首页 > 最新文献

Journal of Differential Equations最新文献

英文 中文
Well-posedness of the compressible boundary layer equations with analytic initial data 具有解析初始数据的可压缩边界层方程的适定性
IF 2.3 2区 数学 Q1 MATHEMATICS Pub Date : 2026-01-16 DOI: 10.1016/j.jde.2026.114110
Ya-Guang Wang , Yi-Lei Zhao
We study the well-posedness of the compressible boundary layer equations with data being analytic in the tangential variable of the boundary. The compressible boundary layer equations, a nonlinear coupled system of degenerate parabolic equations and an elliptic equation, describe the behavior of thermal layer and viscous layer in the small viscosity and heat conductivity limit, for the two-dimensional compressible viscous flow with heat conduction with nonslip and zero heat flux boundary conditions. We use the Littlewood-Paley theory to establish the a priori estimates for solutions of this compressible boundary layer problem, and obtain the local existence and uniqueness of the solution in the space of analytic in the tangential variable and Sobolev in the normal variable.
研究了数据在边界切向变量上解析的可压缩边界层方程的适定性。对于二维无滑移零热流边界条件下的热传导可压缩粘性流动,可压缩边界层方程是退化抛物方程和椭圆方程的非线性耦合系统,描述了热层和粘性层在小粘度和导热极限下的行为。利用Littlewood-Paley理论建立了该可压缩边界层问题解的先验估计,得到了该问题解在切向变量和正态变量上的局部存在唯一性。
{"title":"Well-posedness of the compressible boundary layer equations with analytic initial data","authors":"Ya-Guang Wang ,&nbsp;Yi-Lei Zhao","doi":"10.1016/j.jde.2026.114110","DOIUrl":"10.1016/j.jde.2026.114110","url":null,"abstract":"<div><div>We study the well-posedness of the compressible boundary layer equations with data being analytic in the tangential variable of the boundary. The compressible boundary layer equations, a nonlinear coupled system of degenerate parabolic equations and an elliptic equation, describe the behavior of thermal layer and viscous layer in the small viscosity and heat conductivity limit, for the two-dimensional compressible viscous flow with heat conduction with nonslip and zero heat flux boundary conditions. We use the Littlewood-Paley theory to establish the a priori estimates for solutions of this compressible boundary layer problem, and obtain the local existence and uniqueness of the solution in the space of analytic in the tangential variable and Sobolev in the normal variable.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"461 ","pages":"Article 114110"},"PeriodicalIF":2.3,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145980609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Group noninvariant solutions of the Hénon equation in unbounded domains 无界域hsamnon方程的群非不变解
IF 2.3 2区 数学 Q1 MATHEMATICS Pub Date : 2026-01-16 DOI: 10.1016/j.jde.2026.114113
Ryuji Kajikiya
We study the Hénon equation in unbounded domains Ω which are G invariant, where G is a closed subgroup of the orthogonal group. We say that Ω (or u(x)) is G invariant if g(Ω)=Ω (or u(gx)=u(x)) for any gG. We call u(x) a least energy solution if it is a minimizer of the Rayleigh quotient associated with the Hénon equation. We offer sufficient conditions which guarantee that no least energy solution is G invariant.
研究了无界域Ω上G不变的hsamnon方程,其中G是正交群的闭子群。我们说对于任意G∈G,如果G (Ω)=Ω(或u(gx)=u(x)) Ω(或u(x))是G不变量。我们称u(x)为最小能量解,如果它是与hsamnon方程相关的瑞利商的最小解。给出了保证没有最小能量解是G不变的充分条件。
{"title":"Group noninvariant solutions of the Hénon equation in unbounded domains","authors":"Ryuji Kajikiya","doi":"10.1016/j.jde.2026.114113","DOIUrl":"10.1016/j.jde.2026.114113","url":null,"abstract":"<div><div>We study the Hénon equation in unbounded domains Ω which are <em>G</em> invariant, where <em>G</em> is a closed subgroup of the orthogonal group. We say that Ω (or <span><math><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>) is <em>G</em> invariant if <span><math><mi>g</mi><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>=</mo><mi>Ω</mi></math></span> (or <span><math><mi>u</mi><mo>(</mo><mi>g</mi><mi>x</mi><mo>)</mo><mo>=</mo><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>) for any <span><math><mi>g</mi><mo>∈</mo><mi>G</mi></math></span>. We call <span><math><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> a least energy solution if it is a minimizer of the Rayleigh quotient associated with the Hénon equation. We offer sufficient conditions which guarantee that no least energy solution is <em>G</em> invariant.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"461 ","pages":"Article 114113"},"PeriodicalIF":2.3,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145980608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Directional Poincaré inequality on compact Lie groups 紧李群上的方向poincarcarr不等式
IF 2.3 2区 数学 Q1 MATHEMATICS Pub Date : 2026-01-15 DOI: 10.1016/j.jde.2026.114109
Paulo L. Dattori da Silva, André Pedroso Kowacs
We extend the directional Poincaré inequality on the torus, introduced by Steinerberger in (2016) [1], to the setting of compact Lie groups. We provide necessary and sufficient conditions for the existence of such an inequality based on estimates on the eigenvalues of the global symbol of the corresponding vector field. We also prove that such refinement of the Poincaré inequality holds for a left-invariant vector field on a compact Lie group G if and only if the vector field is globally solvable, and extend this equivalence to tube-type vector fields on T1×G.
我们将Steinerberger在(2016)[1]中引入的环面上的定向poincar不等式推广到紧李群的设置中。基于相应向量场的整体符号的特征值估计,给出了该不等式存在的充分必要条件。我们还证明了对紧李群G上的左不变向量场的这种改进当且仅当该向量场是全局可解的,并将此等价推广到T1×G上的管型向量场。
{"title":"Directional Poincaré inequality on compact Lie groups","authors":"Paulo L. Dattori da Silva,&nbsp;André Pedroso Kowacs","doi":"10.1016/j.jde.2026.114109","DOIUrl":"10.1016/j.jde.2026.114109","url":null,"abstract":"<div><div>We extend the directional Poincaré inequality on the torus, introduced by Steinerberger in (2016) <span><span>[1]</span></span>, to the setting of compact Lie groups. We provide necessary and sufficient conditions for the existence of such an inequality based on estimates on the eigenvalues of the global symbol of the corresponding vector field. We also prove that such refinement of the Poincaré inequality holds for a left-invariant vector field on a compact Lie group <em>G</em> if and only if the vector field is globally solvable, and extend this equivalence to tube-type vector fields on <span><math><msup><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>×</mo><mi>G</mi></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"461 ","pages":"Article 114109"},"PeriodicalIF":2.3,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145980610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical blow-up curve in a quasilinear two-species chemotaxis system with two chemicals 具有两种化学物质的拟线性两种趋化系统的临界爆破曲线
IF 2.3 2区 数学 Q1 MATHEMATICS Pub Date : 2026-01-14 DOI: 10.1016/j.jde.2025.114081
Ziyue Zeng, Yuxiang Li
<div><div>This paper investigates the quasilinear two-species chemotaxis system with two chemicals<span><span><span>(⋆)</span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>∇</mi><mo>⋅</mo><mrow><mo>(</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mi>∇</mi><mi>v</mi><mo>)</mo></mrow><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>w</mi><mo>,</mo><mspace></mspace><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mo>⨏</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>w</mi><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>∇</mi><mo>⋅</mo><mrow><mo>(</mo><mi>g</mi><mo>(</mo><mi>w</mi><mo>)</mo><mi>∇</mi><mi>z</mi><mo>)</mo></mrow><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>z</mi><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>u</mi><mo>,</mo><mspace></mspace><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mo>⨏</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>u</mi><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>∂</mo><mi>v</mi></mrow><mrow><mo>∂</mo><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>∂</mo><mi>w</mi></mrow><mrow><mo>∂</mo><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>∂</mo><mi>z</mi></mrow><mrow><mo>∂</mo><mi>ν</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mo>∂</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>w</mi><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span> where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> <span><math><mo>(</mo><mi>n</mi><mo>⩾</mo><mn>3</mn><mo>)</mo></math></span> is a smoothly bounded domain. The sensitivity functi
探讨趋化性生态拟线性系统的两种化学物质(⋆){ut =Δu−∇⋅(f (u)∇v), x∈Ω,t> 0, 0 =Δv−μ2 + w,μ2 =⨏Ωw x∈Ω,t> 0, wt =Δw−∇⋅(g (w)∇z), x∈Ω,t> 0, 0 =Δz−μ1 + u,μ1 =⨏Ωu, x∈Ω,t> 0,∂u∂ν=∂v∂ν=∂w∂ν=∂z∂ν= 0,x∈∂Ω,t> 0, u (x, 0) =情况(x) w (x, 0) = w0 (x), x∈Ω,哪里Ω⊂Rn (n⩾3)是一个顺利有限域。灵敏度函数f(s)和g(s)具有以下形式:f(s)≃spg (s)对于s大于或等于1,≃sq,p,q>0。证明了曲线p+q - 4n=max ((p - 2n)q,(q - 2n)p}在(0,4n)×(0,4n)的平方中是(百科)解爆破的临界曲线。更准确地说,•当Ω是一个球时,如果p小于4n,或q小于4n,或0<;p,q<;4n和p+q−4n>;max ((p−2n)q,(q−2n)p},存在径向对称的初始数据,使得系统(-)承认在有限时间内爆炸的解;•当Ω是光滑有界域时,如果0<;p,q<;4n和p+q−4n<;max ((p−2n)q,(q−2n)p},对于所有合适的正则初始数据,(-)的对应解是全局有界的。
{"title":"Critical blow-up curve in a quasilinear two-species chemotaxis system with two chemicals","authors":"Ziyue Zeng,&nbsp;Yuxiang Li","doi":"10.1016/j.jde.2025.114081","DOIUrl":"10.1016/j.jde.2025.114081","url":null,"abstract":"&lt;div&gt;&lt;div&gt;This paper investigates the quasilinear two-species chemotaxis system with two chemicals&lt;span&gt;&lt;span&gt;&lt;span&gt;(⋆)&lt;/span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;∇&lt;/mi&gt;&lt;mo&gt;⋅&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mi&gt;∇&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;⨏&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;∇&lt;/mi&gt;&lt;mo&gt;⋅&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mi&gt;∇&lt;/mi&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;⨏&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mo&gt;∂&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∂&lt;/mo&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mo&gt;∂&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∂&lt;/mo&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mo&gt;∂&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∂&lt;/mo&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mo&gt;∂&lt;/mo&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∂&lt;/mo&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mo&gt;∂&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; where &lt;span&gt;&lt;math&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;⊂&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;⩾&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is a smoothly bounded domain. The sensitivity functi","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"460 ","pages":"Article 114081"},"PeriodicalIF":2.3,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145977988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bifurcation on fully nonlinear elliptic equations and systems 全非线性椭圆方程和系统的分岔
IF 2.3 2区 数学 Q1 MATHEMATICS Pub Date : 2026-01-14 DOI: 10.1016/j.jde.2025.114091
Jing Gao , Weijun Zhang
<div><div>In this paper, we investigate bifurcation phenomena for fully nonlinear elliptic equations and coupled systems dominated by <em>k</em>-Hessian operator. Specifically, we consider the Dirichlet problem<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msup><mrow><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msup><mo>=</mo><mi>λ</mi><mi>f</mi><mo>(</mo><mo>−</mo><mi>u</mi><mo>)</mo><mspace></mspace></mtd><mtd><mi>i</mi><mi>n</mi><mspace></mspace><mi>Ω</mi></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mn>0</mn><mspace></mspace></mtd><mtd><mi>o</mi><mi>n</mi><mspace></mspace><mo>∂</mo><mi>Ω</mi></mtd></mtr></mtable></mrow></math></span></span></span></div><div>as well as the coupled system<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msup><mrow><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msup><mo>=</mo><mi>λ</mi><mi>g</mi><mo>(</mo><mo>−</mo><mi>u</mi><mo>,</mo><mo>−</mo><mi>v</mi><mo>)</mo><mspace></mspace></mtd><mtd><mi>i</mi><mi>n</mi><mspace></mspace><mi>Ω</mi></mtd></mtr><mtr><mtd><msup><mrow><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>v</mi><mo>)</mo><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msup><mo>=</mo><mi>λ</mi><mi>h</mi><mo>(</mo><mo>−</mo><mi>u</mi><mo>,</mo><mo>−</mo><mi>v</mi><mo>)</mo><mspace></mspace></mtd><mtd><mi>i</mi><mi>n</mi><mspace></mspace><mi>Ω</mi></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mi>v</mi><mo>=</mo><mn>0</mn><mspace></mspace></mtd><mtd><mi>o</mi><mi>n</mi><mspace></mspace><mo>∂</mo><mi>Ω</mi></mtd></mtr></mtable></mrow></math></span></span></span> where Ω is a bounded strictly (<em>k</em>-1)-convex domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, <span><math><mi>λ</mi><mo>≥</mo><mn>0</mn></math></span>, <span><math><mi>f</mi><mo>:</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></mrow><mo>→</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></mrow></math></span> is a continuous function with zeros only at 0 and <span><math><mi>g</mi><mo>,</mo><mi>h</mi><mo>:</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></mrow><mo>×</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></mrow><mo>→</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></mrow></math></span> are continuous functions with zeros only at <span><math><mo>(</mo><mo>⋅</mo><mo>,</mo><mn>0</mn><mo>)</mo></math></span> and <span><math><mo
研究了由k-Hessian算子控制的完全非线性椭圆方程和耦合系统的分岔现象。具体来说,我们考虑Dirichlet问题{(Sk(D2u))1k=λf(−u)inΩu=0on∂Ωas,以及耦合系统{(Sk(D2u))1k=λg(−u,−v)inΩ(Sk(D2u))1k=λ h(−u,−v)inΩu=v=0on∂Ω,其中Ω是RN中的一个有界严格(k-1)凸域,λ≥0,f:[0,+∞)→[0,+∞)是一个仅在0处为零的连续函数,g,h:[0,+∞)×[0,+∞)→[0,+∞)是仅在(⋅,0)和(⋅,0)处为零的连续函数。根据f,g,h的各种情况,我们确定了上述问题的k-凸解的存在性、不存在性、唯一性和多重性的区间λ,这是对以往文献已知结果的完全补充。特别是,在经典的拉普拉斯算子(k=1)和monge - ampantere算子(k=N)中,有几个结论是新的。这些证明依赖于分岔理论、先验估计、各种极大值原理和精细的分析技术。
{"title":"Bifurcation on fully nonlinear elliptic equations and systems","authors":"Jing Gao ,&nbsp;Weijun Zhang","doi":"10.1016/j.jde.2025.114091","DOIUrl":"10.1016/j.jde.2025.114091","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In this paper, we investigate bifurcation phenomena for fully nonlinear elliptic equations and coupled systems dominated by &lt;em&gt;k&lt;/em&gt;-Hessian operator. Specifically, we consider the Dirichlet problem&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;∂&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/div&gt;&lt;div&gt;as well as the coupled system&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;∂&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; where Ω is a bounded strictly (&lt;em&gt;k&lt;/em&gt;-1)-convex domain in &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is a continuous function with zeros only at 0 and &lt;span&gt;&lt;math&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; are continuous functions with zeros only at &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;⋅&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mo","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"459 ","pages":"Article 114091"},"PeriodicalIF":2.3,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145978284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-regularity global solution of the inhomogeneous nonlinear Schrödinger equations in modulation spaces 调制空间中非齐次非线性Schrödinger方程的低正则全局解
IF 2.3 2区 数学 Q1 MATHEMATICS Pub Date : 2026-01-14 DOI: 10.1016/j.jde.2026.114106
Divyang G. Bhimani , Diksha Dhingra , Vijay Kumar Sohani
The study of low regularity Cauchy data for nonlinear dispersive PDEs has been successfully achieved using modulation spaces in recent years. In this paper, we study the inhomogeneous nonlinear Schrödinger equation (INLS)iut+Δu±|x|b|u|αu=0(b,α>0) on the whole space Rn having initial data in modulation spaces. In the subcritical regime (0<α<42bn), we establish local well-posedness in L2+Mα+2,α+2α+1(L2+Hsfors>nα2(α+2)). By adapting Bourgain's high-low decomposition method, we establish global well-posedness in Mp,pp1 with 2<p and p sufficiently close to 2. This is the first global well-posedness result for INLS in modulation spaces, which contains certain Sobolev Hs (0<s<1) and LspSobolev spaces.
近年来,利用调制空间成功地研究了非线性色散偏微分方程的低正则性柯西数据。本文研究了调制空间中具有初始数据的整个空间Rn上的非齐次非线性Schrödinger方程(INLS)iut+Δu±|x| - b|u|αu=0(b,α>0)。在亚临界区(0<α<;4−20亿),我们建立了L2+Mα+2,α+2α+1(、L2+Hsfors>nα2(α+2))的局部适定性。通过采用Bourgain的高低分解方法,我们建立了Mp,pp−1中2<;p和p充分接近2的全局适定性。这是包含一定Sobolev Hs (0<s<1)和Lsp−Sobolev空间的调制空间中INLS的第一个全局适定性结果。
{"title":"Low-regularity global solution of the inhomogeneous nonlinear Schrödinger equations in modulation spaces","authors":"Divyang G. Bhimani ,&nbsp;Diksha Dhingra ,&nbsp;Vijay Kumar Sohani","doi":"10.1016/j.jde.2026.114106","DOIUrl":"10.1016/j.jde.2026.114106","url":null,"abstract":"<div><div>The study of low regularity Cauchy data for nonlinear dispersive PDEs has been successfully achieved using modulation spaces in recent years. In this paper, we study the inhomogeneous nonlinear Schrödinger equation (INLS)<span><span><span><math><mi>i</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>Δ</mi><mi>u</mi><mo>±</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>b</mi></mrow></msup><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi></mrow></msup><mi>u</mi><mo>=</mo><mn>0</mn><mspace></mspace><mspace></mspace><mo>(</mo><mi>b</mi><mo>,</mo><mi>α</mi><mo>&gt;</mo><mn>0</mn><mo>)</mo></math></span></span></span> on the whole space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> having initial data in modulation spaces. In the subcritical regime <span><math><mo>(</mo><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mfrac><mrow><mn>4</mn><mo>−</mo><mn>2</mn><mi>b</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></math></span>, we establish local well-posedness in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>α</mi><mo>+</mo><mn>2</mn><mo>,</mo><mfrac><mrow><mi>α</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>α</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mrow></msup><mo>(</mo><mo>⊃</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mspace></mspace><mtext>for</mtext><mspace></mspace><mi>s</mi><mo>&gt;</mo><mfrac><mrow><mi>n</mi><mi>α</mi></mrow><mrow><mn>2</mn><mo>(</mo><mi>α</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow></mfrac><mo>)</mo></math></span>. By adapting Bourgain's high-low decomposition method, we establish global well-posedness in <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>p</mi><mo>,</mo><mfrac><mrow><mi>p</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup></math></span> with <span><math><mn>2</mn><mo>&lt;</mo><mi>p</mi></math></span> and <em>p</em> sufficiently close to 2. This is the first global well-posedness result for INLS in modulation spaces, which contains certain Sobolev <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> <span><math><mo>(</mo><mn>0</mn><mo>&lt;</mo><mi>s</mi><mo>&lt;</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>s</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>−</mo></math></span>Sobolev spaces.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"458 ","pages":"Article 114106"},"PeriodicalIF":2.3,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145977526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A refined uniqueness result of Leray's problem in an infinite-long pipe with the Navier-slip boundary 具有navier -滑移边界的无穷长管道中Leray问题的一个改进唯一性结果
IF 2.3 2区 数学 Q1 MATHEMATICS Pub Date : 2026-01-14 DOI: 10.1016/j.jde.2026.114108
Zijin Li , Ning Liu , Taoran Zhou
We consider the generalized Leray's problem with the Navier-slip boundary condition in an infinite pipe D=Σ×R. We show that if the flux Φ of the solution is no larger than a critical value that is independent with the friction ratio of the Navier-slip boundary condition, the solution to the problem must be the parallel Poiseuille flow with the given flux. Compared with known related 3D results, this seems to be the first conclusion with the size of critical flux being uniform with the friction ratio α]0,], and it is surprising since the prescribed uniqueness breaks down immediately when α=0, even if Φ=0.
Our proof relies primarily on a refined gradient estimate of the Poiseuille flow with the Navier-slip boundary condition. Additionally, we prove the critical flux Φ0π16 provided that Σ is a unit disk.
考虑无限管D=Σ×R中具有Navier-slip边界条件的广义Leray问题。我们证明,如果解的通量Φ不大于与纳维-滑移边界条件的摩擦比无关的临界值,则问题的解必须是具有给定通量的平行泊泽维尔流。与已知的相关三维结果相比,这似乎是第一个临界通量大小随摩擦比α∈]0,∞而均匀的结论,令人惊讶的是,当α=0时,即使Φ=0,规定的唯一性也会立即失效。我们的证明主要依赖于在纳维滑动边界条件下对泊泽维尔流的精细梯度估计。另外,在Σ为单位圆盘的条件下,证明了临界通量Φ0≥π16。
{"title":"A refined uniqueness result of Leray's problem in an infinite-long pipe with the Navier-slip boundary","authors":"Zijin Li ,&nbsp;Ning Liu ,&nbsp;Taoran Zhou","doi":"10.1016/j.jde.2026.114108","DOIUrl":"10.1016/j.jde.2026.114108","url":null,"abstract":"<div><div>We consider the generalized Leray's problem with the Navier-slip boundary condition in an infinite pipe <span><math><mi>D</mi><mo>=</mo><mi>Σ</mi><mo>×</mo><mi>R</mi></math></span>. We show that if the flux Φ of the solution is no larger than a critical value that is <em>independent with the friction ratio</em> of the Navier-slip boundary condition, the solution to the problem must be the parallel Poiseuille flow with the given flux. Compared with known related 3D results, this seems to be the first conclusion with the size of critical flux being uniform with the friction ratio <span><math><mi>α</mi><mo>∈</mo><mo>]</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>]</mo></math></span>, and it is surprising since the prescribed uniqueness breaks down immediately when <span><math><mi>α</mi><mo>=</mo><mn>0</mn></math></span>, even if <span><math><mi>Φ</mi><mo>=</mo><mn>0</mn></math></span>.</div><div>Our proof relies primarily on a refined gradient estimate of the Poiseuille flow with the Navier-slip boundary condition. Additionally, we prove the critical flux <span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≥</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>16</mn></mrow></mfrac></math></span> provided that Σ is a unit disk.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"461 ","pages":"Article 114108"},"PeriodicalIF":2.3,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145980653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Densities of stochastic functional differential equation and its discretizations 随机泛函微分方程的密度及其离散化
IF 2.3 2区 数学 Q1 MATHEMATICS Pub Date : 2026-01-14 DOI: 10.1016/j.jde.2026.114104
Chuchu Chen , Tonghe Dang , Jialin Hong , Guoting Song
This paper studies densities for solutions of the stochastic functional differential equation (SFDE) and of its Euler-type discretizations. First, by means of the Malliavin calculus, we prove the existence of densities for the exact solution and its discretizations. Then we establish the L1(Rd)-convergence for the density of discretizations by implementing a dimensionality reduction argument and a localization argument. Further, we prove that the pointwise convergence rate of the density is 1 when the noise is of additive type. The convergence results indicate that the total variation distance between laws of solutions for the SFDE and its discretizations vanishes to zero as the discretization parameter diminishes, while that between laws of functional solutions fails to vanish due to the high degeneracy of the equation. This finding highlights one of the main distinctions in asymptotic behaviors of the corresponding discretized systems when compared to stochastic ordinary (partial) differential equations.
本文研究了随机泛函微分方程(SFDE)解的密度及其欧拉型离散化。首先,利用Malliavin演算,证明了精确解及其离散化的密度存在性。然后通过实现降维参数和局部化参数,建立离散化密度的L1(Rd)收敛性。进一步证明了当噪声为加性时,密度的点向收敛速率为1。收敛性结果表明,随着离散化参数的减小,SFDE解的各律与离散化的总变差距离趋于零,而由于方程的高简并性,泛函解的各律之间的总变差距离不消失。这一发现突出了与随机常(偏)微分方程相比,相应的离散系统的渐近行为的主要区别之一。
{"title":"Densities of stochastic functional differential equation and its discretizations","authors":"Chuchu Chen ,&nbsp;Tonghe Dang ,&nbsp;Jialin Hong ,&nbsp;Guoting Song","doi":"10.1016/j.jde.2026.114104","DOIUrl":"10.1016/j.jde.2026.114104","url":null,"abstract":"<div><div>This paper studies densities for solutions of the stochastic functional differential equation (SFDE) and of its Euler-type discretizations. First, by means of the Malliavin calculus, we prove the existence of densities for the exact solution and its discretizations. Then we establish the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>-convergence for the density of discretizations by implementing a dimensionality reduction argument and a localization argument. Further, we prove that the pointwise convergence rate of the density is 1 when the noise is of additive type. The convergence results indicate that the total variation distance between laws of solutions for the SFDE and its discretizations vanishes to zero as the discretization parameter diminishes, while that between laws of functional solutions fails to vanish due to the high degeneracy of the equation. This finding highlights one of the main distinctions in asymptotic behaviors of the corresponding discretized systems when compared to stochastic ordinary (partial) differential equations.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"459 ","pages":"Article 114104"},"PeriodicalIF":2.3,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145978281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectral stability of elliptic function solutions for the short pulse equation 短脉冲方程椭圆函数解的谱稳定性
IF 2.3 2区 数学 Q1 MATHEMATICS Pub Date : 2026-01-14 DOI: 10.1016/j.jde.2026.114099
Li-Ming Cao, Shou-Fu Tian
The main purpose of this work is to investigate the spectral stability of elliptic function solutions for the short pulse equation, a completely integrable model for the description of ultra-short pulse propagation in optical fibers. Recently, Yang and Fan developed ¯-steepest descent method to analyze the long-time asymptotic behavior for the short pulse equation (Yang and Fan (2021) [50]). Subsequently, Li, Tian and Yang extended their results and reported the asymptotic stability of N-soliton solution (Li et al. (2023) [33]). Inspired by these works, we consider the spectral stability for three classes of elliptic solutions which are derived via the algebraic geometry method in this work. It is worth noting that the Lax spectrum in focusing case is not restricted to imaginary axis. To address this issue, we develop the squared wavefunction method using Jacobi theta function theory, and then establish spectral stability for both focusing and defocusing cases.
本文的主要目的是研究用于描述超短脉冲在光纤中传播的完全可积模型——短脉冲方程的椭圆函数解的谱稳定性。最近,Yang和Fan开发了∂¯-最陡下降方法来分析短脉冲方程的长时间渐近行为(Yang和Fan(2021)[50])。随后,Li、Tian和Yang扩展了他们的结果,报道了n孤子解的渐近稳定性(Li et al.(2023)[33])。受这些工作的启发,本文研究了用代数几何方法导出的三类椭圆解的谱稳定性。值得注意的是,聚焦情况下的Lax光谱并不局限于虚轴。为了解决这个问题,我们利用Jacobi theta函数理论开发了平方波函数方法,然后建立了聚焦和散焦情况下的光谱稳定性。
{"title":"Spectral stability of elliptic function solutions for the short pulse equation","authors":"Li-Ming Cao,&nbsp;Shou-Fu Tian","doi":"10.1016/j.jde.2026.114099","DOIUrl":"10.1016/j.jde.2026.114099","url":null,"abstract":"<div><div>The main purpose of this work is to investigate the spectral stability of elliptic function solutions for the short pulse equation, a completely integrable model for the description of ultra-short pulse propagation in optical fibers. Recently, Yang and Fan developed <span><math><mover><mrow><mo>∂</mo></mrow><mrow><mo>¯</mo></mrow></mover></math></span>-steepest descent method to analyze the long-time asymptotic behavior for the short pulse equation (Yang and Fan (2021) <span><span>[50]</span></span>). Subsequently, Li, Tian and Yang extended their results and reported the asymptotic stability of N-soliton solution (Li et al. (2023) <span><span>[33]</span></span>). Inspired by these works, we consider the spectral stability for three classes of elliptic solutions which are derived via the algebraic geometry method in this work. It is worth noting that the Lax spectrum in focusing case is not restricted to imaginary axis. To address this issue, we develop the squared wavefunction method using Jacobi theta function theory, and then establish spectral stability for both focusing and defocusing cases.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"460 ","pages":"Article 114099"},"PeriodicalIF":2.3,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145977971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel convergence of solutions to 1D compressible Euler equations with spatiotemporal damping in critical case 临界情况下具有时空阻尼的一维可压缩欧拉方程解的新颖收敛性
IF 2.3 2区 数学 Q1 MATHEMATICS Pub Date : 2026-01-13 DOI: 10.1016/j.jde.2026.114094
Yang Cai , Changchun Liu , Ming Mei , Zejia Wang
This paper is concerned with the Cauchy problem for 1D compressible Euler equations with spatiotemporal damping in the critical case. We prove the existence of the solutions and their new convergence to the special diffusion waves by the technical time-weighted energy method, where the convergence rates are dependent on the spatial state of the spatiotemporal damping as x±. These convergence results significantly improve and develop the previous studies of Geng et al. (2020) [10] and Matsumura and Nishihara (2024) [24].
研究具有时空阻尼的一维可压缩欧拉方程在临界情况下的Cauchy问题。我们用技术时间加权能量法证明了该类扩散波解的存在性及其新的收敛性,其中收敛速率依赖于时空阻尼的空间状态为x→±∞。这些收敛结果显著改进和发展了Geng et al.(2020)[10]和Matsumura and Nishihara(2024)[24]的先前研究。
{"title":"Novel convergence of solutions to 1D compressible Euler equations with spatiotemporal damping in critical case","authors":"Yang Cai ,&nbsp;Changchun Liu ,&nbsp;Ming Mei ,&nbsp;Zejia Wang","doi":"10.1016/j.jde.2026.114094","DOIUrl":"10.1016/j.jde.2026.114094","url":null,"abstract":"<div><div>This paper is concerned with the Cauchy problem for 1D compressible Euler equations with spatiotemporal damping in the critical case. We prove the existence of the solutions and their new convergence to the special diffusion waves by the technical time-weighted energy method, where the convergence rates are dependent on the spatial state of the spatiotemporal damping as <span><math><mi>x</mi><mo>→</mo><mo>±</mo><mo>∞</mo></math></span>. These convergence results significantly improve and develop the previous studies of Geng et al. (2020) <span><span>[10]</span></span> and Matsumura and Nishihara (2024) <span><span>[24]</span></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"461 ","pages":"Article 114094"},"PeriodicalIF":2.3,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145980539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Differential Equations
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1