首页 > 最新文献

Journal of Electrochemical Energy Conversion and Storage最新文献

英文 中文
Electrochemical performance of Co1-xMnxFe2O4 decorated nanofiber Polyaniline (PAni) composites Co1-xMnxFe2O4修饰纳米纤维聚苯胺(PAni)复合材料的电化学性能
IF 2.5 4区 工程技术 Q2 Engineering Pub Date : 2023-08-31 DOI: 10.1115/1.4063303
Sura R. Mohammed, M. Ismail, I. Ibrahim
The current work is concerned with preparing cobalt manganese ferrite (Co1-xMnxFe2O4) with different concentrations of cobalt and manganese (x= 0.2, 0.4, and 0.6) and decorating it with polyaniline (PAni) for use in supercapacitive applications. The results of the X-Ray diffraction (XRD) manifested a broad peak of PAni and a cubic structure of cobalt manganese ferrite having crystal size between 60 nm - 138 nm, which decreases with increasing concentration of Mn. The field emission scanning electron microscopy (FE-SEM) images evidenced that the PAni has nanofiber (NFs) structures, according to the method of preparation, where the hydrothermal method was used. The magnetic properties of the prepared ferrite, as well as the prepared PAni/Co1-xMnxFe2O4 composites, were studied through the vibrating sample magnetometer (VSM) analysis, where the magnetic hysteresis loops of ferrite elucidated a significant influence on the manganese content and the decorated PAni, through the decrease of both saturation magnetism (Ms) and remnant magnetism (Mr) in addition to the corrosive field (Hc). Increasing the content of manganese in the composites led to an improvement in the energy storage performance of the capacitors, which were tested in 1 M of H2SO4 by using the CV cyclic voltammetry analysis, galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). Increasing the manganese content caused an increase in the specific capacity and a significant increase in the charging and discharging time; the highest capacitance is 556 F/g.
目前的工作涉及制备具有不同浓度的钴和锰(x=0.2、0.4和0.6)的钴锰铁氧体(Co1-xMnxFe2O4),并用聚苯胺(PAni)对其进行修饰以用于超级电容器应用。X射线衍射(XRD)结果表明,PAni具有宽峰和立方结构的钴锰铁氧体,晶体尺寸在60nm-138nm之间,随着Mn浓度的增加而减小。根据制备方法,场发射扫描电子显微镜(FE-SEM)图像证明PAni具有纳米纤维(NFs)结构,其中使用了水热法。通过振动样品磁强计(VSM)分析研究了制备的铁氧体以及制备的PAni/Co1-xMnxFe2O4复合材料的磁性能,其中铁氧体的磁滞回线阐明了对锰含量和修饰的PAni的显著影响,除了腐蚀场(Hc)之外,还通过饱和磁性(Ms)和残余磁性(Mr)的降低。通过使用CV循环伏安法分析、恒电流充放电(GCD)和电化学阻抗谱(EIS),在1M H2SO4中测试了复合材料中锰含量的增加导致电容器储能性能的提高。锰含量的增加导致比容量的增加和充放电时间的显著增加;最高电容为556F/g。
{"title":"Electrochemical performance of Co1-xMnxFe2O4 decorated nanofiber Polyaniline (PAni) composites","authors":"Sura R. Mohammed, M. Ismail, I. Ibrahim","doi":"10.1115/1.4063303","DOIUrl":"https://doi.org/10.1115/1.4063303","url":null,"abstract":"\u0000 The current work is concerned with preparing cobalt manganese ferrite (Co1-xMnxFe2O4) with different concentrations of cobalt and manganese (x= 0.2, 0.4, and 0.6) and decorating it with polyaniline (PAni) for use in supercapacitive applications. The results of the X-Ray diffraction (XRD) manifested a broad peak of PAni and a cubic structure of cobalt manganese ferrite having crystal size between 60 nm - 138 nm, which decreases with increasing concentration of Mn. The field emission scanning electron microscopy (FE-SEM) images evidenced that the PAni has nanofiber (NFs) structures, according to the method of preparation, where the hydrothermal method was used. The magnetic properties of the prepared ferrite, as well as the prepared PAni/Co1-xMnxFe2O4 composites, were studied through the vibrating sample magnetometer (VSM) analysis, where the magnetic hysteresis loops of ferrite elucidated a significant influence on the manganese content and the decorated PAni, through the decrease of both saturation magnetism (Ms) and remnant magnetism (Mr) in addition to the corrosive field (Hc). Increasing the content of manganese in the composites led to an improvement in the energy storage performance of the capacitors, which were tested in 1 M of H2SO4 by using the CV cyclic voltammetry analysis, galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). Increasing the manganese content caused an increase in the specific capacity and a significant increase in the charging and discharging time; the highest capacitance is 556 F/g.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43712305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigation and controllability study of electrochemical actuators based on Si/CNTs composite material 基于Si/CNTs复合材料的电化学致动器的实验研究与可控性研究
IF 2.5 4区 工程技术 Q2 Engineering Pub Date : 2023-07-27 DOI: 10.1115/1.4063057
Zhilin Wu, Xiaobing Yang, Kai Sheng, Dawei Li
Electrochemical actuators can convert electrical energy into mechanical energy directly and have been applied widely. With a large volume expansion in the electrochemical reaction, silicon material demonstrates enormous potential in the manufacture of the electrochemical actuators. Here, we propose a new electrochemical actuator based on Si/CNTs composite electrode. A mathematical model is developed to analyze the relationship among material parameters, structural changes, and bending deformation. The curvature changes of the cantilever beam are captured by a CCD camera during electrochemical cycling. Combining the model and bending curvatures, the modulus and swell strain are extracted and detailed analyzed. Here, the elastic modulus of the composite electrode softens and decreases from 9.59 GPa to 4.78 GPa, while the swell strain increases from 0.12% to 2.97% when arriving 6% normalized concentration of lithium. These results show that the composite material possesses excellent bending resistance and deformation ability. Also, the curvature changes under different thickness ratios are predicted successfully, the evolution of stress in the working electrode is simulated, and the loading experiment of the actuator is carried out. This work provides a new way to realize the controllability of the electrochemical actuators.
电化学执行器能将电能直接转化为机械能,得到了广泛的应用。硅材料在电化学反应中具有较大的体积膨胀性,在电化学致动器的制造中显示出巨大的潜力。本文提出了一种基于Si/CNTs复合电极的电化学致动器。建立了一个数学模型来分析材料参数、结构变化和弯曲变形之间的关系。利用CCD相机捕捉电化学循环过程中悬臂梁的曲率变化。结合模型和弯曲曲率,提取了模量和膨胀应变,并对其进行了详细分析。当锂浓度达到6%时,复合电极的弹性模量从9.59 GPa下降到4.78 GPa,膨胀应变从0.12%增加到2.97%。结果表明,该复合材料具有优异的抗弯性能和变形能力。成功预测了不同厚度比下的曲率变化,模拟了工作电极的应力演化,并进行了执行器的加载实验。为实现电化学执行器的可控性提供了一条新的途径。
{"title":"Experimental investigation and controllability study of electrochemical actuators based on Si/CNTs composite material","authors":"Zhilin Wu, Xiaobing Yang, Kai Sheng, Dawei Li","doi":"10.1115/1.4063057","DOIUrl":"https://doi.org/10.1115/1.4063057","url":null,"abstract":"\u0000 Electrochemical actuators can convert electrical energy into mechanical energy directly and have been applied widely. With a large volume expansion in the electrochemical reaction, silicon material demonstrates enormous potential in the manufacture of the electrochemical actuators. Here, we propose a new electrochemical actuator based on Si/CNTs composite electrode. A mathematical model is developed to analyze the relationship among material parameters, structural changes, and bending deformation. The curvature changes of the cantilever beam are captured by a CCD camera during electrochemical cycling. Combining the model and bending curvatures, the modulus and swell strain are extracted and detailed analyzed. Here, the elastic modulus of the composite electrode softens and decreases from 9.59 GPa to 4.78 GPa, while the swell strain increases from 0.12% to 2.97% when arriving 6% normalized concentration of lithium. These results show that the composite material possesses excellent bending resistance and deformation ability. Also, the curvature changes under different thickness ratios are predicted successfully, the evolution of stress in the working electrode is simulated, and the loading experiment of the actuator is carried out. This work provides a new way to realize the controllability of the electrochemical actuators.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48745520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal and Air Management of an Open Cathode PEM Fuel Cell using Sliding Mode Control 采用滑模控制的开阴极PEM燃料电池的热管理和空气管理
IF 2.5 4区 工程技术 Q2 Engineering Pub Date : 2023-07-27 DOI: 10.1115/1.4063056
K. Ram, Shanal Kumar, Vincent Léchappé, A. Mohammadi, Maurizio Cirrincione
The paper presents a simplified nonlinear model for an open cathode proton exchange membrane fuel cell (PEMFC) and its control by using three different strategies. The model presented uses four state variables. The mass flow of oxygen, hydrogen flow, water and temperature were taken to be the critical dynamics in the system. The unknown parameters were estimated using the experimental data of a 1.2 kW PEMFC. The simplified model showed good agreement with experimental results. Control schemes were implemented to control the stack temperature of the PEMFC. The proportional (P) and proportional-integral (PI) Control performed well but had a poorer response compared to the sliding mode control (SMC) scheme. The study of the different control schemes reveals the dangers of singularly controlling either the oxygen excess ratio or the temperature. Results show the best control is achieved when the excess ratio is control through the reference temperature. The study also compares the parasitic losses from the fans caused by the different controllers. Overall the results provide a good insight into designing a robust control system for an open cathode PEMFC for faster response and greater durability.
本文提出了一个简化的开放式阴极质子交换膜燃料电池(PEMFC)非线性模型,并采用三种不同的策略对其进行控制。所提出的模型使用了四个状态变量。氧的质量流量、氢的流量、水和温度被认为是系统中的关键动力学。使用1.2kW PEMFC的实验数据来估计未知参数。简化模型与实验结果吻合较好。实施控制方案来控制PEMFC的堆叠温度。比例(P)和比例积分(PI)控制表现良好,但与滑模控制(SMC)方案相比响应较差。对不同控制方案的研究揭示了单独控制氧气过剩率或温度的危险。结果表明,当通过参考温度控制过量比时,实现了最佳控制。该研究还比较了不同控制器引起的风扇寄生损耗。总的来说,这些结果为设计用于开阴极PEMFC的鲁棒控制系统提供了很好的见解,以获得更快的响应和更大的耐用性。
{"title":"Thermal and Air Management of an Open Cathode PEM Fuel Cell using Sliding Mode Control","authors":"K. Ram, Shanal Kumar, Vincent Léchappé, A. Mohammadi, Maurizio Cirrincione","doi":"10.1115/1.4063056","DOIUrl":"https://doi.org/10.1115/1.4063056","url":null,"abstract":"\u0000 The paper presents a simplified nonlinear model for an open cathode proton exchange membrane fuel cell (PEMFC) and its control by using three different strategies. The model presented uses four state variables. The mass flow of oxygen, hydrogen flow, water and temperature were taken to be the critical dynamics in the system. The unknown parameters were estimated using the experimental data of a 1.2 kW PEMFC. The simplified model showed good agreement with experimental results. Control schemes were implemented to control the stack temperature of the PEMFC. The proportional (P) and proportional-integral (PI) Control performed well but had a poorer response compared to the sliding mode control (SMC) scheme. The study of the different control schemes reveals the dangers of singularly controlling either the oxygen excess ratio or the temperature. Results show the best control is achieved when the excess ratio is control through the reference temperature. The study also compares the parasitic losses from the fans caused by the different controllers. Overall the results provide a good insight into designing a robust control system for an open cathode PEMFC for faster response and greater durability.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44175269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Promoting Effect of PbO on Ir Nanosurface Towards Ethanol Electrocatalytic Oxidation in Alkaline Media PbO对Ir纳米表面乙醇在碱性介质中电催化氧化的促进作用
IF 2.5 4区 工程技术 Q2 Engineering Pub Date : 2023-07-25 DOI: 10.1115/1.4063017
Huazhong Ma, Sheng-Rong He, Xingyu Ma, Yaoyue Yang
Metal-metal (hydr)oxide interfaces can promote the CO2 selectivity of ethanol oxidation reaction (EOR) due to so-called metal-oxide-interaction (MOI). Here, we first show that the mixture of Ir and PbO species at the nanoscale can also form “bifunctional effect” sites, where C-C bond of ethanol can be effective cut at Ir sites to generate C1 intermediates, and nearby PbO species could provide oxygenated-species. Actually, the as-prepared Ir-PbO/C catalysts with a mean metallic nanoparticle size of 2.6±0.5 nm can greatly improve the activity, stability and C1 pathway selectivity of EOR. Specifically, it exhibits superior mass activity of 1150 mA mg−1Ir in 1 M NaOH solution containing 1 M C2H5OH. Chronoamperometry tests show that the stability of Ir-PbO/C is also significantly improved compared with Ir/C. In situ electrochemical infrared absorption spectral results confirm that the addition of oxophilic PbO species could accelerate the oxidative removal of COad intermediates, thereby greatly improving catalytic performance. This study may give new insights into designing efficient anode catalysts for the direct ethanol fuel cells (DEFCs).
由于所谓的金属-氧化物相互作用(MOI),金属-金属(hydr)-氧化物界面可以提高乙醇氧化反应(EOR)的CO2选择性。在这里,我们首先表明,在纳米尺度上,Ir和PbO物种的混合物也可以形成“双功能效应”位点,其中乙醇的C-C键可以在Ir位点被有效切割以产生C1中间体,而附近的PbO物种可以提供含氧物种。事实上,所制备的平均金属纳米颗粒尺寸为2.6±0.5nm的Ir-PbO/C催化剂可以大大提高EOR的活性、稳定性和C1途径选择性。具体而言,它在含有1M C2H5OH的1M NaOH溶液中表现出1150 mA mg−1Ir的优异质量活性。计时电流法测试表明,与Ir/C相比,Ir-PbO/C的稳定性也显著提高。原位电化学红外吸收光谱结果证实,亲氧PbO物种的加入可以加速COad中间体的氧化去除,从而大大提高催化性能。这项研究可能为设计高效的直接乙醇燃料电池阳极催化剂提供新的见解。
{"title":"Promoting Effect of PbO on Ir Nanosurface Towards Ethanol Electrocatalytic Oxidation in Alkaline Media","authors":"Huazhong Ma, Sheng-Rong He, Xingyu Ma, Yaoyue Yang","doi":"10.1115/1.4063017","DOIUrl":"https://doi.org/10.1115/1.4063017","url":null,"abstract":"\u0000 Metal-metal (hydr)oxide interfaces can promote the CO2 selectivity of ethanol oxidation reaction (EOR) due to so-called metal-oxide-interaction (MOI). Here, we first show that the mixture of Ir and PbO species at the nanoscale can also form “bifunctional effect” sites, where C-C bond of ethanol can be effective cut at Ir sites to generate C1 intermediates, and nearby PbO species could provide oxygenated-species. Actually, the as-prepared Ir-PbO/C catalysts with a mean metallic nanoparticle size of 2.6±0.5 nm can greatly improve the activity, stability and C1 pathway selectivity of EOR. Specifically, it exhibits superior mass activity of 1150 mA mg−1Ir in 1 M NaOH solution containing 1 M C2H5OH. Chronoamperometry tests show that the stability of Ir-PbO/C is also significantly improved compared with Ir/C. In situ electrochemical infrared absorption spectral results confirm that the addition of oxophilic PbO species could accelerate the oxidative removal of COad intermediates, thereby greatly improving catalytic performance. This study may give new insights into designing efficient anode catalysts for the direct ethanol fuel cells (DEFCs).","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47320759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Cooling System Boundary Conditions on the Performance of Proton Exchange Membrane Fuel Cell: A Comprehensive Analysis 冷却系统边界条件对质子交换膜燃料电池性能影响的综合分析
IF 2.5 4区 工程技术 Q2 Engineering Pub Date : 2023-07-25 DOI: 10.1115/1.4063016
Yaochen Wang, H. Ren, Cong Li
We developed a three-dimensional multiphysics numerical model of a Proton Exchange Mem-brane Fuel Cell (PEMFC) with a cathode mesh structure to investigate how coolant flow rate and temperature impact its performance. After experimentally validating the model, we compared the performance of the cathode mesh structure PEMFC with that of the traditional straight flow PEMFC. The results indicate that the cathode mesh structure PEMFC has a lower pressure drop and a more index of uniform distribution (IUD), leading to enhanced performance, better temperature distribution, and improved water management of the PEMFC. The investigation of the cooling system's operating parameters revealed that the temperature of the cathode catalyst layer in the PEMFC is the highest, while the temperature of the bipolar plate is the lowest. Of the nine cases that we evaluated, Case 7, with a coolant inlet temperature and flow rate of 303.15 K and 0.07 m s−1, respectively, yielded the highest power density and the lowest average temperature. The IUD of the PEM in Case 5 was 0.608, suggesting that the temperature distribution of the PEM is more uniform when the coolant inlet temperature and flow rate are 323.15 K and 0.05 m s−1, respectively. We have demonstrated through calculations that there is a strong correlation between temperature difference and IUDs. These findings have significant implications for the optimization and application of PEMFCs.
我们开发了一个具有阴极网格结构的质子交换膜燃料电池(PEMFC)的三维多物理数值模型,以研究冷却剂流速和温度如何影响其性能。在对模型进行实验验证后,我们将阴极网状结构的PEMFC与传统的直流PEMFC的性能进行了比较。结果表明,阴极网状结构的PEMFC具有更低的压降和更多的均匀分布指数(IUD),从而提高了PEMFC的性能、更好的温度分布和改进的水管理。对冷却系统运行参数的研究表明,PEMFC中阴极催化剂层的温度最高,而双极板的温度最低。在我们评估的九种情况中,冷却液入口温度和流速分别为303.15 K和0.07 m s−1的情况7产生了最高的功率密度和最低的平均温度。案例5中PEM的IUD为0.608,表明当冷却剂入口温度和流速分别为323.15 K和0.05 m s−1时,PEM的温度分布更加均匀。我们已经通过计算证明,温差和宫内节育器之间有很强的相关性。这些发现对PEMFC的优化和应用具有重要意义。
{"title":"Effects of Cooling System Boundary Conditions on the Performance of Proton Exchange Membrane Fuel Cell: A Comprehensive Analysis","authors":"Yaochen Wang, H. Ren, Cong Li","doi":"10.1115/1.4063016","DOIUrl":"https://doi.org/10.1115/1.4063016","url":null,"abstract":"\u0000 We developed a three-dimensional multiphysics numerical model of a Proton Exchange Mem-brane Fuel Cell (PEMFC) with a cathode mesh structure to investigate how coolant flow rate and temperature impact its performance. After experimentally validating the model, we compared the performance of the cathode mesh structure PEMFC with that of the traditional straight flow PEMFC. The results indicate that the cathode mesh structure PEMFC has a lower pressure drop and a more index of uniform distribution (IUD), leading to enhanced performance, better temperature distribution, and improved water management of the PEMFC. The investigation of the cooling system's operating parameters revealed that the temperature of the cathode catalyst layer in the PEMFC is the highest, while the temperature of the bipolar plate is the lowest. Of the nine cases that we evaluated, Case 7, with a coolant inlet temperature and flow rate of 303.15 K and 0.07 m s−1, respectively, yielded the highest power density and the lowest average temperature. The IUD of the PEM in Case 5 was 0.608, suggesting that the temperature distribution of the PEM is more uniform when the coolant inlet temperature and flow rate are 323.15 K and 0.05 m s−1, respectively. We have demonstrated through calculations that there is a strong correlation between temperature difference and IUDs. These findings have significant implications for the optimization and application of PEMFCs.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47602791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A approach for fast-charging lithium-ion batteries state of health prediction based on model-data fusion 基于模型数据融合的快速充电锂离子电池健康状态预测方法
IF 2.5 4区 工程技术 Q2 Engineering Pub Date : 2023-07-19 DOI: 10.1115/1.4062990
Hailin Feng, Yatian Liu
Fast charging has become the norm for various electronic products. The research on the state of health (SOH) prediction of fast-charging lithium-ion battery deserves more attention. In this paper, a model-data fusion SOH prediction method which can reflect the degradation mechanism of fast-charging battery is proposed. Firstly, based on the Arrhenius model, the logarithmic-power function (LP) model and logarithmic-linear (LL) model related to the fast-charging rate are established. Secondly, combined with Gaussian process regression (GPR) prediction, particle filter is used to update the parameters of models in real time. Compared with the single GPR, the average root mean square error of LP and LL are reduced by 71.56% and 69.11%, respectively. Finally, the sensitivity and superiority of the two models are analyzed by using Sobol method, Akaike and Bayesian Information Criterion. The results show that the two models are more suitable for fast-charging lithium batteries than the traditional Arrhenius model, and LP model is better than LL model.
快速充电已经成为各种电子产品的常态。快速充电锂离子电池的健康状态预测研究值得关注。本文提出了一种能够反映快充电池退化机理的模型数据融合SOH预测方法。首先,在Arrhenius模型的基础上,建立了与快速充电率相关的对数功率函数(LP)模型和对数线性(LL)模型。其次,结合高斯过程回归(GPR)预测,使用粒子滤波器实时更新模型参数。与单一GPR相比,LP和LL的平均均方根误差分别降低了71.56%和69.11%。最后,利用Sobol方法、Akaike和贝叶斯信息准则分析了这两种模型的敏感性和优越性。结果表明,这两种模型比传统的Arrhenius模型更适合锂电池的快速充电,LP模型比LL模型更好。
{"title":"A approach for fast-charging lithium-ion batteries state of health prediction based on model-data fusion","authors":"Hailin Feng, Yatian Liu","doi":"10.1115/1.4062990","DOIUrl":"https://doi.org/10.1115/1.4062990","url":null,"abstract":"\u0000 Fast charging has become the norm for various electronic products. The research on the state of health (SOH) prediction of fast-charging lithium-ion battery deserves more attention. In this paper, a model-data fusion SOH prediction method which can reflect the degradation mechanism of fast-charging battery is proposed. Firstly, based on the Arrhenius model, the logarithmic-power function (LP) model and logarithmic-linear (LL) model related to the fast-charging rate are established. Secondly, combined with Gaussian process regression (GPR) prediction, particle filter is used to update the parameters of models in real time. Compared with the single GPR, the average root mean square error of LP and LL are reduced by 71.56% and 69.11%, respectively. Finally, the sensitivity and superiority of the two models are analyzed by using Sobol method, Akaike and Bayesian Information Criterion. The results show that the two models are more suitable for fast-charging lithium batteries than the traditional Arrhenius model, and LP model is better than LL model.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45947563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Components used in microbial fuel cells (MFCs) for renewable energy generation: A review of their historical and ecological development 用于可再生能源发电的微生物燃料电池(mfc)组件的历史和生态发展综述
IF 2.5 4区 工程技术 Q2 Engineering Pub Date : 2023-07-18 DOI: 10.1115/1.4062991
Necla Altin, R. G. Akay
This review article addresses microbial fuel cells (MFCs) as a renewable energy source. MFCs are bioelectrochemical systems that use exoelectrogenic bacterial communities under anaerobic conditions to convert chemical energy into electrical energy. These systems are attracting attention due to their potential to reduce overall energy consumption, produce zero carbon emissions, and exhibit high energy density. The rapid development of renewable energy sources has increased the potential for bioenergy, particularly MFCs, to become one of the most important energy sources of the future. In addition to energy production, MFCs show potential for bioremediation and efficient removal of various pollutants. While MFC technology currently has limited application at the laboratory level, it is expected to increase in commercial use in the near future and offers great potential in the areas of renewable energy and environmental sustainability. This review article focuses on the historical and ecological development of the components used in MFCs, examining in detail their evolution and use in MFCs for renewable energy production.
本文综述了微生物燃料电池作为一种可再生能源。mfc是一种利用厌氧条件下的产电细菌群落将化学能转化为电能的生物电化学系统。这些系统由于具有降低整体能耗、零碳排放和高能量密度的潜力而备受关注。可再生能源的迅速发展增加了生物能源,特别是mfc,成为未来最重要的能源之一的潜力。除了能源生产外,mfc还显示出生物修复和有效去除各种污染物的潜力。虽然MFC技术目前在实验室层面的应用有限,但预计在不久的将来会增加商业用途,并在可再生能源和环境可持续性领域提供巨大的潜力。本文重点介绍了复合燃料电池中使用组分的历史和生态发展,详细介绍了它们的演变及其在可再生能源生产中的应用。
{"title":"Components used in microbial fuel cells (MFCs) for renewable energy generation: A review of their historical and ecological development","authors":"Necla Altin, R. G. Akay","doi":"10.1115/1.4062991","DOIUrl":"https://doi.org/10.1115/1.4062991","url":null,"abstract":"\u0000 This review article addresses microbial fuel cells (MFCs) as a renewable energy source. MFCs are bioelectrochemical systems that use exoelectrogenic bacterial communities under anaerobic conditions to convert chemical energy into electrical energy. These systems are attracting attention due to their potential to reduce overall energy consumption, produce zero carbon emissions, and exhibit high energy density. The rapid development of renewable energy sources has increased the potential for bioenergy, particularly MFCs, to become one of the most important energy sources of the future. In addition to energy production, MFCs show potential for bioremediation and efficient removal of various pollutants. While MFC technology currently has limited application at the laboratory level, it is expected to increase in commercial use in the near future and offers great potential in the areas of renewable energy and environmental sustainability. This review article focuses on the historical and ecological development of the components used in MFCs, examining in detail their evolution and use in MFCs for renewable energy production.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44445240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on Two-level Equalization Strategy of Lithium-ion Battery Based on Graph Theory 基于图论的锂离子电池两级均衡策略研究
IF 2.5 4区 工程技术 Q2 Engineering Pub Date : 2023-07-18 DOI: 10.1115/1.4062989
Tiezhou Wu, Houjia Li, Hongguang Li, Rui Zhao
To solve the problem of inconsistency in the use of series-connected lithium-ion battery packs, this paper proposed a topological structure of dual-layer equalization based on a flying capacitor circuit and Cuk circuit, as well as a control strategy seeking the shortest equalization path. In this structure, batteries are divided into two forms: intra-group and inter-group; the intra-group equalization is the lower-level equalization while the flying capacitor circuit is used as an equalization circuit to achieve equalization between individual battery cells; the inter-group equalization is the upper-level equalization while Cuk circuit is used as equalization circuit to achieve equalization between battery packs; each battery pack shares a battery cell, thus to obtain more options on equalization path. The proposed strategy, with State of Charge as the balancing variable, represents topological structure of the circuit in form of graph by adopting graph theory control, seeks the optimal equalization path via ant colony optimization algorithm with global search, thus to improve the equalization speed and efficiency. At last, the structure and the strategy proposed in this paper were simulated in MATLAB/Simulink to compare with the maximum value equalization method in the condition of static, charging, and discharging. The result of the simulation experiments shows that the equalization method based on graph theory control reduces the equalization duration by approximately 17%, and improves the equalization efficiency by approximately 2%, which verifies the superiority and effectiveness of the structure and strategy proposed in this paper.
为了解决锂离子电池组串联使用中存在的不一致性问题,本文提出了一种基于飞行电容电路和Cuk电路的双层均衡拓扑结构,以及寻求最短均衡路径的控制策略。在这种结构中,电池分为两种形式:组内和组间;组内均衡为下层均衡,飞行电容电路作为均衡电路,实现单体电池单体之间的均衡;组间均衡为上一级均衡,Cuk电路为均衡电路,实现电池组间均衡;每个电池组共用一个电芯,从而在均衡路径上获得更多的选择。该策略以充电状态为平衡变量,采用图论控制,以图的形式表示电路的拓扑结构,通过全局搜索的蚁群优化算法寻找最优均衡路径,从而提高均衡速度和效率。最后,在MATLAB/Simulink中对本文提出的结构和策略进行了仿真,并与静态、充放电条件下的最大值均衡方法进行了比较。仿真实验结果表明,基于图论控制的均衡方法使均衡时间缩短了约17%,均衡效率提高了约2%,验证了本文提出的结构和策略的优越性和有效性。
{"title":"Research on Two-level Equalization Strategy of Lithium-ion Battery Based on Graph Theory","authors":"Tiezhou Wu, Houjia Li, Hongguang Li, Rui Zhao","doi":"10.1115/1.4062989","DOIUrl":"https://doi.org/10.1115/1.4062989","url":null,"abstract":"\u0000 To solve the problem of inconsistency in the use of series-connected lithium-ion battery packs, this paper proposed a topological structure of dual-layer equalization based on a flying capacitor circuit and Cuk circuit, as well as a control strategy seeking the shortest equalization path. In this structure, batteries are divided into two forms: intra-group and inter-group; the intra-group equalization is the lower-level equalization while the flying capacitor circuit is used as an equalization circuit to achieve equalization between individual battery cells; the inter-group equalization is the upper-level equalization while Cuk circuit is used as equalization circuit to achieve equalization between battery packs; each battery pack shares a battery cell, thus to obtain more options on equalization path. The proposed strategy, with State of Charge as the balancing variable, represents topological structure of the circuit in form of graph by adopting graph theory control, seeks the optimal equalization path via ant colony optimization algorithm with global search, thus to improve the equalization speed and efficiency. At last, the structure and the strategy proposed in this paper were simulated in MATLAB/Simulink to compare with the maximum value equalization method in the condition of static, charging, and discharging. The result of the simulation experiments shows that the equalization method based on graph theory control reduces the equalization duration by approximately 17%, and improves the equalization efficiency by approximately 2%, which verifies the superiority and effectiveness of the structure and strategy proposed in this paper.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48922414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reactive Force Field(ReaxFF) and Universal Force Field(UFF) Molecular Dynamic Simulation of SEI components in lithium-ion batteries 锂离子电池中SEI组分的反应力场(ReaxFF)和通用力场(UFF)分子动力学模拟
IF 2.5 4区 工程技术 Q2 Engineering Pub Date : 2023-07-18 DOI: 10.1115/1.4062992
Anshul Nagar, A. Garg, Surinder Singh, L. Gao, Jonghoon Kim, Kexiang Wei
Understanding Solid Electrolyte Interphase (SEI) is essential for diagnosis of Lithium-ion batteries because many aspects of battery performance such as safety and efficiency depends on this characteristics.. LiF, Li2O, and Li2CO3 are important inorganic components of SEI. This electrode-electrolyte surface forms during the battery's first charging/ discharging cycle, preventing electrons' movement through the electrolyte and stabilizing the Lithium-ion battery. However, the concern is inorganic SEI components cause rate limitation of Lithium-ion diffusivity through the SEI layer. Lithium-ion diffusivity through the SEI layer depends on many factors such as temperature, the width of the SEI layer, and the concentration/density of the layer. Lithium-ion diffusivity dependence on temperature, at working temperatures of lithium-ion batteries was observed at temperatures from 250 K to 400 K and diffusion coefficient data at higher temperatures also been observed. Lithium-ion diffusivity at varying concentration/density was also observed in this paper using the Reactive force field (ReaxFF) molecular dynamic simulation. To improve the Lithium-ion diffusivity, vacancy defects were created in the inorganic components of SEI layer LiF, Li2O, and Li2CO3 and observed the diffusion coefficient using the ReaxFF molecular dynamic simulations. Another approach to improve the Lithium-ion diffusivity, is doping alkali metal ions such Na, Ca, K and Mg in the inorganic components of SEI layers of LiF, Li2O, and Li2CO3 is simulated using the Universal Force Field (UFF), and diffusion coefficient was observed.
了解固体电解质界面(SEI)对于锂离子电池的诊断至关重要,因为电池性能的许多方面,如安全性和效率取决于该特性。LiF、Li2O和Li2CO3是SEI的重要无机组分。这种电极-电解质表面在电池的第一次充电/放电循环中形成,防止电子通过电解质运动,稳定锂离子电池。然而,令人担忧的是,无机SEI成分会导致锂离子通过SEI层的扩散速率限制。锂离子通过SEI层的扩散率取决于许多因素,如温度、SEI层的宽度和层的浓度/密度。研究了锂离子电池在250 ~ 400 K工作温度下的扩散系数随温度的变化规律,以及在更高温度下的扩散系数数据。本文还利用反应力场(ReaxFF)分子动力学模拟,观察了不同浓度/密度下锂离子的扩散率。为了提高锂离子的扩散系数,在SEI层的无机组分LiF、Li2O和Li2CO3中制造了空位缺陷,并利用ReaxFF分子动力学模拟观察了扩散系数。另一种提高锂离子扩散系数的方法是在LiF、Li2O和Li2CO3的SEI层的无机组分中掺杂Na、Ca、K和Mg等碱金属离子,并利用通用力场(Universal Force Field, UFF)进行模拟,观察扩散系数。
{"title":"Reactive Force Field(ReaxFF) and Universal Force Field(UFF) Molecular Dynamic Simulation of SEI components in lithium-ion batteries","authors":"Anshul Nagar, A. Garg, Surinder Singh, L. Gao, Jonghoon Kim, Kexiang Wei","doi":"10.1115/1.4062992","DOIUrl":"https://doi.org/10.1115/1.4062992","url":null,"abstract":"\u0000 Understanding Solid Electrolyte Interphase (SEI) is essential for diagnosis of Lithium-ion batteries because many aspects of battery performance such as safety and efficiency depends on this characteristics.. LiF, Li2O, and Li2CO3 are important inorganic components of SEI. This electrode-electrolyte surface forms during the battery's first charging/ discharging cycle, preventing electrons' movement through the electrolyte and stabilizing the Lithium-ion battery. However, the concern is inorganic SEI components cause rate limitation of Lithium-ion diffusivity through the SEI layer. Lithium-ion diffusivity through the SEI layer depends on many factors such as temperature, the width of the SEI layer, and the concentration/density of the layer. Lithium-ion diffusivity dependence on temperature, at working temperatures of lithium-ion batteries was observed at temperatures from 250 K to 400 K and diffusion coefficient data at higher temperatures also been observed. Lithium-ion diffusivity at varying concentration/density was also observed in this paper using the Reactive force field (ReaxFF) molecular dynamic simulation. To improve the Lithium-ion diffusivity, vacancy defects were created in the inorganic components of SEI layer LiF, Li2O, and Li2CO3 and observed the diffusion coefficient using the ReaxFF molecular dynamic simulations. Another approach to improve the Lithium-ion diffusivity, is doping alkali metal ions such Na, Ca, K and Mg in the inorganic components of SEI layers of LiF, Li2O, and Li2CO3 is simulated using the Universal Force Field (UFF), and diffusion coefficient was observed.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45525238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A screening method for retired lithium-ion batteries based on support vector machine with a multi-class kernel function 基于多类核函数支持向量机的退役锂离子电池筛选方法
IF 2.5 4区 工程技术 Q2 Engineering Pub Date : 2023-07-18 DOI: 10.1115/1.4062988
Qiang Hao, Liu Yuanlin, Zhang Wangjie
With the retirement of a large number of lithium-ion batteries from electric vehicles(EVs), their reuse has received increasing attention. However, a retired battery pack is not suitable for direct reuse due to the poor consistency of in-pack batteries. This paper proposes a method of retired lithium-ion battery screening based on support vector machine(SVM) with a multi-class kernel function. First, 10 new NCR18650B batteries were used to carry out the aging experiments for collecting the main parameters, such as capacity, voltage and direct current resistance(DCR). Second, a SVM based on a multi-class kernel function was proposed to screen retired batteries. To improve the screening efficiency, a capacity/voltage second-order conductance curve was adopted to extract their capacity features quickly, and four new feature points were selected as the input of the SVM to classify retired batteries. Finally, the retired batteries are accurately divided into four classes by the trained model, and the classification accuracy can reach 97%. Compared with the traditional method, the feature extraction time can be reduced by four-fifths, and the screening efficiency is greatly improved.
随着电动汽车中大量锂离子电池的退役,它们的再利用越来越受到关注。然而,由于组内电池的一致性较差,退役的电池组不适合直接重复使用。本文提出了一种基于多类核函数支持向量机的退役锂离子电池筛选方法。首先,使用10个新型NCR18650B电池进行老化实验,收集电池容量、电压和直流电阻等主要参数。其次,提出了一种基于多类核函数的SVM来筛选退役电池。为了提高筛选效率,采用容量/电压二阶电导曲线快速提取其容量特征,并选择四个新的特征点作为SVM的输入,对退役电池进行分类。最后,通过训练的模型将退役电池准确地分为四类,分类准确率可达97%。与传统方法相比,特征提取时间可以减少五分之四,筛选效率大大提高。
{"title":"A screening method for retired lithium-ion batteries based on support vector machine with a multi-class kernel function","authors":"Qiang Hao, Liu Yuanlin, Zhang Wangjie","doi":"10.1115/1.4062988","DOIUrl":"https://doi.org/10.1115/1.4062988","url":null,"abstract":"\u0000 With the retirement of a large number of lithium-ion batteries from electric vehicles(EVs), their reuse has received increasing attention. However, a retired battery pack is not suitable for direct reuse due to the poor consistency of in-pack batteries. This paper proposes a method of retired lithium-ion battery screening based on support vector machine(SVM) with a multi-class kernel function. First, 10 new NCR18650B batteries were used to carry out the aging experiments for collecting the main parameters, such as capacity, voltage and direct current resistance(DCR). Second, a SVM based on a multi-class kernel function was proposed to screen retired batteries. To improve the screening efficiency, a capacity/voltage second-order conductance curve was adopted to extract their capacity features quickly, and four new feature points were selected as the input of the SVM to classify retired batteries. Finally, the retired batteries are accurately divided into four classes by the trained model, and the classification accuracy can reach 97%. Compared with the traditional method, the feature extraction time can be reduced by four-fifths, and the screening efficiency is greatly improved.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42606877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Electrochemical Energy Conversion and Storage
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1