Abstract The lanthanum modified multi-walled carbon nanotubes (La-CNTs) prepared by an impregnation method were investigated for the adsorption of chlortetracycline (CTC) in aquaculture wastewater. The adsorbents were characterized by SEM, EDS, XRD and BET. The effects of some factors including La-containing impregnant concentration, adsorbent dosage, CTC adsorbate concentration, adsorption time, pH of the adsorbate solution and additional ions on the CTC adsorption by La-CNTs were investigated in detail, and the optimal adsorption conditions were determined. The adsorption kinetics obeyed the quasi-second-order kinetic model. The adsorption isotherms obeyed the Langmuir model and the fitted maximum capacity of La-CNTs for CTC adsorption was 55.3 mg/g.
{"title":"Adsorption of chlortetracycline in aquaculture wastewater by lanthanum modified multi-walled carbon nanotubes","authors":"Yuqi Zhang, Xiaocai Yu, Yifu Liu, Shini Wu, Runqiang Yu, Tao Chen","doi":"10.1080/03601234.2022.2061261","DOIUrl":"https://doi.org/10.1080/03601234.2022.2061261","url":null,"abstract":"Abstract The lanthanum modified multi-walled carbon nanotubes (La-CNTs) prepared by an impregnation method were investigated for the adsorption of chlortetracycline (CTC) in aquaculture wastewater. The adsorbents were characterized by SEM, EDS, XRD and BET. The effects of some factors including La-containing impregnant concentration, adsorbent dosage, CTC adsorbate concentration, adsorption time, pH of the adsorbate solution and additional ions on the CTC adsorption by La-CNTs were investigated in detail, and the optimal adsorption conditions were determined. The adsorption kinetics obeyed the quasi-second-order kinetic model. The adsorption isotherms obeyed the Langmuir model and the fitted maximum capacity of La-CNTs for CTC adsorption was 55.3 mg/g.","PeriodicalId":15670,"journal":{"name":"Journal of Environmental Science and Health, Part B","volume":"28 1","pages":"369 - 378"},"PeriodicalIF":0.0,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88112909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-27DOI: 10.1080/03601234.2022.2068908
Xinghua Zhou, Na Li, Chenjun Sun, Xun Zhang, C. Zhang, Jiayu Zhou, Shuoning Guan, Xiang Xiao, Yun Wang
Abstract A rapid colloidal gold immunochromatography assay (GICA) for the detection of pefloxacin (PEF) was established and optimized. The anti-PEF monoclonal antibody (mAb) was used to target PEF as a colloidal gold-mAb conjugate. The mAb belonged to the IgG2b subtype, lambda light chain, the affinity constant (Ka) was 5.21 × 109 L·mol−1, and its half maximal inhibitory concentration (IC50) was 0.23 ng·mL−1. No obvious cross-reactivity (CR) was observed with other common fluoroquinolone antibiotics, including ciprofloxacin (CIP), norfloxacin (NOR), lomefloxacin (LOM) and ofloxacin (OFL). The visual limit of detection (vLOD) of the optimized GICA was 2 ng·g−1 under the conventional pretreatment method, and the assay was completed in 15 min. Liquid chromatography tandem-mass spectrometry (LC–MS/MS) was employed to confirm the performance of the strip. In addition, a novel pretreatment was established and compared with conventional pretreatment. Without the removal of organic solvents, the novel pretreatment method reduced the sample pretreatment time (more than 10 min). The vLOD of the optimized GICA was also 2 ng·g−1 when applying the novel pretreatment method. In conclusion, the proposed PEF-GICA could detect samples containing PEF rapidly and accurately, and the novel pretreatment method saved the time of sample pretreatment and improved the efficiency of detection.
{"title":"Development of a colloidal gold immunochromatographic strip for the rapid detection of pefloxacin in grass carp with a novel pretreatment method","authors":"Xinghua Zhou, Na Li, Chenjun Sun, Xun Zhang, C. Zhang, Jiayu Zhou, Shuoning Guan, Xiang Xiao, Yun Wang","doi":"10.1080/03601234.2022.2068908","DOIUrl":"https://doi.org/10.1080/03601234.2022.2068908","url":null,"abstract":"Abstract A rapid colloidal gold immunochromatography assay (GICA) for the detection of pefloxacin (PEF) was established and optimized. The anti-PEF monoclonal antibody (mAb) was used to target PEF as a colloidal gold-mAb conjugate. The mAb belonged to the IgG2b subtype, lambda light chain, the affinity constant (Ka) was 5.21 × 109 L·mol−1, and its half maximal inhibitory concentration (IC50) was 0.23 ng·mL−1. No obvious cross-reactivity (CR) was observed with other common fluoroquinolone antibiotics, including ciprofloxacin (CIP), norfloxacin (NOR), lomefloxacin (LOM) and ofloxacin (OFL). The visual limit of detection (vLOD) of the optimized GICA was 2 ng·g−1 under the conventional pretreatment method, and the assay was completed in 15 min. Liquid chromatography tandem-mass spectrometry (LC–MS/MS) was employed to confirm the performance of the strip. In addition, a novel pretreatment was established and compared with conventional pretreatment. Without the removal of organic solvents, the novel pretreatment method reduced the sample pretreatment time (more than 10 min). The vLOD of the optimized GICA was also 2 ng·g−1 when applying the novel pretreatment method. In conclusion, the proposed PEF-GICA could detect samples containing PEF rapidly and accurately, and the novel pretreatment method saved the time of sample pretreatment and improved the efficiency of detection.","PeriodicalId":15670,"journal":{"name":"Journal of Environmental Science and Health, Part B","volume":"34 1","pages":"517 - 525"},"PeriodicalIF":0.0,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76532079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-27DOI: 10.1080/03601234.2022.2064675
Paloma Vitória Lima Peixoto, Ítalo Bertoni Lopes de Andrade, Bianca Camargo Penteado Sales, L. C. Pereira
Abstract Rupture of dam B-1 at the Córrego do Feijão mine in Brumadinho, state of Minas Gerais, Brazil (25/Jan/2019) contaminated the Paraopeba River with mine waste. To identify the adverse effects of this event on public and environmental health, we conducted the Fish Embryo Acute Toxicity (FET) test (OECD No. 236). During the tests, zebrafish embryos were exposed for 144 hours to solutions containing realistic concentrations of dissolved iron and aluminum and total manganese at the following analysis points upstream or downstream of the dam: 10 km, upstream; 19.7 km, downstream, at the point where water for consumption is collected; 24.5 km, downstream, in the city of Mário Franco; and 59 km, downstream, on the border between the towns of Juatuba and Betim. Metal concentrations were taken from September 2019 report No. 53 released by IGAM. Mortality was high at all exposure points and reached 93% at the Juatuba/Betim point. We also detected lethal, sublethal and teratogenic effects, such as non-hatching, non-inflation of the swim bladder, pericardial edema and scoliosis, affecting up to 25% of embryos at the other analysis points. The results highlight the need for continuous monitoring of the water quality of the Paraopeba River.
2019年1月25日,巴西米纳斯吉拉斯州Brumadinho Córrego do feij o矿山B-1大坝破裂,矿山废弃物污染了Paraopeba河。为了确定这一事件对公众和环境健康的不利影响,我们进行了鱼胚急性毒性(FET)试验(经合组织第236号)。在测试期间,斑马鱼胚胎在大坝上游或下游的以下分析点暴露于含有实际浓度的溶解铁、铝和总锰的溶液中144小时:上游10公里;下游19.7公里处为取水点;24.5公里,下游,在佛朗哥市Mário;下游59公里处,位于Juatuba镇和Betim镇之间的边界。金属浓度取自IGAM发布的2019年9月第53号报告。所有接触点的死亡率都很高,在Juatuba/Betim点达到93%。我们还检测到致死性、亚致死性和致畸性的影响,如不孵化、不膨胀的鳔、心包水肿和脊柱侧凸,在其他分析点影响了高达25%的胚胎。研究结果表明,有必要对Paraopeba河的水质进行持续监测。
{"title":"Rupture of Brumadinho dam (Minas Gerais, Brazil): embryotoxicity in zebrafish induced by metal mixture-contaminated water","authors":"Paloma Vitória Lima Peixoto, Ítalo Bertoni Lopes de Andrade, Bianca Camargo Penteado Sales, L. C. Pereira","doi":"10.1080/03601234.2022.2064675","DOIUrl":"https://doi.org/10.1080/03601234.2022.2064675","url":null,"abstract":"Abstract Rupture of dam B-1 at the Córrego do Feijão mine in Brumadinho, state of Minas Gerais, Brazil (25/Jan/2019) contaminated the Paraopeba River with mine waste. To identify the adverse effects of this event on public and environmental health, we conducted the Fish Embryo Acute Toxicity (FET) test (OECD No. 236). During the tests, zebrafish embryos were exposed for 144 hours to solutions containing realistic concentrations of dissolved iron and aluminum and total manganese at the following analysis points upstream or downstream of the dam: 10 km, upstream; 19.7 km, downstream, at the point where water for consumption is collected; 24.5 km, downstream, in the city of Mário Franco; and 59 km, downstream, on the border between the towns of Juatuba and Betim. Metal concentrations were taken from September 2019 report No. 53 released by IGAM. Mortality was high at all exposure points and reached 93% at the Juatuba/Betim point. We also detected lethal, sublethal and teratogenic effects, such as non-hatching, non-inflation of the swim bladder, pericardial edema and scoliosis, affecting up to 25% of embryos at the other analysis points. The results highlight the need for continuous monitoring of the water quality of the Paraopeba River.","PeriodicalId":15670,"journal":{"name":"Journal of Environmental Science and Health, Part B","volume":"40 1","pages":"479 - 488"},"PeriodicalIF":0.0,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82769331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-19DOI: 10.1080/03601234.2022.2064674
Wagner Nanni, G. S. Porto, J. N. B. Pereira, Alexandre Rodrigo Nascimento Gonçalves, Gabriela Pustiglione Marinsek, S. R. Stabille, P. Favetta, R. M. Germano, R. B. Mari
Abstract The assessment of the enteric nervous system provides a better understanding of the effects that contaminants can have on the health and well-being of organisms. It has been reported that 2,4-dichlorophenoxyacetic acid (2,4-D) is a highly persistent herbicide in the environment that is responsible for neurotoxic changes in different myenteric neuronal subpopulations. The current study aimed to evaluate the effects of 2,4-D on myenteric neurons in the colon of Rattus norvegicus for the first time. A dose of 2,4-D (5 mg/kg/day) was administered to the experimental group (2,4-D) for 15 days. Then, the proximal colon was collected and submitted to Giemsa and NADPH-d histochemical techniques for the disclosure of total and nitrergic neurons. The 2,4-D group presented a higher density of total neurons (p = 0.05, t-test), which together with the maintenance of nitrergic neuronal density, may be related to the increase in the expression of the neurotransmitter acetylcholine by colocalization, responsible for stimulating the intestinal smooth muscle and increasing the chances of the expulsion of the harmful content present in the lumen. Over 15 days, the neurotoxic effects of 2,4-D in the myenteric plexus influenced an increase in the general population of myenteric neurons in the colon.
{"title":"Evaluation of myenteric neurons in the colon of rats exposed to 2,4 dichlorophenoxyacetic acid herbicide","authors":"Wagner Nanni, G. S. Porto, J. N. B. Pereira, Alexandre Rodrigo Nascimento Gonçalves, Gabriela Pustiglione Marinsek, S. R. Stabille, P. Favetta, R. M. Germano, R. B. Mari","doi":"10.1080/03601234.2022.2064674","DOIUrl":"https://doi.org/10.1080/03601234.2022.2064674","url":null,"abstract":"Abstract The assessment of the enteric nervous system provides a better understanding of the effects that contaminants can have on the health and well-being of organisms. It has been reported that 2,4-dichlorophenoxyacetic acid (2,4-D) is a highly persistent herbicide in the environment that is responsible for neurotoxic changes in different myenteric neuronal subpopulations. The current study aimed to evaluate the effects of 2,4-D on myenteric neurons in the colon of Rattus norvegicus for the first time. A dose of 2,4-D (5 mg/kg/day) was administered to the experimental group (2,4-D) for 15 days. Then, the proximal colon was collected and submitted to Giemsa and NADPH-d histochemical techniques for the disclosure of total and nitrergic neurons. The 2,4-D group presented a higher density of total neurons (p = 0.05, t-test), which together with the maintenance of nitrergic neuronal density, may be related to the increase in the expression of the neurotransmitter acetylcholine by colocalization, responsible for stimulating the intestinal smooth muscle and increasing the chances of the expulsion of the harmful content present in the lumen. Over 15 days, the neurotoxic effects of 2,4-D in the myenteric plexus influenced an increase in the general population of myenteric neurons in the colon.","PeriodicalId":15670,"journal":{"name":"Journal of Environmental Science and Health, Part B","volume":"58 1","pages":"421 - 429"},"PeriodicalIF":0.0,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89057081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The residues of imazamox (IMX) will cause phytotoxicity to subsequent crops after long-term use, and will also pollute the soil and its surrounding environment. This study isolates and identifies two strains of Streptomycetaceae JX02 and JX06 that can effectively degrade IMX. Use response surface method Box–Behnken design to optimize physicochemical parameters. The optimal degradation conditions of strains JX02 and JX06 are obtained and verified: IMX concentration is 150 mg L−1, the initial dosage is 9.9%, 9.1% (OD600 = 0.1), the temperature is 26.4 and 27.5 °C, and pH value is 7.0 and 7.7, respectively. The degradation rates of 150 mg L−1 IMX detected by HPLC within 4 d were 99 and 94%, respectively. After adding strains JX02 and JX06, the half-life of IMX in the soil is shortened to 11 d and 13 d, indicating that Streptomycetaceae had a positive effect on the remediation of soil. It is expected to provide scientific information for the rational use, environmental safety evaluation of IMX, and provide a basis for future research and development of microbial agents.
{"title":"Study on degradation characteristics of imazamox by Streptomycetaceae","authors":"Ling Ge, Xin Wang, Jianjiang Hou, Zijun Ni, Wen-Rui Liu, Jia Bao, Yulian Wei","doi":"10.1080/03601234.2022.2064673","DOIUrl":"https://doi.org/10.1080/03601234.2022.2064673","url":null,"abstract":"Abstract The residues of imazamox (IMX) will cause phytotoxicity to subsequent crops after long-term use, and will also pollute the soil and its surrounding environment. This study isolates and identifies two strains of Streptomycetaceae JX02 and JX06 that can effectively degrade IMX. Use response surface method Box–Behnken design to optimize physicochemical parameters. The optimal degradation conditions of strains JX02 and JX06 are obtained and verified: IMX concentration is 150 mg L−1, the initial dosage is 9.9%, 9.1% (OD600 = 0.1), the temperature is 26.4 and 27.5 °C, and pH value is 7.0 and 7.7, respectively. The degradation rates of 150 mg L−1 IMX detected by HPLC within 4 d were 99 and 94%, respectively. After adding strains JX02 and JX06, the half-life of IMX in the soil is shortened to 11 d and 13 d, indicating that Streptomycetaceae had a positive effect on the remediation of soil. It is expected to provide scientific information for the rational use, environmental safety evaluation of IMX, and provide a basis for future research and development of microbial agents.","PeriodicalId":15670,"journal":{"name":"Journal of Environmental Science and Health, Part B","volume":"123 1","pages":"470 - 478"},"PeriodicalIF":0.0,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76168798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-17DOI: 10.1080/03601234.2022.2064676
F. Marahel, L. Niknam
Abstract The present work describes a method (SWASV) techniques for measure of tartrazine color a harmful compound present in real samples, and the extremely harmful to humans and animals even at low concentrations using G-C3N4 nanosheets sensor. Here, we report the use of an electrochemical approach for analytical determination of toxic tartrazine that takes 150 s. The calibration curve was linear in range of the (0.02–18.0 µmol L−1). The current response was linearly proportional to the tartrazine concentration with a R 2∼ 0.999. We demonstrated a sensitivity a limit of detection of (0.022 µmol L−1). Finally, sensor nanosheets G-C3N4/CPE introduced to measure toxic tartrazine in different drink and foodstuff samples was used and the chemical nanosheets G-C3N4/CPE sensor made it possible as an excellent sensor with reproducibility for determination other samples.
{"title":"Application electrochemical sensor based on nanosheets G-C3N4/CPE by square-wave anodic stripping voltammetric for measure amounts of toxic tartrazine color residual in different drink and foodstuffs","authors":"F. Marahel, L. Niknam","doi":"10.1080/03601234.2022.2064676","DOIUrl":"https://doi.org/10.1080/03601234.2022.2064676","url":null,"abstract":"Abstract The present work describes a method (SWASV) techniques for measure of tartrazine color a harmful compound present in real samples, and the extremely harmful to humans and animals even at low concentrations using G-C3N4 nanosheets sensor. Here, we report the use of an electrochemical approach for analytical determination of toxic tartrazine that takes 150 s. The calibration curve was linear in range of the (0.02–18.0 µmol L−1). The current response was linearly proportional to the tartrazine concentration with a R 2∼ 0.999. We demonstrated a sensitivity a limit of detection of (0.022 µmol L−1). Finally, sensor nanosheets G-C3N4/CPE introduced to measure toxic tartrazine in different drink and foodstuff samples was used and the chemical nanosheets G-C3N4/CPE sensor made it possible as an excellent sensor with reproducibility for determination other samples.","PeriodicalId":15670,"journal":{"name":"Journal of Environmental Science and Health, Part B","volume":"41 1","pages":"489 - 496"},"PeriodicalIF":0.0,"publicationDate":"2022-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86467718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-12DOI: 10.1080/03601234.2022.2063613
Thais Stradioto Melo, Caroline Hernke Thiel, Laryssa Barbosa Xavier da Silva, S. Deuner, A. Andres, Gabriele Espinel Ávila, Stefânia Nunes Pires, G. Concenço
Abstract The objectives of this study were to estimate the residual and half-life of [imazapic + imazapyr] and to infer on the impact of these residuals over time. The first experiment comprised the application of [imazapic + imazapyr] to Clearfield® rice. On the following summer cropping season (365 days later), undeformed soil samples 0-5 cm depth were collected and seeds of six species or varieties were sown as bioindicators of residuals (experiment 2), being assessed plant height and dry mass 20 days after emergence start. The third experiment comprised the cultivation of the same species submitted to ten increasing herbicide doses (0-280 g ha−1) to establish standard response curves, also assessing plant height and dry mass 20 days after emergence start. About 2.1-5.8% of the applied imazapic remains in soil after one year, for the label doses. Imazapyr was considered to be at negligible doses as its half-life is short, and less than 0.0000001% of the applied dose is expected to be in soil 365 days later. The expected imazapic half-life in lowland areas of Southern Brazil is longer than for dryland, being estimated as between 63 and 77 days (95% confidence interval), contrasting to the 60 days half-life previously estimated for dryland soils.
本研究的目的是估计[imazapic + imazapyr]的残留量和半衰期,并推断这些残留量随时间的影响。第一个实验包括将[imazapic + imazapyr]应用于Clearfield®水稻。在接下来的夏季种植季节(365天后),收集0-5 cm深度的未变形土壤样品,播种6个物种或品种的种子作为残留生物指标(试验2),在出苗开始20天后评估株高和干质量。第三个试验是对同一品种进行10次增加除草剂剂量(0-280 g ha - 1)的培养,建立标准响应曲线,并在出苗期开始20天后评估植株高度和干质量。按照标签上的剂量,大约2.1-5.8%的施用imazapic在一年后仍留在土壤中。由于半衰期短,Imazapyr被认为是可以忽略不计的剂量,预计365天后施用剂量的0.0000001%不到土壤。巴西南部低地地区的预期土壤半衰期比旱地要长,估计在63至77天之间(95%置信区间),而以前旱地土壤的半衰期估计为60天。
{"title":"Cumulative potential and half-life of [imazapic + imazapyr] in lowland soils of Rio Grande Do Sul grown with clearfield® rice","authors":"Thais Stradioto Melo, Caroline Hernke Thiel, Laryssa Barbosa Xavier da Silva, S. Deuner, A. Andres, Gabriele Espinel Ávila, Stefânia Nunes Pires, G. Concenço","doi":"10.1080/03601234.2022.2063613","DOIUrl":"https://doi.org/10.1080/03601234.2022.2063613","url":null,"abstract":"Abstract The objectives of this study were to estimate the residual and half-life of [imazapic + imazapyr] and to infer on the impact of these residuals over time. The first experiment comprised the application of [imazapic + imazapyr] to Clearfield® rice. On the following summer cropping season (365 days later), undeformed soil samples 0-5 cm depth were collected and seeds of six species or varieties were sown as bioindicators of residuals (experiment 2), being assessed plant height and dry mass 20 days after emergence start. The third experiment comprised the cultivation of the same species submitted to ten increasing herbicide doses (0-280 g ha−1) to establish standard response curves, also assessing plant height and dry mass 20 days after emergence start. About 2.1-5.8% of the applied imazapic remains in soil after one year, for the label doses. Imazapyr was considered to be at negligible doses as its half-life is short, and less than 0.0000001% of the applied dose is expected to be in soil 365 days later. The expected imazapic half-life in lowland areas of Southern Brazil is longer than for dryland, being estimated as between 63 and 77 days (95% confidence interval), contrasting to the 60 days half-life previously estimated for dryland soils.","PeriodicalId":15670,"journal":{"name":"Journal of Environmental Science and Health, Part B","volume":"19 1","pages":"450 - 457"},"PeriodicalIF":0.0,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78831798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-12DOI: 10.1080/03601234.2022.2063608
Bicheng Liu, Jin Chen, Yi-An Peng, Wenyue Xiao, Zoujun Peng, P. Qiu
Abstract In this study, we have developed a sensitive approach to measure organophosphorus pesticides (OPs) using graphitic-phase C3N4 nanosheets (g-C3N4) combined with a nanomaterial-based quencher, MnO2 nanosheets (MnO2 NS). Since MnO2 NS can quench the fluorescence of g-C3N4 via the inner-filter effect (IFE), enzymatic hydrolysate (thiocholine, TCh) can efficiently trigger the decomposition of MnO2 nanosheets in the presence of acetylcholinesterase (AChE) and acetylthiocholine (ATCh), resulting in the fluorescence recovery of g-C3N4. OPs, as inhibitors to AChE activity, can prevent the generation of TCh and decomposition of MnO2 nanosheets while exhibiting fluorescence quenching. Therefore, the AChE-ATCh-MnO2-g-C3N4 system can be utilized to quantitatively detect OPs based on g-C3N4 fluorescence. Under optimal conditions, the linear ranges for the determination of parathion-methyl (PM) and 2,2-dichlorovinyl dimethyl phosphate (DDVP) were found to be 0.1–2.1 ng/mL and 0.5–16 ng/mL, respectively, with limits of detection of 0.069 ng/mL and 0.20 ng/mL, respectively. The advantages of this assay are user-friendliness, ease of use, and cost effectiveness compared to other more sophisticated analytical instruments.
{"title":"Graphitic-phase C3N4 nanosheets combined with MnO2 nanosheets for sensitive fluorescence quenching detection of organophosphorus pesticides","authors":"Bicheng Liu, Jin Chen, Yi-An Peng, Wenyue Xiao, Zoujun Peng, P. Qiu","doi":"10.1080/03601234.2022.2063608","DOIUrl":"https://doi.org/10.1080/03601234.2022.2063608","url":null,"abstract":"Abstract In this study, we have developed a sensitive approach to measure organophosphorus pesticides (OPs) using graphitic-phase C3N4 nanosheets (g-C3N4) combined with a nanomaterial-based quencher, MnO2 nanosheets (MnO2 NS). Since MnO2 NS can quench the fluorescence of g-C3N4 via the inner-filter effect (IFE), enzymatic hydrolysate (thiocholine, TCh) can efficiently trigger the decomposition of MnO2 nanosheets in the presence of acetylcholinesterase (AChE) and acetylthiocholine (ATCh), resulting in the fluorescence recovery of g-C3N4. OPs, as inhibitors to AChE activity, can prevent the generation of TCh and decomposition of MnO2 nanosheets while exhibiting fluorescence quenching. Therefore, the AChE-ATCh-MnO2-g-C3N4 system can be utilized to quantitatively detect OPs based on g-C3N4 fluorescence. Under optimal conditions, the linear ranges for the determination of parathion-methyl (PM) and 2,2-dichlorovinyl dimethyl phosphate (DDVP) were found to be 0.1–2.1 ng/mL and 0.5–16 ng/mL, respectively, with limits of detection of 0.069 ng/mL and 0.20 ng/mL, respectively. The advantages of this assay are user-friendliness, ease of use, and cost effectiveness compared to other more sophisticated analytical instruments.","PeriodicalId":15670,"journal":{"name":"Journal of Environmental Science and Health, Part B","volume":"5 1","pages":"441 - 449"},"PeriodicalIF":0.0,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74500571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-10DOI: 10.1080/03601234.2022.2062188
Akansha Agrwal, A. Verma, Neelam Chantola, S. Verma, V. Kasana
Abstract In the present study, twenty-two derivatives of dihydropyridine (DHP) have been synthesized using the Boric acid catalyst in solventless conditions. The synthesis was confirmed by FTIR analysis, 1HNMR, and 13CNMR analysis. The quantitative structure-activity relationship for all the synthesized derivatives was performed using an artificial neural network with correlation coefficient (R2) 0.8611, mean standard error 0.19, and Comparative molecular field analysis (CoMFA) with correlation coefficient (R2) 0.713, mean standard error 0.27. The molecular docking activity of synthesized compounds was tested using “AUTODOCK VINA” against “Acetohydroxyacid synthase protein receptors (PDB code 1YHZ)” acquired from the “RCSB Protein Data Bank”. Docking experiments demonstrated favorable interaction among synthesized DHP derivatives and protein receptors with significant binding energy values. These synthesized derivatives have been screened for their pre-emergence herbicidal bioassay against weed species Echinochola crus galli, and the IC50 value were calculated and activity was compared with Butachlor, significant activity was exhibited by all the derivatives. All the synthesized compounds were also screened for their post emergence herbicidal activity against Echinochola crus galli, and the activity of DHPs were compared with penoxulum. All the synthesized compounds show good to moderate activity. Thus, it is concluded that substituted DHP derivatives may be developed as potential herbicides. Graphical Abstract
{"title":"Synthesis, molecular docking and extensive structure activity relationship of substituted DHP derivatives: a new class of herbicides","authors":"Akansha Agrwal, A. Verma, Neelam Chantola, S. Verma, V. Kasana","doi":"10.1080/03601234.2022.2062188","DOIUrl":"https://doi.org/10.1080/03601234.2022.2062188","url":null,"abstract":"Abstract In the present study, twenty-two derivatives of dihydropyridine (DHP) have been synthesized using the Boric acid catalyst in solventless conditions. The synthesis was confirmed by FTIR analysis, 1HNMR, and 13CNMR analysis. The quantitative structure-activity relationship for all the synthesized derivatives was performed using an artificial neural network with correlation coefficient (R2) 0.8611, mean standard error 0.19, and Comparative molecular field analysis (CoMFA) with correlation coefficient (R2) 0.713, mean standard error 0.27. The molecular docking activity of synthesized compounds was tested using “AUTODOCK VINA” against “Acetohydroxyacid synthase protein receptors (PDB code 1YHZ)” acquired from the “RCSB Protein Data Bank”. Docking experiments demonstrated favorable interaction among synthesized DHP derivatives and protein receptors with significant binding energy values. These synthesized derivatives have been screened for their pre-emergence herbicidal bioassay against weed species Echinochola crus galli, and the IC50 value were calculated and activity was compared with Butachlor, significant activity was exhibited by all the derivatives. All the synthesized compounds were also screened for their post emergence herbicidal activity against Echinochola crus galli, and the activity of DHPs were compared with penoxulum. All the synthesized compounds show good to moderate activity. Thus, it is concluded that substituted DHP derivatives may be developed as potential herbicides. Graphical Abstract","PeriodicalId":15670,"journal":{"name":"Journal of Environmental Science and Health, Part B","volume":"28 1","pages":"379 - 420"},"PeriodicalIF":0.0,"publicationDate":"2022-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86707925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-08DOI: 10.1080/03601234.2022.2060029
G. V. Buitimea-Cantúa, H. M. Leija Gutiérrez, N. E. Buitimea‐Cantúa, María Del Refugio Rocha-Pizaña, A. García-Triana, A. Hernández-Morales, E. Magaña-Barajas, J. Molina-Torres
Abstract Several aflatoxin inhibitors can modulate the antioxidant system in fungi. In this work, the effect of the ethanolic extract of Capsicum chinense and Piper nigrum fruits, capsaicin, and piperine on the expression of the aflE, aflG, aflH, aflI, aflK, aflL, aflO, aflP, and aflQ genes involved in the aflatoxin biosynthetic pathway in Aspergillus parasiticus were studied by qRT-PCR analysis. As well as, the effect on the expression of fungal antioxidant genes (sod1, catA, and cat2) and enzymatic activity of catalase (CAT) and superoxide dismutase (SOD). Results reveal that the highest (p < 0.05) radial growth inhibition (68 and 86%) and aflatoxins production inhibition (73 and 80%) was observed with capsaicin and piperine respectively, at 300 µg/mL, instead of the ethanolic extract at the same concentration. The qRT-PCR analysis showed that compounds and extracts at 300 µg/mL induced a down-regulation of aflatoxin genes and an up-regulation on the fungal antioxidant genes. CAT activity increased by 23.15, 36.65, 51.40, and 65.50%, in the presence of C. chinense and P. nigrum extract, capsaicin, and piperine exposure, respectively. While SOD activity was not significantly impacted (p > 0.05). In conclusion, the capsaicin and piperine, two antifungal and anti-aflatoxigenic compounds produce an up-regulation of antioxidant defense genes accompanied by an enhancement of catalase enzymatic activity in A. parasiticus.
{"title":"The aflatoxin inhibitors capsaicin and piperine from Capsicum chinense and Piper nigrum fruits modulate the antioxidant system in Aspergillus parasiticus","authors":"G. V. Buitimea-Cantúa, H. M. Leija Gutiérrez, N. E. Buitimea‐Cantúa, María Del Refugio Rocha-Pizaña, A. García-Triana, A. Hernández-Morales, E. Magaña-Barajas, J. Molina-Torres","doi":"10.1080/03601234.2022.2060029","DOIUrl":"https://doi.org/10.1080/03601234.2022.2060029","url":null,"abstract":"Abstract Several aflatoxin inhibitors can modulate the antioxidant system in fungi. In this work, the effect of the ethanolic extract of Capsicum chinense and Piper nigrum fruits, capsaicin, and piperine on the expression of the aflE, aflG, aflH, aflI, aflK, aflL, aflO, aflP, and aflQ genes involved in the aflatoxin biosynthetic pathway in Aspergillus parasiticus were studied by qRT-PCR analysis. As well as, the effect on the expression of fungal antioxidant genes (sod1, catA, and cat2) and enzymatic activity of catalase (CAT) and superoxide dismutase (SOD). Results reveal that the highest (p < 0.05) radial growth inhibition (68 and 86%) and aflatoxins production inhibition (73 and 80%) was observed with capsaicin and piperine respectively, at 300 µg/mL, instead of the ethanolic extract at the same concentration. The qRT-PCR analysis showed that compounds and extracts at 300 µg/mL induced a down-regulation of aflatoxin genes and an up-regulation on the fungal antioxidant genes. CAT activity increased by 23.15, 36.65, 51.40, and 65.50%, in the presence of C. chinense and P. nigrum extract, capsaicin, and piperine exposure, respectively. While SOD activity was not significantly impacted (p > 0.05). In conclusion, the capsaicin and piperine, two antifungal and anti-aflatoxigenic compounds produce an up-regulation of antioxidant defense genes accompanied by an enhancement of catalase enzymatic activity in A. parasiticus.","PeriodicalId":15670,"journal":{"name":"Journal of Environmental Science and Health, Part B","volume":"1 1","pages":"358 - 368"},"PeriodicalIF":0.0,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88853470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}