Pub Date : 2023-03-31DOI: 10.26866/jees.2023.2.r.159
Iftikhar Ud Din, W. Ullah, N. A. Abbasi, S. Ullah, Waleed Shihzad, Bilawal Khan, D. Jayakody
This article presents a compact ultra-wideband (UWB) circular monopole antenna with a frequency-selective surface (FSS) for gain enhancement. The proposed antenna has a circular patch with circular cuts at the edges and is excited by a microstrip feed. The bottom plane is truncated and further modified by two triangular cuts at the sides and one rectangular cut in the middle to improve the radiation characteristics of the UWB antenna. The antenna is designed on an FR-4 substrate with a thickness of 1.6 mm, a relative permittivity of 4.3, and planner dimensions of 30 mm × 30 mm. To improve the proposed antenna’s gain, an FSS is designed that consists of periodic unit cells of metal printed on the upper layer of an FR-4 substrate with dimensions of 0.11λ × 0.11λ at the lowest operating frequency of 3.3 GHz. The FSS shows a very low transmission coefficient and linearly reducing reflection phase with increasing frequency over a frequency range of 3.3–10.8 GHz. The gain of the proposed antenna is increased from 3 dB to 8.1 dB at 9 GHz by placing the antenna on the FSS. Moreover, the prototype of the proposed antenna is fabricated, and the experimental results are measured, which show close agreements with simulated results. The FSS-based antenna has directional radiation patterns, making it a potential candidate for ground-penetrating radar and UWB applications.
{"title":"A Novel Compact Ultra-Wideband Frequency-Selective Surface-Based Antenna for Gain Enhancement Applications","authors":"Iftikhar Ud Din, W. Ullah, N. A. Abbasi, S. Ullah, Waleed Shihzad, Bilawal Khan, D. Jayakody","doi":"10.26866/jees.2023.2.r.159","DOIUrl":"https://doi.org/10.26866/jees.2023.2.r.159","url":null,"abstract":"This article presents a compact ultra-wideband (UWB) circular monopole antenna with a frequency-selective surface (FSS) for gain enhancement. The proposed antenna has a circular patch with circular cuts at the edges and is excited by a microstrip feed. The bottom plane is truncated and further modified by two triangular cuts at the sides and one rectangular cut in the middle to improve the radiation characteristics of the UWB antenna. The antenna is designed on an FR-4 substrate with a thickness of 1.6 mm, a relative permittivity of 4.3, and planner dimensions of 30 mm × 30 mm. To improve the proposed antenna’s gain, an FSS is designed that consists of periodic unit cells of metal printed on the upper layer of an FR-4 substrate with dimensions of 0.11λ × 0.11λ at the lowest operating frequency of 3.3 GHz. The FSS shows a very low transmission coefficient and linearly reducing reflection phase with increasing frequency over a frequency range of 3.3–10.8 GHz. The gain of the proposed antenna is increased from 3 dB to 8.1 dB at 9 GHz by placing the antenna on the FSS. Moreover, the prototype of the proposed antenna is fabricated, and the experimental results are measured, which show close agreements with simulated results. The FSS-based antenna has directional radiation patterns, making it a potential candidate for ground-penetrating radar and UWB applications.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42585137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.26866/jees.2023.2.r.147
Seungkuk Park, J. Park, Moon‐Que Lee
This paper presents a new millimeter-wave monopulse dielectric resonator (DR) filtering antenna (filtenna) array based on substrate-integrated waveguide (SIW) technology. The monopulse comparator realized by a square dual-mode (TE102 and TE201) SIW feed cavity uses diagonal irises, of which couplings between the feed and next-stage cavities lead to almost identical filter responses for the sum and difference channels with compact size and a planar single-substrate structure. Both dielectric resonator antennas (DRAs) adopting HEM133 mode for enhanced directivity are implemented with two filters based on SIW. The DR acts as the last resonator and the radiator in the filtenna. The prototype is designed at the Ka-band with a center frequency of 27.65 GHz and an operation bandwidth of 700 MHz. The measurement shows a 15-dB fractional bandwidth of 2.36%, a gain of 10.84 dBi for the sum channel, and a null depth of -15.6 dB for the difference channel.
{"title":"Millimeter-Wave Monopulse Filtenna Array with Directive Dielectric Resonators","authors":"Seungkuk Park, J. Park, Moon‐Que Lee","doi":"10.26866/jees.2023.2.r.147","DOIUrl":"https://doi.org/10.26866/jees.2023.2.r.147","url":null,"abstract":"This paper presents a new millimeter-wave monopulse dielectric resonator (DR) filtering antenna (filtenna) array based on substrate-integrated waveguide (SIW) technology. The monopulse comparator realized by a square dual-mode (TE102 and TE201) SIW feed cavity uses diagonal irises, of which couplings between the feed and next-stage cavities lead to almost identical filter responses for the sum and difference channels with compact size and a planar single-substrate structure. Both dielectric resonator antennas (DRAs) adopting HEM133 mode for enhanced directivity are implemented with two filters based on SIW. The DR acts as the last resonator and the radiator in the filtenna. The prototype is designed at the Ka-band with a center frequency of 27.65 GHz and an operation bandwidth of 700 MHz. The measurement shows a 15-dB fractional bandwidth of 2.36%, a gain of 10.84 dBi for the sum channel, and a null depth of -15.6 dB for the difference channel.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48323944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.26866/jees.2023.2.r.153
K. Goudarzi, H. Lee, Doyoung Kim, I. Park, Haewook Han
This letter proposes 50:50 TE terahertz power splitters based on digitized metamaterials. The components are optimized using the particle swarm optimization algorithm. The digitized metamaterials are formed as a silicon slab with circular air holes atop a silicon dioxide substrate. The insertion losses of optimized structures containing air holes with a radius of 9 μm and air holes with different radii (9 μm and 7 μm) are less than 3.9 dB and 3.65 dB, respectively, over a frequency range of 0.87–1.09 THz. The footprint of the proposed devices is 400 μm × 350 μm. The devices have excellent characteristics, such as compactness, efficiency, all-dielectric properties, and compatibility with CMOS fabrication technologies, and can become vital components of most terahertz-wave routing circuits.
{"title":"Inverse Design of Terahertz Optical Power Splitters Using the Particle Swarm Optimization Method","authors":"K. Goudarzi, H. Lee, Doyoung Kim, I. Park, Haewook Han","doi":"10.26866/jees.2023.2.r.153","DOIUrl":"https://doi.org/10.26866/jees.2023.2.r.153","url":null,"abstract":"This letter proposes 50:50 TE terahertz power splitters based on digitized metamaterials. The components are optimized using the particle swarm optimization algorithm. The digitized metamaterials are formed as a silicon slab with circular air holes atop a silicon dioxide substrate. The insertion losses of optimized structures containing air holes with a radius of 9 μm and air holes with different radii (9 μm and 7 μm) are less than 3.9 dB and 3.65 dB, respectively, over a frequency range of 0.87–1.09 THz. The footprint of the proposed devices is 400 μm × 350 μm. The devices have excellent characteristics, such as compactness, efficiency, all-dielectric properties, and compatibility with CMOS fabrication technologies, and can become vital components of most terahertz-wave routing circuits.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43872369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.26866/jees.2023.2.r.156
Youna Jang, K. Jeong, Yea-Ji Lee, T. Kang, Sangmin Lee, Seoung-Young Koo, D. Ahn
In this paper, we propose a wideband balun using integrated passive device (IPD) technology. The proposed circuit is designed to compensate for the magnitude deviations by differentiating the magnitude S-parameter and calculating the lumped component value when the derivative value is zero. For a smaller size, the proposed circuit is implemented using IPD technology, and the fabricated circuit’s size is 2.4 mm × 1.02 mm. The magnitude of the measurement results has 3.5 ± 0.3 dB deviations from 2.8–4.58 GHz, and the phase difference has 180° ± 10° from 2.8–5 GHz at the center frequency of 3.6 GHz. Therefore, the measurement results show that the theory of the proposed circuit is well matched compared with the measurement results for smaller sizes, wideband magnitude, and phase characteristics.
{"title":"Design of a Wideband Balun Using IPD Technology for Compensating the Frequency Dependency","authors":"Youna Jang, K. Jeong, Yea-Ji Lee, T. Kang, Sangmin Lee, Seoung-Young Koo, D. Ahn","doi":"10.26866/jees.2023.2.r.156","DOIUrl":"https://doi.org/10.26866/jees.2023.2.r.156","url":null,"abstract":"In this paper, we propose a wideband balun using integrated passive device (IPD) technology. The proposed circuit is designed to compensate for the magnitude deviations by differentiating the magnitude S-parameter and calculating the lumped component value when the derivative value is zero. For a smaller size, the proposed circuit is implemented using IPD technology, and the fabricated circuit’s size is 2.4 mm × 1.02 mm. The magnitude of the measurement results has 3.5 ± 0.3 dB deviations from 2.8–4.58 GHz, and the phase difference has 180° ± 10° from 2.8–5 GHz at the center frequency of 3.6 GHz. Therefore, the measurement results show that the theory of the proposed circuit is well matched compared with the measurement results for smaller sizes, wideband magnitude, and phase characteristics.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46521773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.26866/jees.2023.2.r.151
T.‐B. Ngo, Quang-Huy Do, Sang‐Woong Yoon
In this study, we developed a leakage power canceling module (LPCM) incorporating a negative capacitor (NCAP). The NCAP provided the circulator with a wide bandwidth, rendering it suitable for retrodirective short-range wireless power transfer applications. The proposed LPCM consisted of a directional coupler, a hybrid coupler, and a low-pass filter network with an NCAP that exhibited the frequency response required to realize leakage power cancellation from the transmitter output to the receiver input. The two couplers were fabricated in an FR4 printed circuit board, and the NCAP was implemented using Samsung LR6LP 65 nm RF CMOS IC technology. The NCAP chip provided a capacitance of -2 pF and consumed a DC voltage and current of 3 V and 13 mA, respectively. The size of the fabricated LPCM was 41 mm × 37 mm. The application of the proposed LPCM was demonstrated with a commercial circulator. The S-parameter measurements indicated that the leakage cancellation was 20‒46 dB at a frequency range of 2.29–2.515 GHz. The bandwidth was defined considering a leakage cancellation of more than 20 dB, and the actual and fractional bandwidths were 222 MHz and 9.25%, respectively.
{"title":"Leakage Power Canceling Module with a Negative Capacitor for a Circulator’s Isolation","authors":"T.‐B. Ngo, Quang-Huy Do, Sang‐Woong Yoon","doi":"10.26866/jees.2023.2.r.151","DOIUrl":"https://doi.org/10.26866/jees.2023.2.r.151","url":null,"abstract":"In this study, we developed a leakage power canceling module (LPCM) incorporating a negative capacitor (NCAP). The NCAP provided the circulator with a wide bandwidth, rendering it suitable for retrodirective short-range wireless power transfer applications. The proposed LPCM consisted of a directional coupler, a hybrid coupler, and a low-pass filter network with an NCAP that exhibited the frequency response required to realize leakage power cancellation from the transmitter output to the receiver input. The two couplers were fabricated in an FR4 printed circuit board, and the NCAP was implemented using Samsung LR6LP 65 nm RF CMOS IC technology. The NCAP chip provided a capacitance of -2 pF and consumed a DC voltage and current of 3 V and 13 mA, respectively. The size of the fabricated LPCM was 41 mm × 37 mm. The application of the proposed LPCM was demonstrated with a commercial circulator. The S-parameter measurements indicated that the leakage cancellation was 20‒46 dB at a frequency range of 2.29–2.515 GHz. The bandwidth was defined considering a leakage cancellation of more than 20 dB, and the actual and fractional bandwidths were 222 MHz and 9.25%, respectively.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46887861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.26866/jees.2023.2.r.148
A. Arya, Soyul Han, Sanghoek Kim
This paper presents a review of the state-of-the-art antennas for the railway communications. There are various aspects that one should consider when designing an antenna, such as antenna size and directivity. While size constraints on railway antennas are not as critical as for mobile consumer counterparts, a radome structure is required to cover the antenna to minimize the aerodynamic resistance antenna. This paper reviews aerodynamic simulations to account for the drag coefficient of the antenna. In a low-frequency band (<5 GHz), railway antennas used to be omnidirectional in the horizontal plane. As the communication scheme advances toward 5G technology, high directivity is required for the railway antenna to compensate for the high path loss at high-frequency bands, i.e., 28-GHz band. We review recent studies of railway antennas over various frequency bands, such as LTE-R, LTE, and the lower and upper 5G bands. To accommodate multiple frequency bands with a single antenna, along with the aerodynamic radome cover, design techniques allowing multiple frequency bands are reviewed in this paper.
{"title":"Review of Antennas for Railway Communications","authors":"A. Arya, Soyul Han, Sanghoek Kim","doi":"10.26866/jees.2023.2.r.148","DOIUrl":"https://doi.org/10.26866/jees.2023.2.r.148","url":null,"abstract":"This paper presents a review of the state-of-the-art antennas for the railway communications. There are various aspects that one should consider when designing an antenna, such as antenna size and directivity. While size constraints on railway antennas are not as critical as for mobile consumer counterparts, a radome structure is required to cover the antenna to minimize the aerodynamic resistance antenna. This paper reviews aerodynamic simulations to account for the drag coefficient of the antenna. In a low-frequency band (<5 GHz), railway antennas used to be omnidirectional in the horizontal plane. As the communication scheme advances toward 5G technology, high directivity is required for the railway antenna to compensate for the high path loss at high-frequency bands, i.e., 28-GHz band. We review recent studies of railway antennas over various frequency bands, such as LTE-R, LTE, and the lower and upper 5G bands. To accommodate multiple frequency bands with a single antenna, along with the aerodynamic radome cover, design techniques allowing multiple frequency bands are reviewed in this paper.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48953157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.26866/jees.2023.2.l.13
Jeong-Hun Nam, I. Koh, Ki-ho Kim, Sang‐Hyun Chun, Hyun Kim
This study compares the actual experimental and simulation data of artillery projectiles (M107 projectiles) fired by a 155-mm gun. The experimental data are collected using a weapon-locating radar developed by LigNex1. The simulation is performed based on the measured projectile trajectories. Additionally, full-polarimetric scattering of the target is calculated using the full-wave method. The time series and statistics of the measured and simulated radar cross-section data are compared, and the differences between the two are addressed.
{"title":"Comparison of Real Experimental and Simulated RCS of Flying Artillery Projectile","authors":"Jeong-Hun Nam, I. Koh, Ki-ho Kim, Sang‐Hyun Chun, Hyun Kim","doi":"10.26866/jees.2023.2.l.13","DOIUrl":"https://doi.org/10.26866/jees.2023.2.l.13","url":null,"abstract":"This study compares the actual experimental and simulation data of artillery projectiles (M107 projectiles) fired by a 155-mm gun. The experimental data are collected using a weapon-locating radar developed by LigNex1. The simulation is performed based on the measured projectile trajectories. Additionally, full-polarimetric scattering of the target is calculated using the full-wave method. The time series and statistics of the measured and simulated radar cross-section data are compared, and the differences between the two are addressed.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42917050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.26866/jees.2023.2.r.152
Mihyang Kang, Sieon Lim, Youngcheol Park
In this paper, a deep neural network (DNN) model is proposed for the behavioral modeling of nonlinear power amplifiers with supply dependency. Although the conventional nonlinear model, such as the Volterra series, has high accuracy, it is not commonly implemented because of its complexity. However, with manageable complexity, the multidimensional input parameters of the proposed model ensure the modeling of the nonlinear behavior of power amplifiers with supply voltage dependency. The proposed model is trained by multi-tone signals on a 10-W power amplifier and validated by comparing the output spectrum and the third-order intermodulation (IMD3) of the model versus the measured data. The output spectrum shows less than 0.38 dB of error over a bandwidth of 10 MHz and input power from 11 dBm to 17 dBm, and the IMD3 error is less than 0.1 dB over the output power range.
{"title":"Deep Neural Network for the Behavioral Modeling of Memory Effects and Supply Dependency on 10-W Nonlinear Power Amplifiers","authors":"Mihyang Kang, Sieon Lim, Youngcheol Park","doi":"10.26866/jees.2023.2.r.152","DOIUrl":"https://doi.org/10.26866/jees.2023.2.r.152","url":null,"abstract":"In this paper, a deep neural network (DNN) model is proposed for the behavioral modeling of nonlinear power amplifiers with supply dependency. Although the conventional nonlinear model, such as the Volterra series, has high accuracy, it is not commonly implemented because of its complexity. However, with manageable complexity, the multidimensional input parameters of the proposed model ensure the modeling of the nonlinear behavior of power amplifiers with supply voltage dependency. The proposed model is trained by multi-tone signals on a 10-W power amplifier and validated by comparing the output spectrum and the third-order intermodulation (IMD3) of the model versus the measured data. The output spectrum shows less than 0.38 dB of error over a bandwidth of 10 MHz and input power from 11 dBm to 17 dBm, and the IMD3 error is less than 0.1 dB over the output power range.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48351108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.26866/jees.2023.2.r.155
S. Choi, Youngkyu Sung
A dual-feed antenna system with circular polarization (CP) diversity and high isolation is proposed in this paper. The proposed antenna consists of two bent monopole antennas and an isosceles triangular partial GND on a single layer. To simply design an antenna with dual-feed dual-CP characteristics, CP bandwidth (BW) is optimized based on a single antenna. The proposed antenna is structurally different from conventional antennas in three ways. Structural asymmetry is realized by bending the shape of the antenna and moving the position, and thus good CP characteristics are obtained. The feeding structure is changed from a linear type to a meander type. As a result, a single monopole antenna has a CP BW of 36%. Next, an antenna system with dual-CP characteristics is introduced by implementing two monopole antennas on a single layer. In this structure, the resonant frequency is controlled by the antenna geometrical parameters, and the null frequency at S21 is controlled by the distance between the two antennas. The measured results show that the CP BW of the proposed antenna is 40.6% (1.51–2.28 GHz). The measured isolation is below -20 dB within the operating BW.
{"title":"Simple Dual-Feed Dual-Circular Polarization Antenna with High Isolation","authors":"S. Choi, Youngkyu Sung","doi":"10.26866/jees.2023.2.r.155","DOIUrl":"https://doi.org/10.26866/jees.2023.2.r.155","url":null,"abstract":"A dual-feed antenna system with circular polarization (CP) diversity and high isolation is proposed in this paper. The proposed antenna consists of two bent monopole antennas and an isosceles triangular partial GND on a single layer. To simply design an antenna with dual-feed dual-CP characteristics, CP bandwidth (BW) is optimized based on a single antenna. The proposed antenna is structurally different from conventional antennas in three ways. Structural asymmetry is realized by bending the shape of the antenna and moving the position, and thus good CP characteristics are obtained. The feeding structure is changed from a linear type to a meander type. As a result, a single monopole antenna has a CP BW of 36%. Next, an antenna system with dual-CP characteristics is introduced by implementing two monopole antennas on a single layer. In this structure, the resonant frequency is controlled by the antenna geometrical parameters, and the null frequency at S21 is controlled by the distance between the two antennas. The measured results show that the CP BW of the proposed antenna is 40.6% (1.51–2.28 GHz). The measured isolation is below -20 dB within the operating BW.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46060845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.26866/jees.2023.2.r.149
Yiyang Wang, Haipeng Duan, Long He, Xu Wu, Dongming Wang, Lianming Li
This article presents fully integrated 39-GHz bidirectional up- and down-conversion mixers for 5G millimeter-wave (mmWave) applications. Fabricated in a 65-nm CMOS process with a 1.2-V supply voltage, the up- and down-conversion mixers consume 39 and 43 mW, respectively. For 5G time-division duplexing (TDD) operation, intermediate-frequency (IF)/local-oscillator (LO)/radio-frequency (RF) T/R switches are introduced. For better isolation and low insertion loss between the up- and down-conversion mixer, a series-shunt single-pole double-throw (SPDT) structure and an equivalent lumped λ/4 transmission line are proposed for IF and RF T/R switches, respectively. To realize compact area and wide bandwidth, a transformer-based matching network is adopted in this design. Targeting multi-channel phased array applications, the measurement result shows that the up-conversion mixer achieves a 2.5-dB peak conversion gain with 6.5 GHz 3-dB bandwidth. Including the insertion loss of the switch and IF signal routing, at the maximum gain of 36.5 GHz, the up-conversion mixer achieves an output 1-dB gain compression point (OP1dB) of 2.5 dBm. Furthermore, the down-conversion mixer achieves a 5-dB peak conversion gain with a 9.7-GHz 3-dB bandwidth.
{"title":"Design of 39-GHz Up- and Down-Conversion Mixers for 5G mmWave TDD Applications","authors":"Yiyang Wang, Haipeng Duan, Long He, Xu Wu, Dongming Wang, Lianming Li","doi":"10.26866/jees.2023.2.r.149","DOIUrl":"https://doi.org/10.26866/jees.2023.2.r.149","url":null,"abstract":"This article presents fully integrated 39-GHz bidirectional up- and down-conversion mixers for 5G millimeter-wave (mmWave) applications. Fabricated in a 65-nm CMOS process with a 1.2-V supply voltage, the up- and down-conversion mixers consume 39 and 43 mW, respectively. For 5G time-division duplexing (TDD) operation, intermediate-frequency (IF)/local-oscillator (LO)/radio-frequency (RF) T/R switches are introduced. For better isolation and low insertion loss between the up- and down-conversion mixer, a series-shunt single-pole double-throw (SPDT) structure and an equivalent lumped λ/4 transmission line are proposed for IF and RF T/R switches, respectively. To realize compact area and wide bandwidth, a transformer-based matching network is adopted in this design. Targeting multi-channel phased array applications, the measurement result shows that the up-conversion mixer achieves a 2.5-dB peak conversion gain with 6.5 GHz 3-dB bandwidth. Including the insertion loss of the switch and IF signal routing, at the maximum gain of 36.5 GHz, the up-conversion mixer achieves an output 1-dB gain compression point (OP1dB) of 2.5 dBm. Furthermore, the down-conversion mixer achieves a 5-dB peak conversion gain with a 9.7-GHz 3-dB bandwidth.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44618334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}