首页 > 最新文献

Journal of Electrochemical Energy Conversion and Storage最新文献

英文 中文
Lithium battery liquid-cooled thermal management system of stepped-channel based on lightweight 基于轻量化的阶梯通道锂电池液冷热管理系统
4区 工程技术 Q2 Engineering Pub Date : 2023-10-20 DOI: 10.1115/1.4063848
Long Zhou, Shengnan Li, Ankur Jain, Guoqiang Chen, Desui Guo, Jincan Kan, Yong Zhao
Abstract This study proposes a stepped channel liquid-cooled battery thermal management system based on lightweight. The impact of channel width, cell-to-cell lateral spacing, contact height, and contact angle on the effectiveness of the TCS is investigated through using numerical simulation. The weight sensitivity factor is adopted to evaluate the effect of TCS weight (mTCS) on the maximum temperature (Tmax) of battery pack. Results suggest that the channel width plays the most critical role, followed by cell-to-cell lateral spacing and contact angle, while the contact height has minimal influence. Four parameters that affect the thermal balance performance of battery pack, including the number of channels, and baffles, baffle angle, and coolant inlet velocity, are presented using orthogonal experiment. Results indicate that the number of channels and baffle angle have a significant influence on the thermal balance of battery pack, while thermal performance is largely insensitive to coolant inlet velocity and number of baffles. Based on the analysis stated in this work, an improved design of the TCS is presented that reduces weight by 54.08% while increasing Tmax only by 2.52 K.
摘要提出了一种基于轻量化的阶梯通道液冷电池热管理系统。通过数值模拟研究了通道宽度、单元间横向间距、接触高度和接触角对TCS效能的影响。采用权重敏感因子评价TCS重量对电池组最高温度的影响。研究结果表明,通道宽度的影响最为关键,其次是细胞间横向间距和接触角,而接触高度的影响最小。采用正交试验法研究了影响电池组热平衡性能的4个参数:通道数、挡板数、挡板角度和冷却剂进口速度。结果表明:通道数量和挡板角度对电池组热平衡有显著影响,而冷却剂进口速度和挡板数量对电池组热性能影响不大;在此基础上,提出了一种改进的TCS设计方案,其重量减少了54.08%,而Tmax仅增加了2.52 K。
{"title":"Lithium battery liquid-cooled thermal management system of stepped-channel based on lightweight","authors":"Long Zhou, Shengnan Li, Ankur Jain, Guoqiang Chen, Desui Guo, Jincan Kan, Yong Zhao","doi":"10.1115/1.4063848","DOIUrl":"https://doi.org/10.1115/1.4063848","url":null,"abstract":"Abstract This study proposes a stepped channel liquid-cooled battery thermal management system based on lightweight. The impact of channel width, cell-to-cell lateral spacing, contact height, and contact angle on the effectiveness of the TCS is investigated through using numerical simulation. The weight sensitivity factor is adopted to evaluate the effect of TCS weight (mTCS) on the maximum temperature (Tmax) of battery pack. Results suggest that the channel width plays the most critical role, followed by cell-to-cell lateral spacing and contact angle, while the contact height has minimal influence. Four parameters that affect the thermal balance performance of battery pack, including the number of channels, and baffles, baffle angle, and coolant inlet velocity, are presented using orthogonal experiment. Results indicate that the number of channels and baffle angle have a significant influence on the thermal balance of battery pack, while thermal performance is largely insensitive to coolant inlet velocity and number of baffles. Based on the analysis stated in this work, an improved design of the TCS is presented that reduces weight by 54.08% while increasing Tmax only by 2.52 K.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135570124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Accuracy Battery SOC Estimation Strategy Based on Deep Belief Network Cascaded with Extended Kalman Filter 基于扩展卡尔曼滤波级联深度信念网络的电池荷电状态高精度估计策略
4区 工程技术 Q2 Engineering Pub Date : 2023-10-13 DOI: 10.1115/1.4063431
Xiaoyu Liu, Lang Chen, Lijun Zhu, Jian Wang, Long Chen, Xiankai Zeng, Ziang Song, Lujun Wang
Abstract Battery state of charge (SOC) estimation is one of the main functions of the battery management system in electric vehicles. If the actual SOC of the battery differs significantly from the estimated value, it can lead to improper battery usage, resulting in unexpected rapid voltage drops or increases, which can affect driving safety. Therefore, high-accuracy SOC estimation is of great importance for battery management and usage. Currently used SOC estimation methods suffer from issues such as strong dependence on model parameters, error propagation from measurements, and sensitivity to initial values. In this study, we propose a high-precision SOC estimation strategy based on deep belief network (DBN) feature extraction and extended Kalman filter (EKF) for smooth output. The proposed strategy has been rigorously tested under different temperature conditions using the dynamic stress test (DST) and urban dynamometer driving schedule (US06) driving cycles. The mean absolute error (MAE) and root-mean-square error (RMSE) of the proposed strategy are controlled within 1.1% and 1.2%, respectively. This demonstrates the high-precision estimation achieved. To further validate the generality of this strategy, we also apply it to graphene batteries and conduct tests under US06 and highway fuel economy test (HWFET) driving cycles at temperatures of 25 °C and −10 °C. The test results show MAE of 0.47% and 2.01%, respectively.
摘要电池荷电状态估计是电动汽车电池管理系统的主要功能之一。如果电池的实际SOC与估计值相差较大,则可能导致电池使用不当,导致意外的电压快速下降或升高,从而影响驾驶安全。因此,高精度的SOC估算对于电池的管理和使用具有重要意义。目前使用的SOC估计方法存在对模型参数的依赖性强、测量误差传播和对初始值的敏感性等问题。在这项研究中,我们提出了一种基于深度信念网络(DBN)特征提取和扩展卡尔曼滤波(EKF)的高精度SOC估计策略。采用动态应力测试(DST)和城市测力计驾驶时间表(US06)驾驶循环,在不同温度条件下对所提出的策略进行了严格测试。该策略的平均绝对误差(MAE)和均方根误差(RMSE)分别控制在1.1%和1.2%以内。这证明了实现的高精度估计。为了进一步验证该策略的普遍性,我们还将其应用于石墨烯电池,并在US06和公路燃油经济性测试(HWFET)下在25°C和- 10°C的温度下进行了测试。测试结果表明,MAE分别为0.47%和2.01%。
{"title":"High-Accuracy Battery SOC Estimation Strategy Based on Deep Belief Network Cascaded with Extended Kalman Filter","authors":"Xiaoyu Liu, Lang Chen, Lijun Zhu, Jian Wang, Long Chen, Xiankai Zeng, Ziang Song, Lujun Wang","doi":"10.1115/1.4063431","DOIUrl":"https://doi.org/10.1115/1.4063431","url":null,"abstract":"Abstract Battery state of charge (SOC) estimation is one of the main functions of the battery management system in electric vehicles. If the actual SOC of the battery differs significantly from the estimated value, it can lead to improper battery usage, resulting in unexpected rapid voltage drops or increases, which can affect driving safety. Therefore, high-accuracy SOC estimation is of great importance for battery management and usage. Currently used SOC estimation methods suffer from issues such as strong dependence on model parameters, error propagation from measurements, and sensitivity to initial values. In this study, we propose a high-precision SOC estimation strategy based on deep belief network (DBN) feature extraction and extended Kalman filter (EKF) for smooth output. The proposed strategy has been rigorously tested under different temperature conditions using the dynamic stress test (DST) and urban dynamometer driving schedule (US06) driving cycles. The mean absolute error (MAE) and root-mean-square error (RMSE) of the proposed strategy are controlled within 1.1% and 1.2%, respectively. This demonstrates the high-precision estimation achieved. To further validate the generality of this strategy, we also apply it to graphene batteries and conduct tests under US06 and highway fuel economy test (HWFET) driving cycles at temperatures of 25 °C and −10 °C. The test results show MAE of 0.47% and 2.01%, respectively.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135804889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DEVELOPMENT OF BORON CONTAINING ELECTROLYTE ADDITIVE FOR LITHIUM ION BATTERIES 锂离子电池含硼电解质添加剂的研制
4区 工程技术 Q2 Engineering Pub Date : 2023-10-05 DOI: 10.1115/1.4063429
Zahid Sarigol, Gulay Ozkan, Goksel Ozkan
Abstract In this study, triphenylphosphine boron trifluoride (BF3 · PPh3) was synthesized to be used as an electrolyte additive in Li/LiCoO2 half-cells. Fourier-transform infrared spectroscopy, X-ray diffraction, nuclear magnetic resonance, and X-ray photoelectron spectroscopy analysis techniques were used to determine the structure and composition of the synthesized substance. The battery performance was investigated by adding certain amounts of BF3 · PPh3 in 1 M LiPF6-ethylene carbonate/dimethyl carbonate/diethyl carbonate (1:1:1 by volume) electrolyte. CR2032 coin cells were assembled with the electrodes and electrolytes prepared in the laboratory. The electrochemical behaviors of the battery were investigated via cyclic voltammetry and charge–discharge tests. The addition of 0.5 wt% and 1 wt% BF3 · PPh3 in the electrolyte improved the lithium-ion battery’s ionic conductivity and capacity retention. The results show that BF3 · PPh3 has potential applications in lithium-ion batteries.
摘要本研究合成了三苯基膦三氟化硼(BF3·PPh3)作为Li/LiCoO2半电池的电解质添加剂。采用傅里叶变换红外光谱、x射线衍射、核磁共振、x射线光电子能谱等分析技术对合成物质的结构和组成进行了测定。在1 M lipf6 -碳酸乙烯/碳酸二甲酯/碳酸二乙酯(体积比1:1:1)电解质中加入一定量的BF3·PPh3,考察电池性能。用实验室制备的电极和电解质组装CR2032硬币电池。通过循环伏安法和充放电试验对电池的电化学行为进行了研究。在电解液中分别添加0.5 wt%和1 wt%的BF3·PPh3,提高了锂离子电池的离子电导率和容量保持率。结果表明,BF3·PPh3在锂离子电池中具有潜在的应用前景。
{"title":"DEVELOPMENT OF BORON CONTAINING ELECTROLYTE ADDITIVE FOR LITHIUM ION BATTERIES","authors":"Zahid Sarigol, Gulay Ozkan, Goksel Ozkan","doi":"10.1115/1.4063429","DOIUrl":"https://doi.org/10.1115/1.4063429","url":null,"abstract":"Abstract In this study, triphenylphosphine boron trifluoride (BF3 · PPh3) was synthesized to be used as an electrolyte additive in Li/LiCoO2 half-cells. Fourier-transform infrared spectroscopy, X-ray diffraction, nuclear magnetic resonance, and X-ray photoelectron spectroscopy analysis techniques were used to determine the structure and composition of the synthesized substance. The battery performance was investigated by adding certain amounts of BF3 · PPh3 in 1 M LiPF6-ethylene carbonate/dimethyl carbonate/diethyl carbonate (1:1:1 by volume) electrolyte. CR2032 coin cells were assembled with the electrodes and electrolytes prepared in the laboratory. The electrochemical behaviors of the battery were investigated via cyclic voltammetry and charge–discharge tests. The addition of 0.5 wt% and 1 wt% BF3 · PPh3 in the electrolyte improved the lithium-ion battery’s ionic conductivity and capacity retention. The results show that BF3 · PPh3 has potential applications in lithium-ion batteries.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134948046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano graphite-doped Spartina alterniflora-based hard carbon as high performance anode for sodium-ion batteries 纳米石墨掺杂互花米草硬碳作为钠离子电池的高性能阳极
4区 工程技术 Q2 Engineering Pub Date : 2023-10-05 DOI: 10.1115/1.4063397
Hongkuan Cheng, Qihang Shu, Huanyu Wei, Xingzhang Luo, Suzhen Huang, Zheng Zheng
Abstract Anode materials based on hard carbon are the focus of research in the field of batteries, and bio-hard carbon is one of the most important materials. In this study, we use the invasive species Spartina alterniflora as raw material and doped with nano-graphite to produce high-performance anode materials. It can achieve a first coulomb efficiency of 67%, which is nearly 10% higher than Spartina alterniflora without nano-graphite doped. The specific capacity is close to 300 mA h g−1 under the current of 20 mA g−1. By comparison, we found that the modified Spartina alterniflora has great sodium storage capacity, and the study also proved that Spartina alterniflora material can be modified into a high-performance anode material with high economic value.
摘要基于硬碳负极材料的重点研究领域的电池,和bio-hard碳是最重要的材料之一。本研究以入侵物种互花米草为原料,掺杂纳米石墨制备高性能阳极材料。其第一库仑效率可达67%,比未掺杂纳米石墨的互花米草提高近10%。在20ma g−1电流下,比容量接近300ma h g−1。通过比较,我们发现经改性的互花米草具有很大的储钠能力,研究也证明了互花米草材料可以改性为具有较高经济价值的高性能阳极材料。
{"title":"Nano graphite-doped <i>Spartina alterniflora</i>-based hard carbon as high performance anode for sodium-ion batteries","authors":"Hongkuan Cheng, Qihang Shu, Huanyu Wei, Xingzhang Luo, Suzhen Huang, Zheng Zheng","doi":"10.1115/1.4063397","DOIUrl":"https://doi.org/10.1115/1.4063397","url":null,"abstract":"Abstract Anode materials based on hard carbon are the focus of research in the field of batteries, and bio-hard carbon is one of the most important materials. In this study, we use the invasive species Spartina alterniflora as raw material and doped with nano-graphite to produce high-performance anode materials. It can achieve a first coulomb efficiency of 67%, which is nearly 10% higher than Spartina alterniflora without nano-graphite doped. The specific capacity is close to 300 mA h g−1 under the current of 20 mA g−1. By comparison, we found that the modified Spartina alterniflora has great sodium storage capacity, and the study also proved that Spartina alterniflora material can be modified into a high-performance anode material with high economic value.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134948216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
State of charge estimation of lithium–ion battery based on IDRSN and BiGRU 基于IDRSN和BiGRU的锂离子电池充电状态估计
4区 工程技术 Q2 Engineering Pub Date : 2023-10-05 DOI: 10.1115/1.4063173
Jiahao Zhang, Jiadui Chen, Ling He, Dan Liu, Kai Yang, Qinghua Liu
Abstract The estimation of state of charge (SOC) is a critical issue in the energy management of electric vehicle (EV) power batteries. However, the current accuracy of SOC estimation methods does not meet the requirements of practical applications. Therefore, this study proposes an improved lithium-ion battery SOC estimation method that combines deep residual shrinkage network (DRSN) and bidirectional gated recurrent unit (BiGRU) to enhance the SOC estimation accuracy. First, we insert the bidirectional gated recurrent unit neural network between the global average pooling layer and the output fully connected layer of the deep residual shrinkage network. This improvement enhances the model’s expressiveness, robustness, and data learning effect. Second, we develop a new activation function called “∂_swish” to replace the original ReLU activation function in the deep residual shrinkage network. The ∂_swish activation function improves the accuracy of the deep network model and reduces the risk of overfitting by utilizing its regularization effect. Finally, we conduct experimental tests at three different temperatures using the FUDS driving cycle dataset and the DST-US06-FUDS continuous driving cycle dataset. The algorithm model’s convergence speed is verified by comparing it with other models. The results show that compared to other models, the proposed method significantly improves SOC estimation accuracy at three different temperatures. In addition, the method demonstrates a high convergence speed.
摘要在电动汽车动力电池能量管理中,荷电状态(SOC)估计是一个关键问题。然而,目前SOC估算方法的精度还不能满足实际应用的要求。因此,本研究提出了一种改进的锂离子电池荷电状态估计方法,该方法将深度剩余收缩网络(DRSN)和双向门控循环单元(BiGRU)相结合,以提高荷电状态估计精度。首先,在深度残余收缩网络的全局平均池化层和输出全连接层之间插入双向门控循环单元神经网络。这种改进增强了模型的表现力、鲁棒性和数据学习效果。其次,我们开发了一个新的激活函数“∂_swish”来取代深度剩余收缩网络中原来的ReLU激活函数。∂_swish激活函数利用其正则化效果,提高了深度网络模型的精度,降低了过拟合的风险。最后,我们使用FUDS驾驶循环数据集和DST-US06-FUDS连续驾驶循环数据集在三种不同温度下进行了实验测试。通过与其他模型的比较,验证了算法模型的收敛速度。结果表明,与其他模型相比,该方法显著提高了三种不同温度下的SOC估计精度。此外,该方法具有较快的收敛速度。
{"title":"State of charge estimation of lithium–ion battery based on IDRSN and BiGRU","authors":"Jiahao Zhang, Jiadui Chen, Ling He, Dan Liu, Kai Yang, Qinghua Liu","doi":"10.1115/1.4063173","DOIUrl":"https://doi.org/10.1115/1.4063173","url":null,"abstract":"Abstract The estimation of state of charge (SOC) is a critical issue in the energy management of electric vehicle (EV) power batteries. However, the current accuracy of SOC estimation methods does not meet the requirements of practical applications. Therefore, this study proposes an improved lithium-ion battery SOC estimation method that combines deep residual shrinkage network (DRSN) and bidirectional gated recurrent unit (BiGRU) to enhance the SOC estimation accuracy. First, we insert the bidirectional gated recurrent unit neural network between the global average pooling layer and the output fully connected layer of the deep residual shrinkage network. This improvement enhances the model’s expressiveness, robustness, and data learning effect. Second, we develop a new activation function called “∂_swish” to replace the original ReLU activation function in the deep residual shrinkage network. The ∂_swish activation function improves the accuracy of the deep network model and reduces the risk of overfitting by utilizing its regularization effect. Finally, we conduct experimental tests at three different temperatures using the FUDS driving cycle dataset and the DST-US06-FUDS continuous driving cycle dataset. The algorithm model’s convergence speed is verified by comparing it with other models. The results show that compared to other models, the proposed method significantly improves SOC estimation accuracy at three different temperatures. In addition, the method demonstrates a high convergence speed.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134948204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on low-temperature performance management of lithium-ion batteries 锂离子电池低温性能管理研究进展
4区 工程技术 Q2 Engineering Pub Date : 2023-10-03 DOI: 10.1115/1.4063611
Jincheng Zhan, Yifei Deng, Yaohui Gao, Jiaoyi Ren, Yuang Liu, Rao Shun, Weifeng Li, Zhenhai Gao, Yupeng Chen
Abstract Lithium-ion batteries (LIBs) are widely used in electric vehicles, energy storage power stations and other portable devices for their high energy densities, long cycle life and low self-discharge rate. However, they still face several challenges. Low-temperature environments have slowed down the use of LIBs by significantly deteriorating their normal performance. This review aims to resolve this issue by clarifying the phenomenon and reasons of the deterioration of LIBs performance at low temperatures. From the perspective of system management, this review summarizes and analyzes the common performance-improving methods from two aspects including preheating and charging optimization, then depicts the future development of methods in this regard. This review is expected to inspire further studies for the improvement of the LIB performance at low temperatures.
摘要锂离子电池以其能量密度高、循环寿命长、自放电率低等特点,广泛应用于电动汽车、储能电站等便携式设备中。然而,他们仍然面临着一些挑战。低温环境会显著降低锂电池的正常性能,从而减慢其使用速度。本文旨在通过阐明低温下锂离子电池性能恶化的现象和原因来解决这一问题。本文从系统管理的角度出发,从预热和充电优化两方面对常用的性能提升方法进行了总结和分析,并对这方面方法的未来发展进行了展望。这一综述有望为进一步提高锂离子电池低温性能的研究提供启发。
{"title":"A review on low-temperature performance management of lithium-ion batteries","authors":"Jincheng Zhan, Yifei Deng, Yaohui Gao, Jiaoyi Ren, Yuang Liu, Rao Shun, Weifeng Li, Zhenhai Gao, Yupeng Chen","doi":"10.1115/1.4063611","DOIUrl":"https://doi.org/10.1115/1.4063611","url":null,"abstract":"Abstract Lithium-ion batteries (LIBs) are widely used in electric vehicles, energy storage power stations and other portable devices for their high energy densities, long cycle life and low self-discharge rate. However, they still face several challenges. Low-temperature environments have slowed down the use of LIBs by significantly deteriorating their normal performance. This review aims to resolve this issue by clarifying the phenomenon and reasons of the deterioration of LIBs performance at low temperatures. From the perspective of system management, this review summarizes and analyzes the common performance-improving methods from two aspects including preheating and charging optimization, then depicts the future development of methods in this regard. This review is expected to inspire further studies for the improvement of the LIB performance at low temperatures.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135696210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supercapacitors based on spider nest shaped nickel foam electrodes operating in seawater 基于蜘蛛巢状泡沫镍电极在海水中工作的超级电容器
4区 工程技术 Q2 Engineering Pub Date : 2023-10-03 DOI: 10.1115/1.4063612
Haiying Li, Yuchen Hui, Zunbin Xia, Huixin Wang
Abstract An environmental-friendly supercapacitor based on aqueous electrolyte was fabricated. Electrodes with conductive spider nest–shaped three-dimensional(3D)porous structure was prepared for the assembly of symmetric supercapacitors. The nickel foam was modified by multiwalled carbon nanotubes and β-cyclodextrin. The construction of spider nest was stabilized via the chemical bond inside carbon nanotubes, π-π stack effects among carbon nanotubes, and physical adsorption between nickel foam and carbon nanotubes substrate. The role of β-cyclodextrin is dispersant to prevent agglomeration of carbon nanotubes, thereby enhancing electroactive surface area of nickel foam, and improving the specific capacitance of the electrodes. Furthermore, the electrodes exhibited excellent rate capability. The obtained symmetrical supercapacitors exhibited excellent power density of 17561.3 W kg−1, good specific capacitance of 398.8 F g−1, and energy density of 154.8 Wh kg−1 for 4000 cycles with outstanding cycling stability. In addition, the specific capacitance, energy density, and power density of the supercapacitor operating in seawater were found to be 100.2 F g−1, 17.8 Wh kg−1, and 2568 Wh kg−1, respectively, for 3000 cycles. Overall, our findings indicate that the supercapacitor could stably operate in seawater and shows potential for use as an eco-friendly power supply to marine engineering equipment.
摘要制备了一种基于水电解质的环境友好型超级电容器。制备了具有导电蜘蛛巢状三维多孔结构的电极,用于对称超级电容器的组装。采用多壁碳纳米管和β-环糊精对泡沫镍进行改性。通过碳纳米管内部的化学键、碳纳米管之间的π-π堆叠效应以及泡沫镍与碳纳米管衬底之间的物理吸附来稳定蜘蛛网的结构。β-环糊精起到分散剂的作用,防止碳纳米管团聚,从而增大泡沫镍的电活性表面积,提高电极的比电容。此外,电极表现出优异的速率性能。所制得的对称型超级电容器具有优异的功率密度(17561.3 W kg−1)、良好的比电容(398.8 F g−1)和能量密度(154.8 Wh kg−1),可循环4000次,且具有良好的循环稳定性。此外,在海水中运行3000次时,超级电容器的比电容、能量密度和功率密度分别为100.2 F g−1、17.8 Wh kg−1和2568 Wh kg−1。总的来说,我们的研究结果表明,超级电容器可以在海水中稳定运行,并显示出作为海洋工程设备的环保电源的潜力。
{"title":"Supercapacitors based on spider nest shaped nickel foam electrodes operating in seawater","authors":"Haiying Li, Yuchen Hui, Zunbin Xia, Huixin Wang","doi":"10.1115/1.4063612","DOIUrl":"https://doi.org/10.1115/1.4063612","url":null,"abstract":"Abstract An environmental-friendly supercapacitor based on aqueous electrolyte was fabricated. Electrodes with conductive spider nest–shaped three-dimensional(3D)porous structure was prepared for the assembly of symmetric supercapacitors. The nickel foam was modified by multiwalled carbon nanotubes and β-cyclodextrin. The construction of spider nest was stabilized via the chemical bond inside carbon nanotubes, π-π stack effects among carbon nanotubes, and physical adsorption between nickel foam and carbon nanotubes substrate. The role of β-cyclodextrin is dispersant to prevent agglomeration of carbon nanotubes, thereby enhancing electroactive surface area of nickel foam, and improving the specific capacitance of the electrodes. Furthermore, the electrodes exhibited excellent rate capability. The obtained symmetrical supercapacitors exhibited excellent power density of 17561.3 W kg−1, good specific capacitance of 398.8 F g−1, and energy density of 154.8 Wh kg−1 for 4000 cycles with outstanding cycling stability. In addition, the specific capacitance, energy density, and power density of the supercapacitor operating in seawater were found to be 100.2 F g−1, 17.8 Wh kg−1, and 2568 Wh kg−1, respectively, for 3000 cycles. Overall, our findings indicate that the supercapacitor could stably operate in seawater and shows potential for use as an eco-friendly power supply to marine engineering equipment.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135696204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lattice Boltzmann Simulations of non-homogeneous Li-O2 Battery Cathode: the effect of spatial and temporal porosity variations 非均匀锂氧电池正极的晶格玻尔兹曼模拟:时空孔隙度变化的影响
4区 工程技术 Q2 Engineering Pub Date : 2023-09-22 DOI: 10.1115/1.4063489
Ajeesh Mohan T, Jithin M, Malay Das
Abstract The porosity of the cathode in a lithium-oxygen battery is a crucial parameter that influences oxygen transport and active surface area availability. This study explores various cathode models with different initial porosity distributions and analyses the porosity evolution during discharge. The objective is to maximize the active surface area utilization of the cathode and increase the battery's discharge capacity. The simulations employ a recently developed Lattice Boltzmann method (LBM) model proposed by Chen et al. (Chen, S., B. Yang, and C. Zheng, Simulation of double-diffusive convection in fluid-saturated porous media by lattice Boltzmann method. International Journal of Heat and Mass Transfer, 2017. 108: p. 1501-1510.), which is capable of handling spatial and temporal variations in diffusion coefficient values. The results demonstrate that a hierarchical porous cathode provides a better specific capacity than a uniform porous cathode with the same average initial porosity. The specific capacity increases as the magnitude of initial porosity variation in the domain increases. Furthermore, incorporating oxygen channels improves oxygen transport in the cathode and offers a better specific capacity than the hierarchical porous cathode. A combination of hierarchical porous media and oxygen channels delivers the best specific capacity among all the other cathode models, as it efficiently balances oxygen transport and active surface area.
锂氧电池正极孔隙率是影响氧传输和活性表面积利用率的重要参数。研究了不同初始孔隙率分布的阴极模型,分析了放电过程中孔隙率的演变规律。目标是最大限度地提高阴极的有效表面积利用率,增加电池的放电容量。本文采用Chen等人(Chen, S., B. Yang, C. Zheng)提出的晶格玻尔兹曼方法(Lattice Boltzmann method, LBM)模型模拟饱和多孔介质中双扩散对流。国际传热与传质学报,2017。108: p. 1501-1510.),它能够处理扩散系数值的空间和时间变化。结果表明,在平均初始孔隙率相同的情况下,分层多孔阴极比均匀多孔阴极具有更好的比容量。比容随孔隙度变化幅度的增大而增大。此外,结合氧通道改善了阴极中的氧运输,并提供了比分层多孔阴极更好的比容量。分层多孔介质和氧通道的组合在所有其他阴极模型中提供了最好的比容量,因为它有效地平衡了氧运输和活性表面积。
{"title":"Lattice Boltzmann Simulations of non-homogeneous Li-O2 Battery Cathode: the effect of spatial and temporal porosity variations","authors":"Ajeesh Mohan T, Jithin M, Malay Das","doi":"10.1115/1.4063489","DOIUrl":"https://doi.org/10.1115/1.4063489","url":null,"abstract":"Abstract The porosity of the cathode in a lithium-oxygen battery is a crucial parameter that influences oxygen transport and active surface area availability. This study explores various cathode models with different initial porosity distributions and analyses the porosity evolution during discharge. The objective is to maximize the active surface area utilization of the cathode and increase the battery's discharge capacity. The simulations employ a recently developed Lattice Boltzmann method (LBM) model proposed by Chen et al. (Chen, S., B. Yang, and C. Zheng, Simulation of double-diffusive convection in fluid-saturated porous media by lattice Boltzmann method. International Journal of Heat and Mass Transfer, 2017. 108: p. 1501-1510.), which is capable of handling spatial and temporal variations in diffusion coefficient values. The results demonstrate that a hierarchical porous cathode provides a better specific capacity than a uniform porous cathode with the same average initial porosity. The specific capacity increases as the magnitude of initial porosity variation in the domain increases. Furthermore, incorporating oxygen channels improves oxygen transport in the cathode and offers a better specific capacity than the hierarchical porous cathode. A combination of hierarchical porous media and oxygen channels delivers the best specific capacity among all the other cathode models, as it efficiently balances oxygen transport and active surface area.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136060933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Power batteries state of health estimation of pure electric vehicles for charging process 纯电动汽车充电过程中动力电池健康状态评估
4区 工程技术 Q2 Engineering Pub Date : 2023-09-13 DOI: 10.1115/1.4063430
Zhigang He, Xianggan Ni, Chaofeng Pan, Weiquan Li, Shaohua Han
Abstract Under different usage scenarios of various electric vehicles (EVs), it becomes difficult to estimate the battery state of health (SOH) quickly and accurately. This paper proposes a SOH estimation method based on EVs' charging process history data. First, data processing processes for practical application scenarios are established. Then the health indicators (HIs) that directly or indirectly reflect the driver's charging behavior in the charging process are used as the model's input, and the ensemble empirical mode decomposition (EEMD) is introduced to remove the noise brought by capacity regeneration. Subsequently, the maximum information coefficient (MIC) - principal component analysis (PCA) algorithm is employed to extract significant HIs. Eventually, the global optimal nonlinear degradation relationship between HIs and capacity is learned based on Bayesian optimization (BO)-Gaussian process regression (GPR). Approximate battery degradation models for practical application scenarios are obtained. This paper validates the proposed method from three perspectives: models, vehicles, and regions. The results show that the method has better prediction accuracy and generalization capability and lower computational cost, which provides a solution for future online health state prediction based on a large amount of real-time operational data.
摘要在各种电动汽车的不同使用场景下,快速准确地估计电池健康状态(SOH)变得非常困难。提出了一种基于电动汽车充电过程历史数据的SOH估计方法。首先,建立实际应用场景的数据处理流程。然后将充电过程中直接或间接反映驾驶员充电行为的健康指标(HIs)作为模型输入,并引入集成经验模态分解(EEMD)来去除容量再生带来的噪声;然后,采用最大信息系数(MIC) -主成分分析(PCA)算法提取显著HIs。最后,基于贝叶斯优化(BO)-高斯过程回归(GPR)学习HIs与容量之间的全局最优非线性退化关系。得到了适用于实际应用场景的近似电池退化模型。本文从模型、车辆和区域三个角度对所提出的方法进行了验证。结果表明,该方法具有较好的预测精度和泛化能力,且计算成本较低,为未来基于大量实时运行数据的在线健康状态预测提供了解决方案。
{"title":"Power batteries state of health estimation of pure electric vehicles for charging process","authors":"Zhigang He, Xianggan Ni, Chaofeng Pan, Weiquan Li, Shaohua Han","doi":"10.1115/1.4063430","DOIUrl":"https://doi.org/10.1115/1.4063430","url":null,"abstract":"Abstract Under different usage scenarios of various electric vehicles (EVs), it becomes difficult to estimate the battery state of health (SOH) quickly and accurately. This paper proposes a SOH estimation method based on EVs' charging process history data. First, data processing processes for practical application scenarios are established. Then the health indicators (HIs) that directly or indirectly reflect the driver's charging behavior in the charging process are used as the model's input, and the ensemble empirical mode decomposition (EEMD) is introduced to remove the noise brought by capacity regeneration. Subsequently, the maximum information coefficient (MIC) - principal component analysis (PCA) algorithm is employed to extract significant HIs. Eventually, the global optimal nonlinear degradation relationship between HIs and capacity is learned based on Bayesian optimization (BO)-Gaussian process regression (GPR). Approximate battery degradation models for practical application scenarios are obtained. This paper validates the proposed method from three perspectives: models, vehicles, and regions. The results show that the method has better prediction accuracy and generalization capability and lower computational cost, which provides a solution for future online health state prediction based on a large amount of real-time operational data.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135742204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat transfer improvement of prismatic lithium-ion batteries via a mini-channel liquid-cooling plate with vortex generators 利用带涡流发生器的小通道液冷板改善棱柱形锂离子电池的传热性能
IF 2.5 4区 工程技术 Q2 Engineering Pub Date : 2023-08-31 DOI: 10.1115/1.4063324
Huanwei Xu, Shi-Shuang Xiong, Wei Li, Lingfeng Wu, Zhonglai Wang
Temperature is a critical factor affecting the performance and safety of battery packs of electric vehicles (EVs). The design of liquid cooling plates based on mini-channels has always been the research hotspots of battery thermal management systems (BTMS). This paper investigates the effect of adding vortex generators (VGs) to the liquid cooling channel on the heat dissipation capacity and temperature uniformity of the battery. The shape of the vortex generators (triangle, trapezoid, and semicircle), placement position (middle, inlet, and outlet of the channel), different flow rates, and different number of channels on the heat dissipation of the battery are systematically analysed. The research results indicate that: (1) The semi-circular vortex generator has better heat dissipation and a relatively lower impact on pressure drop than the triangular and trapezoidal vortex generators (2) The effect of adding vortex generators is more obvious when the flow rate is small in the cooling channels. When the flow velocity is 0.025 m/s, the heat dissipation performance can be increased by 7.4%. (3) When the cross-sectional area of the inlet is fixed, the heat dissipation effect of more channels is better. The average temperature of three and seven cooling channels decreases with a decrease of 8.87%. (4) The temperature difference can be effectively reduced when the vortex generators are concentrated near the outlet of the flow outlet. Its temperature difference is lower than that when the vortex generators are placed near the inlet, with a decrease of 10.5%.
温度是影响电动汽车电池组性能和安全性的关键因素。基于微通道的液冷板设计一直是电池热管理系统的研究热点。本文研究了在液冷通道中加入涡发生器对电池散热能力和温度均匀性的影响。系统分析了涡发生器形状(三角形、梯形、半圆形)、放置位置(通道中间、入口、出口)、不同流量、不同通道数对电池散热的影响。研究结果表明:(1)与三角形和梯形涡发生器相比,半圆形涡发生器具有更好的散热性能,对压降的影响相对较小;(2)当冷却通道内流量较小时,增加涡发生器的效果更为明显。当流速为0.025 m/s时,散热性能可提高7.4%。(3)进风口截面积固定时,通道越多散热效果越好。3个和7个冷却通道的平均温度下降了8.87%。(4)将涡发生器集中在流出口出口附近,可有效减小温差。其温度差比靠近进气道布置时降低了10.5%。
{"title":"Heat transfer improvement of prismatic lithium-ion batteries via a mini-channel liquid-cooling plate with vortex generators","authors":"Huanwei Xu, Shi-Shuang Xiong, Wei Li, Lingfeng Wu, Zhonglai Wang","doi":"10.1115/1.4063324","DOIUrl":"https://doi.org/10.1115/1.4063324","url":null,"abstract":"\u0000 Temperature is a critical factor affecting the performance and safety of battery packs of electric vehicles (EVs). The design of liquid cooling plates based on mini-channels has always been the research hotspots of battery thermal management systems (BTMS). This paper investigates the effect of adding vortex generators (VGs) to the liquid cooling channel on the heat dissipation capacity and temperature uniformity of the battery. The shape of the vortex generators (triangle, trapezoid, and semicircle), placement position (middle, inlet, and outlet of the channel), different flow rates, and different number of channels on the heat dissipation of the battery are systematically analysed. The research results indicate that: (1) The semi-circular vortex generator has better heat dissipation and a relatively lower impact on pressure drop than the triangular and trapezoidal vortex generators (2) The effect of adding vortex generators is more obvious when the flow rate is small in the cooling channels. When the flow velocity is 0.025 m/s, the heat dissipation performance can be increased by 7.4%. (3) When the cross-sectional area of the inlet is fixed, the heat dissipation effect of more channels is better. The average temperature of three and seven cooling channels decreases with a decrease of 8.87%. (4) The temperature difference can be effectively reduced when the vortex generators are concentrated near the outlet of the flow outlet. Its temperature difference is lower than that when the vortex generators are placed near the inlet, with a decrease of 10.5%.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47923316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Electrochemical Energy Conversion and Storage
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1