Pub Date : 2023-05-31DOI: 10.26866/jees.2023.3.r.167
Jaesik Moon, J. Kwon, Eakhwan Song
In this paper, an equivalent circuit model of a double-exponential pulse generator is proposed for use as a time-domain noise source in high-altitude electromagnetic pulse (HEMP) conducted disturbance immunity testing. The analytic relationship between the proposed equivalent circuit model and the source pulse requirements expressed by the test standards is derived. Based on this relationship, a design methodology for the equivalent circuit model is proposed to extract the circuit components that satisfy the source pulse requirements, particularly in the form of source impedance and pulse waveform requirements. The proposed design methodology is applied to design an equivalent circuit model of the double exponential pulse generator with various test modes in the conducted disturbance immunity test. The designed double exponential pulse generator is applied to a simulation-based conductive disturbance immunity testing platform based on the International Electrotechnical Commission (IEC) 61000-4-24 standard to validate the effectiveness of the proposed equivalent circuit model and design methodology.
{"title":"A Modeling and Design Methodology of Double Exponential Pulse Generator for Simulation-Based Conducted Disturbance Immunity Testing","authors":"Jaesik Moon, J. Kwon, Eakhwan Song","doi":"10.26866/jees.2023.3.r.167","DOIUrl":"https://doi.org/10.26866/jees.2023.3.r.167","url":null,"abstract":"In this paper, an equivalent circuit model of a double-exponential pulse generator is proposed for use as a time-domain noise source in high-altitude electromagnetic pulse (HEMP) conducted disturbance immunity testing. The analytic relationship between the proposed equivalent circuit model and the source pulse requirements expressed by the test standards is derived. Based on this relationship, a design methodology for the equivalent circuit model is proposed to extract the circuit components that satisfy the source pulse requirements, particularly in the form of source impedance and pulse waveform requirements. The proposed design methodology is applied to design an equivalent circuit model of the double exponential pulse generator with various test modes in the conducted disturbance immunity test. The designed double exponential pulse generator is applied to a simulation-based conductive disturbance immunity testing platform based on the International Electrotechnical Commission (IEC) 61000-4-24 standard to validate the effectiveness of the proposed equivalent circuit model and design methodology.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41755589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-31DOI: 10.26866/jees.2023.3.r.164
Yuheng Li, Guang Yang, Weiwen Li, Qing Huo Liu
Antennas that radiate orbital angular momentum (OAM) modes are usually large and have complex structures. In this paper, in combination with characteristic mode analysis, the ground plane is used as the OAM wave radiator. To excite degenerate modes of the ground plane with phase quadrature by using a single-fed structure, two bent metal strips with grounded ends are introduced around the rectangular ground plane, and a corner of one of the bent strips is set as the feeding point. For ground radiators, a first-order OAM mode is generated at the high-frequency end by synthesizing the degenerate modes. In case of the bent side strip, an inverted-F antenna that operates in the low-frequency mode is formed. This compact antenna has dual-band characteristics and facilitates simple feeding, which makes it suitable for mobile terminal applications.
{"title":"Dual-Band Antenna with OAM Mode Radiated by Ground Plane","authors":"Yuheng Li, Guang Yang, Weiwen Li, Qing Huo Liu","doi":"10.26866/jees.2023.3.r.164","DOIUrl":"https://doi.org/10.26866/jees.2023.3.r.164","url":null,"abstract":"Antennas that radiate orbital angular momentum (OAM) modes are usually large and have complex structures. In this paper, in combination with characteristic mode analysis, the ground plane is used as the OAM wave radiator. To excite degenerate modes of the ground plane with phase quadrature by using a single-fed structure, two bent metal strips with grounded ends are introduced around the rectangular ground plane, and a corner of one of the bent strips is set as the feeding point. For ground radiators, a first-order OAM mode is generated at the high-frequency end by synthesizing the degenerate modes. In case of the bent side strip, an inverted-F antenna that operates in the low-frequency mode is formed. This compact antenna has dual-band characteristics and facilitates simple feeding, which makes it suitable for mobile terminal applications.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46886456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-31DOI: 10.26866/jees.2023.3.r.160
Min-Ji Kim, Sangho Lim, Dong-Cho Shin
Synthetic aperture time (SAT) is a crucial component for acquiring high-quality synthetic aperture radar images with an excellent target cross-range resolution. SAT is analyzed using the range and Doppler cone angle at the center of the synthetic aperture length (SAL). However, in a real flight mission setting, only the range and Doppler cone angle at the SAL’s starting point are determined. Therefore, we present a method for estimating the range and Doppler cone angle at the center of the SAL to calculate an accurate SAT that is suitable for the spatial resolution of the assigned mission. We performed an iterative analysis of SAT at the range and Doppler cone angle at the starting point of the SAL (original SAT) and at the center of the SAL (proposed SAT). Consequently, the proposed SAT decreased by 0.69%–16.14% compared to the original SAT at a resolution of 0.1–3.0 m.
{"title":"Analysis Method for Determining Optimal Synthetic Aperture Time Using Estimated Range and Doppler Cone Angle at the Center of Synthetic Aperture Length","authors":"Min-Ji Kim, Sangho Lim, Dong-Cho Shin","doi":"10.26866/jees.2023.3.r.160","DOIUrl":"https://doi.org/10.26866/jees.2023.3.r.160","url":null,"abstract":"Synthetic aperture time (SAT) is a crucial component for acquiring high-quality synthetic aperture radar images with an excellent target cross-range resolution. SAT is analyzed using the range and Doppler cone angle at the center of the synthetic aperture length (SAL). However, in a real flight mission setting, only the range and Doppler cone angle at the SAL’s starting point are determined. Therefore, we present a method for estimating the range and Doppler cone angle at the center of the SAL to calculate an accurate SAT that is suitable for the spatial resolution of the assigned mission. We performed an iterative analysis of SAT at the range and Doppler cone angle at the starting point of the SAL (original SAT) and at the center of the SAL (proposed SAT). Consequently, the proposed SAT decreased by 0.69%–16.14% compared to the original SAT at a resolution of 0.1–3.0 m.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43724227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-31DOI: 10.26866/jees.2023.3.r.162
Cheolsoo Lee, Joo-Rae Park
An all-metal, broadband, dual-polarized Vivaldi array antenna was designed and fabricated. The structure of the proposed antenna comprised a resonant cavity and tapered fins that contacted the ground plane directly, allowing the connection of a balun and tapered fins and reducing the antenna length. To extend the frequency range, the resonant cavity width is larger than half the aperture length, and the tapered fins have nonuniform thickness. The proposed Vivaldi array antenna is designed based on parametric studies. The gains of the active element and array ranged from -2.9 dBi to 6.4 dBi and 14.9 to 23.5 dBi in the frequency range of 2–6 GHz. The proposed array antenna exhibited beam steering capability up to 45° along the azimuth and 25° along the elevation angle directions. Since the measured results and simulated predictions were in good agreement, the proposed array antenna would be applicable for a broadband, wide-beam steering system with different polarization requirements.
{"title":"Multiparametric Design of an All-Metal, Broadband, Slant Dual-Polarized Vivaldi Array Antenna","authors":"Cheolsoo Lee, Joo-Rae Park","doi":"10.26866/jees.2023.3.r.162","DOIUrl":"https://doi.org/10.26866/jees.2023.3.r.162","url":null,"abstract":"An all-metal, broadband, dual-polarized Vivaldi array antenna was designed and fabricated. The structure of the proposed antenna comprised a resonant cavity and tapered fins that contacted the ground plane directly, allowing the connection of a balun and tapered fins and reducing the antenna length. To extend the frequency range, the resonant cavity width is larger than half the aperture length, and the tapered fins have nonuniform thickness. The proposed Vivaldi array antenna is designed based on parametric studies. The gains of the active element and array ranged from -2.9 dBi to 6.4 dBi and 14.9 to 23.5 dBi in the frequency range of 2–6 GHz. The proposed array antenna exhibited beam steering capability up to 45° along the azimuth and 25° along the elevation angle directions. Since the measured results and simulated predictions were in good agreement, the proposed array antenna would be applicable for a broadband, wide-beam steering system with different polarization requirements.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47849561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-31DOI: 10.26866/jees.2023.3.r.166
Yoon-Seon Choi, Dong‐Su Choi, In-Hee Han, J. Woo
In this paper, we designed a sliding waveguide array antenna that can be beam-steered via mechanical manipulation. This reduces the vulnerability of electronic beam-steering radars mounted on ships or aircraft to electromagnetic pulse (EMP) attacks. The design frequency was 9.375 GHz. First, the proposed antenna was designed to adjust the phase difference between the arrayed waveguide antennas by changing the length of the rectangular waveguide using a slide. Subsequently, a ridge structure with optimized curvature was attached to the aperture of the rectangular waveguide to obtain stable reflection coefficient characteristics. Finally, eight rectangular waveguide antennas and two dummy antennas were E-plane arrayed at intervals of 0.8λ (25.6 mm) to obtain a beam width of nearly 8°. A beam width of 8° was then obtained by adjusting the length of each waveguide. It was possible to orient the beam of the antenna in intervals of 8° using the phase difference of each antenna. The proposed mechanical beam steering technique can replace electronic beam steering for radar antennas, rendering the structures less vulnerable to EMP attacks.
{"title":"The Design of a Sliding Rectangular Waveguide Array Antenna for Beam Steering","authors":"Yoon-Seon Choi, Dong‐Su Choi, In-Hee Han, J. Woo","doi":"10.26866/jees.2023.3.r.166","DOIUrl":"https://doi.org/10.26866/jees.2023.3.r.166","url":null,"abstract":"In this paper, we designed a sliding waveguide array antenna that can be beam-steered via mechanical manipulation. This reduces the vulnerability of electronic beam-steering radars mounted on ships or aircraft to electromagnetic pulse (EMP) attacks. The design frequency was 9.375 GHz. First, the proposed antenna was designed to adjust the phase difference between the arrayed waveguide antennas by changing the length of the rectangular waveguide using a slide. Subsequently, a ridge structure with optimized curvature was attached to the aperture of the rectangular waveguide to obtain stable reflection coefficient characteristics. Finally, eight rectangular waveguide antennas and two dummy antennas were E-plane arrayed at intervals of 0.8λ (25.6 mm) to obtain a beam width of nearly 8°. A beam width of 8° was then obtained by adjusting the length of each waveguide. It was possible to orient the beam of the antenna in intervals of 8° using the phase difference of each antenna. The proposed mechanical beam steering technique can replace electronic beam steering for radar antennas, rendering the structures less vulnerable to EMP attacks.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41503829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-31DOI: 10.26866/jees.2023.3.r.170
Sagini E. Mochumbe, Youngoo Yang
While an ideal Doherty power amplifier has a linear response, the load modulated balanced amplifier (LMBA) has a compressive response under ideal conditions. This inherent nonlinear characteristic is due to the lower power contribution of the single auxiliary device as the balanced amplifier transistors approach compression. This article presents an LMBA with a two-stage control signal amplifier in place of the single auxiliary device. The idea is to preserve a high and constant gain across the high- and low-power regions by tuning the two-stage gain control signal to match the balanced amplifier gain. An optimal load trajectory can be found for a high-efficiency design by appropriately terminating the second harmonic while ensuring an optimal impedance match in all devices. At the same time, by setting an optimal output power from the auxiliary device, sufficient power is provided to linearize the response of the main power amplifier beyond the output back-off power boundary. As proof of concept, a prototype is designed and implemented. The experimental measurements demonstrate a drain efficiency of 59%–64% at maximum output power and 46%–52% at 7.5 dB output back-off power over the target frequency range of 3.3–3.8 GHz.
{"title":"Design of a Load Modulated Balanced Amplifier with a Two-Stage Control Power Amplifier","authors":"Sagini E. Mochumbe, Youngoo Yang","doi":"10.26866/jees.2023.3.r.170","DOIUrl":"https://doi.org/10.26866/jees.2023.3.r.170","url":null,"abstract":"While an ideal Doherty power amplifier has a linear response, the load modulated balanced amplifier (LMBA) has a compressive response under ideal conditions. This inherent nonlinear characteristic is due to the lower power contribution of the single auxiliary device as the balanced amplifier transistors approach compression. This article presents an LMBA with a two-stage control signal amplifier in place of the single auxiliary device. The idea is to preserve a high and constant gain across the high- and low-power regions by tuning the two-stage gain control signal to match the balanced amplifier gain. An optimal load trajectory can be found for a high-efficiency design by appropriately terminating the second harmonic while ensuring an optimal impedance match in all devices. At the same time, by setting an optimal output power from the auxiliary device, sufficient power is provided to linearize the response of the main power amplifier beyond the output back-off power boundary. As proof of concept, a prototype is designed and implemented. The experimental measurements demonstrate a drain efficiency of 59%–64% at maximum output power and 46%–52% at 7.5 dB output back-off power over the target frequency range of 3.3–3.8 GHz.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47693905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-31DOI: 10.26866/jees.2023.3.r.169
F. E. Chinda, Socheatra Seoung, S. Cheab, M. S. Yahya, H. F. Hawari
The design of compact parallel-connected chained function filters is presented in this paper. The proposed filters will offer reduced sensitivity to manufacturing tolerance within the specified bandwidth in comparison to conventional Chebyshev filters for C-band applications. A new filtering function according to a chained configuration is derived for fourth-order filters, and the synthesis procedures are presented. To demonstrate the feasibility of this approach, the circuit simulation based on parallel-connected topology is performed in an advanced design system, while the design and simulation of a fourth-order filter in dielectric technology are carried out in high-frequency simulation software. The prototype of fourth-order microstrip topology is fabricated using open-loop resonators. The overall circuit size of the filter is 2.5 cm × 4 cm. The achieved simulation and measured insertion/return loss are 0.409 dB/20 dB and 2.674 dB/18.074 dB, respectively. Extensive sensitivity analysis is conducted to prove the fabrication tolerance of the filter. The reduced sensitivity of the proposed filter to manufacturing tolerance is fully demonstrated using an open-loop microstrip technology, and its reliability is proven by theoretical analysis. The prototype results in this research are validated and agree with the theoretical results. In terms of implementation, this design technique will be a very useful mathematical tool for any filter design engineer.
{"title":"Design of Compact Parallel-Connected Chained Function Filters","authors":"F. E. Chinda, Socheatra Seoung, S. Cheab, M. S. Yahya, H. F. Hawari","doi":"10.26866/jees.2023.3.r.169","DOIUrl":"https://doi.org/10.26866/jees.2023.3.r.169","url":null,"abstract":"The design of compact parallel-connected chained function filters is presented in this paper. The proposed filters will offer reduced sensitivity to manufacturing tolerance within the specified bandwidth in comparison to conventional Chebyshev filters for C-band applications. A new filtering function according to a chained configuration is derived for fourth-order filters, and the synthesis procedures are presented. To demonstrate the feasibility of this approach, the circuit simulation based on parallel-connected topology is performed in an advanced design system, while the design and simulation of a fourth-order filter in dielectric technology are carried out in high-frequency simulation software. The prototype of fourth-order microstrip topology is fabricated using open-loop resonators. The overall circuit size of the filter is 2.5 cm × 4 cm. The achieved simulation and measured insertion/return loss are 0.409 dB/20 dB and 2.674 dB/18.074 dB, respectively. Extensive sensitivity analysis is conducted to prove the fabrication tolerance of the filter. The reduced sensitivity of the proposed filter to manufacturing tolerance is fully demonstrated using an open-loop microstrip technology, and its reliability is proven by theoretical analysis. The prototype results in this research are validated and agree with the theoretical results. In terms of implementation, this design technique will be a very useful mathematical tool for any filter design engineer.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46436626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.26866/jees.2023.2.r.160
K. Jang, Jong-Hyun Kim, G. Kim, Jung-Il Kim, Jin‐Joo Choi
This study showed the possibility of using a sub-terahertz (THz) traveling-wave tube (TWT) via measuring the transmission characteristics and TWT performance of the circuit by applying X-ray LIGA, a micro-fabrication process, to the interaction circuit. The applied circuit type, an E-bend folded waveguide, is a simple structure most suitable for lithography. A total of three applied frequencies were used the W-band, G-band, and 850 GHz. Among the manufactured circuits, the W-band circuit was applied to the TWT, one of the vacuum electronics devices (VEDs). This was done to prove the manufacturing accuracy of the circuit by comparing the nonlinear characteristics of the circuit with the prediction results. Through such testing, the small signal gain was measured as 13 ± 2 dB under the conditions of 13.96-kV and 24.2-mA electron beam energy. The frequency bandwidth was extremely wide, about 9 GHz, and showed similar characteristics to the simulation predictions. The maximum output of the device was obtained up to 1 W or more at 87.12 GHz by slightly increasing the beam current. These characteristic achievements showed the suitability of the TWT for very small circuits fabricated using the X-ray LIGA process, further suggesting the applicability of other sub-THz bands.
{"title":"Experiments of Sub-THz Wave Folded Waveguide Traveling-Wave Tube Amplifier","authors":"K. Jang, Jong-Hyun Kim, G. Kim, Jung-Il Kim, Jin‐Joo Choi","doi":"10.26866/jees.2023.2.r.160","DOIUrl":"https://doi.org/10.26866/jees.2023.2.r.160","url":null,"abstract":"This study showed the possibility of using a sub-terahertz (THz) traveling-wave tube (TWT) via measuring the transmission characteristics and TWT performance of the circuit by applying X-ray LIGA, a micro-fabrication process, to the interaction circuit. The applied circuit type, an E-bend folded waveguide, is a simple structure most suitable for lithography. A total of three applied frequencies were used the W-band, G-band, and 850 GHz. Among the manufactured circuits, the W-band circuit was applied to the TWT, one of the vacuum electronics devices (VEDs). This was done to prove the manufacturing accuracy of the circuit by comparing the nonlinear characteristics of the circuit with the prediction results. Through such testing, the small signal gain was measured as 13 ± 2 dB under the conditions of 13.96-kV and 24.2-mA electron beam energy. The frequency bandwidth was extremely wide, about 9 GHz, and showed similar characteristics to the simulation predictions. The maximum output of the device was obtained up to 1 W or more at 87.12 GHz by slightly increasing the beam current. These characteristic achievements showed the suitability of the TWT for very small circuits fabricated using the X-ray LIGA process, further suggesting the applicability of other sub-THz bands.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43063185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.26866/jees.2023.2.r.157
Qingle Wu, Liqun Wang, Guolai Yang, Enling Tang, Lei Li, A. Al-Zahrani
In response to the end effect of the permanent magnet linear synchronous motor, this paper proposes an improved modular motor structure. To compute its electromagnetic characteristics, a subdomain model that converts the Cartesian coordinate system into a polar coordinate system through coordinate transformation is further formulated, thus significantly reducing programming difficulty. The analytical results are compared with those of the finite element method and indicate that the subdomain model can accurately consider the effects of end and flux barriers. Moreover, the magnetic field distribution inside the motor is applied to explain the end force abatement, and the suggested flux barrier width is obtained. Finally, the modular structure is applied to a 9-slot, 10-pole permanent magnet linear synchronous motor. The simulation results show that the modular structure can effectively suppress the end effect of the linear motor, and the proposed subdomain model applies to the design of the modular motor.
{"title":"A Novel Design of Permanent Magnet Linear Synchronous Motor with Reduced End Effect","authors":"Qingle Wu, Liqun Wang, Guolai Yang, Enling Tang, Lei Li, A. Al-Zahrani","doi":"10.26866/jees.2023.2.r.157","DOIUrl":"https://doi.org/10.26866/jees.2023.2.r.157","url":null,"abstract":"In response to the end effect of the permanent magnet linear synchronous motor, this paper proposes an improved modular motor structure. To compute its electromagnetic characteristics, a subdomain model that converts the Cartesian coordinate system into a polar coordinate system through coordinate transformation is further formulated, thus significantly reducing programming difficulty. The analytical results are compared with those of the finite element method and indicate that the subdomain model can accurately consider the effects of end and flux barriers. Moreover, the magnetic field distribution inside the motor is applied to explain the end force abatement, and the suggested flux barrier width is obtained. Finally, the modular structure is applied to a 9-slot, 10-pole permanent magnet linear synchronous motor. The simulation results show that the modular structure can effectively suppress the end effect of the linear motor, and the proposed subdomain model applies to the design of the modular motor.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47639416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.26866/jees.2023.2.r.154
Bochao Guo, Yubo Zhao, Wei Chen, Ni Guo, Zijian Tian
Achieving stable power transfer by merely relying on quasi-omnidirectional couplers is challenging. In this paper, we propose a quasi-omnidirectional wireless power transfer (QWPT) system with a novel curved-coil transmitter to achieve steady transmission performance. A single power source is used to drive the transmitter's current without using a phase and current control methodology. Power is transmitted to the receiver through magnetic resonant coupling at a distance of 50 mm. Moreover, an equivalent circuit model of the curved-coil system is derived and mathematically analyzed. The mutual inductance of the proposed QWPT system is evaluated through analysis and experiments. The experimental results for the resonant coupling system confirm the theoretical analysis of the performance of the curved-coil transmitter and quasi-omnidirectional power transfer.
{"title":"A Novel Curved-Coil Transmitter for Quasi-omnidirectional Wireless Power Transfer","authors":"Bochao Guo, Yubo Zhao, Wei Chen, Ni Guo, Zijian Tian","doi":"10.26866/jees.2023.2.r.154","DOIUrl":"https://doi.org/10.26866/jees.2023.2.r.154","url":null,"abstract":"Achieving stable power transfer by merely relying on quasi-omnidirectional couplers is challenging. In this paper, we propose a quasi-omnidirectional wireless power transfer (QWPT) system with a novel curved-coil transmitter to achieve steady transmission performance. A single power source is used to drive the transmitter's current without using a phase and current control methodology. Power is transmitted to the receiver through magnetic resonant coupling at a distance of 50 mm. Moreover, an equivalent circuit model of the curved-coil system is derived and mathematically analyzed. The mutual inductance of the proposed QWPT system is evaluated through analysis and experiments. The experimental results for the resonant coupling system confirm the theoretical analysis of the performance of the curved-coil transmitter and quasi-omnidirectional power transfer.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48368119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}