2-RC) equivalent circuit model (ECM) and the dual extended Kalman filter (DEKF) algorithm, an electrical simulation model of a LIB pack with inconsistent parameters considering the thermal effect is established, in which state of charge (SOC) and state of health (SOH) are estimated using DEKF while the temperature is calculated by a thermal module. The simulation results show that the DEKF algorithm has a good effect on battery state and parameter estimation, with the root mean square error (RMSE) of voltage is lower than 0.01 V and SOC mean average error (MAE) is below 1.50 % while SOH error is 3.37 %. In addition, the thermal module can provide an accurate estimation on the inconsistent temperature rise of the battery pack, and the MAE between the model-calculated temperature and the experiment is no more than 6.60 %. This paper provides the basic data for the scale-up of the electrothermal co-simulation model of the LIB energy storage system.
{"title":"State of charge and state of health estimation of lithium-ion battery packs with inconsistent internal parameters using dual extended Kalman filter","authors":"","doi":"10.1115/1.4062319","DOIUrl":"https://doi.org/10.1115/1.4062319","url":null,"abstract":"\u0000 The internal battery parameters of the lithium-ion battery (LIB) energy storage system may be inconsistent due to different aging degrees during the operation, and the thermal effect can also threaten the safety of the system. In this paper, based on the second-order resistor-capacitor (2-RC) equivalent circuit model (ECM) and the dual extended Kalman filter (DEKF) algorithm, an electrical simulation model of a LIB pack with inconsistent parameters considering the thermal effect is established, in which state of charge (SOC) and state of health (SOH) are estimated using DEKF while the temperature is calculated by a thermal module. The simulation results show that the DEKF algorithm has a good effect on battery state and parameter estimation, with the root mean square error (RMSE) of voltage is lower than 0.01 V and SOC mean average error (MAE) is below 1.50 % while SOH error is 3.37 %. In addition, the thermal module can provide an accurate estimation on the inconsistent temperature rise of the battery pack, and the MAE between the model-calculated temperature and the experiment is no more than 6.60 %. This paper provides the basic data for the scale-up of the electrothermal co-simulation model of the LIB energy storage system.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42665602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
You Xu, Hongxian Liu, Zhenxing Zheng, Jingxiang Yao, Kaiqing Zhou, Jiehao Li
New energy vehicles are the effective solution to solve the situation of carbon neutrality with carbon peaking in China. The power battery system is the key component of new energy vehicles, and its performance is directly related to the safety and cruising range. Since the performance of the battery system is affected by factors such as electrical contact stability, voltage and current characteristics, and its own temperature, its full life cycle performance cannot be comprehensively evaluated, resulting in the inefficient prediction and protective measures. In this paper, the electrical contact stability evaluation index is proposed by studying the relationship between the electrical contact stability and the fluctuation characteristics of the reversed equilibrium potential. The parameters including electrical contact stability, polynomial-based status of charge (SoC), the status of health (SoH), the status of consistency, as well as battery system temperature constituted the performance matrix of the battery system. A comprehensive performance evaluation method of power battery system based on dynamic weight is designed with normalized classification. Finally, the cyclic charge-discharge test experiment under the vibration status were carried out to verify the effectiveness of the method. The result showed that the method can characterize various functions and provide an intuitive and detailed evaluation for the safety prediction of battery system.
{"title":"Comprehensive Performance Evaluation Strategy for Power Battery System based on Dynamic Weight","authors":"You Xu, Hongxian Liu, Zhenxing Zheng, Jingxiang Yao, Kaiqing Zhou, Jiehao Li","doi":"10.1115/1.4062287","DOIUrl":"https://doi.org/10.1115/1.4062287","url":null,"abstract":"\u0000 New energy vehicles are the effective solution to solve the situation of carbon neutrality with carbon peaking in China. The power battery system is the key component of new energy vehicles, and its performance is directly related to the safety and cruising range. Since the performance of the battery system is affected by factors such as electrical contact stability, voltage and current characteristics, and its own temperature, its full life cycle performance cannot be comprehensively evaluated, resulting in the inefficient prediction and protective measures. In this paper, the electrical contact stability evaluation index is proposed by studying the relationship between the electrical contact stability and the fluctuation characteristics of the reversed equilibrium potential. The parameters including electrical contact stability, polynomial-based status of charge (SoC), the status of health (SoH), the status of consistency, as well as battery system temperature constituted the performance matrix of the battery system. A comprehensive performance evaluation method of power battery system based on dynamic weight is designed with normalized classification. Finally, the cyclic charge-discharge test experiment under the vibration status were carried out to verify the effectiveness of the method. The result showed that the method can characterize various functions and provide an intuitive and detailed evaluation for the safety prediction of battery system.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63503955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Sugimoto, Zhikuan Zhu, Srikanth Gopalan, S. Basu, U. Pal
Chromium poisoning of the air electrode remains an obstacle to the long-term performance of solid oxide fuel cells (SOFCs). In Sr-doped LaMnO3 (LSM) air electrodes, the poisoning process results in two types of deposits, chromium oxide (Cr2O3), and Mn, Cr spinel (MnCr2O4). The former forms electrochemically and the latter forms via a chemical reaction. By applying a small anodic reverse bias, Cr2O3 deposits can be removed because their formation is electrochemical in nature. However, MnCr2O4 deposits remain because their formation is chemical, rather than electrochemical, in nature. In-situ chemical decomposition of the Mn, Cr spinel was investigated as an alternate removal method as thermodynamics supports its decomposition into constituent oxides below ~540°C in pure oxygen. The spinel decomposition process was characterized using TGA and XRD analyses. The experimentally determined rate of spinel decomposition was undetectable (very slow) with isolated MnCr2O4 powders. The addition of 10 mole% gadolinia doped ceria (GDC) and silver powders significantly increased the rate of decomposition. However, the rate is limited by the diffusion of oxygen through the decomposed oxide layer. Although one strategy may be the addition of GDC and silver to the LSM air electrode to enhance spinel decomposition, the more effective mitigation strategy would be to prevent the formation of MnCr2O4 spinel in the first place through the removal of the reactants: Cr2O3 via electrochemical cleaning and mobile Mn ions in the zirconia electrolyte by incorporating a diffusion barrier layer such as GDC between the air electrode and electrolyte.
{"title":"CHROMIUM POISONING MITIGATION STRATEGY IN STRONTIUM DOPED LANTHANUM MANGANITE BASED AIR ELECTRODES IN SOLID OXIDE FUEL CELLS","authors":"M. Sugimoto, Zhikuan Zhu, Srikanth Gopalan, S. Basu, U. Pal","doi":"10.1115/1.4062192","DOIUrl":"https://doi.org/10.1115/1.4062192","url":null,"abstract":"\u0000 Chromium poisoning of the air electrode remains an obstacle to the long-term performance of solid oxide fuel cells (SOFCs). In Sr-doped LaMnO3 (LSM) air electrodes, the poisoning process results in two types of deposits, chromium oxide (Cr2O3), and Mn, Cr spinel (MnCr2O4). The former forms electrochemically and the latter forms via a chemical reaction. By applying a small anodic reverse bias, Cr2O3 deposits can be removed because their formation is electrochemical in nature. However, MnCr2O4 deposits remain because their formation is chemical, rather than electrochemical, in nature. In-situ chemical decomposition of the Mn, Cr spinel was investigated as an alternate removal method as thermodynamics supports its decomposition into constituent oxides below ~540°C in pure oxygen. The spinel decomposition process was characterized using TGA and XRD analyses. The experimentally determined rate of spinel decomposition was undetectable (very slow) with isolated MnCr2O4 powders. The addition of 10 mole% gadolinia doped ceria (GDC) and silver powders significantly increased the rate of decomposition. However, the rate is limited by the diffusion of oxygen through the decomposed oxide layer. Although one strategy may be the addition of GDC and silver to the LSM air electrode to enhance spinel decomposition, the more effective mitigation strategy would be to prevent the formation of MnCr2O4 spinel in the first place through the removal of the reactants: Cr2O3 via electrochemical cleaning and mobile Mn ions in the zirconia electrolyte by incorporating a diffusion barrier layer such as GDC between the air electrode and electrolyte.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43098804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Special Section on 2D Materials for Electrochemical Energy Storage and Conversion","authors":"Leela Mohana Reddy Arava, D. Datta, W. Chiu","doi":"10.1115/1.4062186","DOIUrl":"https://doi.org/10.1115/1.4062186","url":null,"abstract":"","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63503885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The most studied Molten Carbonate-Direct Carbon Fuel Cel (MC-LFC) or Molten Carbonate Direct Carbon Fuel Cell (MC-DCFC) prototypes are those which are fed by fossil fuel. Substituting these fossilized fuels in the MC-DCFC operation with lignin, which is a bio-based carbon, may make this system more efficient, clean, and sustainable. The manipulation module (Mixture) and the computational module (Equilib) of the Factsage package were used to simulate two systems that can represent the anodic compartment of a direct carbon fuel cell based on MC-DCFC. The first system includes lignin and a mixture of molten carbonate (Li2CO3-Na2CO3-Cs2CO3). The second system uses the same first electrolyte system but with the addition of CO2 gas. The results show the formation of mixed gases in the anodic compartment which are composed of H2, CO, CO2, CH4 and H2O. The relative concentration of each of the species of this mixed gas has an impact on the efficiency of the MC-DCFC. How the relative concentration of these gases in this electrolyte can impact the performance parameters of the MC-DCFC is systematically analysed. If the operating conditions of the fuel cell are optimized to get a gas composition of mainly of CO2 with low amounts of H2, CO, CH4, H2O in the anode compartment of the MC-DCFC, This will help to improve the conversion efficiency of lignin fuel in the MC-DCFC.
{"title":"Exhaust gas composition of lignin reactions in molten carbonate salt of Direct Carbon Fuel Cell (DCFC) using Factsage","authors":"U. L. Compaore, O. Savadogo, K. Oishi","doi":"10.1115/1.4062162","DOIUrl":"https://doi.org/10.1115/1.4062162","url":null,"abstract":"\u0000 The most studied Molten Carbonate-Direct Carbon Fuel Cel (MC-LFC) or Molten Carbonate Direct Carbon Fuel Cell (MC-DCFC) prototypes are those which are fed by fossil fuel. Substituting these fossilized fuels in the MC-DCFC operation with lignin, which is a bio-based carbon, may make this system more efficient, clean, and sustainable. The manipulation module (Mixture) and the computational module (Equilib) of the Factsage package were used to simulate two systems that can represent the anodic compartment of a direct carbon fuel cell based on MC-DCFC. The first system includes lignin and a mixture of molten carbonate (Li2CO3-Na2CO3-Cs2CO3). The second system uses the same first electrolyte system but with the addition of CO2 gas. The results show the formation of mixed gases in the anodic compartment which are composed of H2, CO, CO2, CH4 and H2O. The relative concentration of each of the species of this mixed gas has an impact on the efficiency of the MC-DCFC. How the relative concentration of these gases in this electrolyte can impact the performance parameters of the MC-DCFC is systematically analysed. If the operating conditions of the fuel cell are optimized to get a gas composition of mainly of CO2 with low amounts of H2, CO, CH4, H2O in the anode compartment of the MC-DCFC, This will help to improve the conversion efficiency of lignin fuel in the MC-DCFC.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41812672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}