M. Auset, L. Margarit, J. Cuadros, L. Fernández-Ruano, M. Claramunt, X. Mundet
The biological stability of solid waste is one of the main problems related to the environmental impact of landfills and their long-term emission potential. Current European legislation (European Landfill Directive, EC/99/31) introduced the need to reduce biodegradable organic compounds deposited in landfills; however, it set neither official parameters nor methods to define the stability of such a waste. In Spain, biodegradability is generally evaluated using the biological oxygen demand/chemical oxygen demand (BOD5/COD) ratio, measuring it on the leachate, thus not considering the non-soluble fraction and therefore creating false negatives. To solve this problem, the biodegradability of hazardous industrial waste has been determined by measuring its respirometric activity (AT4). Our results show that the measure of the AT4 is independent of the enrichment with a microbial inoculum, and a sample size no higher than 20 g could be a reasonable value for a sensitive biodegradability determination. The highest respirometric index is obtained in waste with pH values between 6.5 and 10.5. Furthermore, respirometric biodegradability values are independent of traditional parameters of organic matter characterization such as BOD5/COD ratio, volatile content, and total and dissolved organic carbon. Consequently, the AT4 parameter provides new information on the composition and stability of organic matter in hazardous industrial waste. Its incorporation into pre-disposal waste characterization protocols allows to identify waste that exceeds recommended biodegradability thresholds. This approach ensures that only waste meeting specified biodegradability standards is deposited, avoiding landfill emissions and related environmental impacts, and thereby improving the overall effectiveness and sustainability of waste management practices.
{"title":"Evaluation of the biodegradability of hazardous industrial solid waste: Study of key parameters","authors":"M. Auset, L. Margarit, J. Cuadros, L. Fernández-Ruano, M. Claramunt, X. Mundet","doi":"10.1002/jeq2.20624","DOIUrl":"10.1002/jeq2.20624","url":null,"abstract":"<p>The biological stability of solid waste is one of the main problems related to the environmental impact of landfills and their long-term emission potential. Current European legislation (European Landfill Directive, EC/99/31) introduced the need to reduce biodegradable organic compounds deposited in landfills; however, it set neither official parameters nor methods to define the stability of such a waste. In Spain, biodegradability is generally evaluated using the biological oxygen demand/chemical oxygen demand (BOD<sub>5</sub>/COD) ratio, measuring it on the leachate, thus not considering the non-soluble fraction and therefore creating false negatives. To solve this problem, the biodegradability of hazardous industrial waste has been determined by measuring its respirometric activity (AT<sub>4</sub>). Our results show that the measure of the AT<sub>4</sub> is independent of the enrichment with a microbial inoculum, and a sample size no higher than 20 g could be a reasonable value for a sensitive biodegradability determination. The highest respirometric index is obtained in waste with pH values between 6.5 and 10.5. Furthermore, respirometric biodegradability values are independent of traditional parameters of organic matter characterization such as BOD<sub>5</sub>/COD ratio, volatile content, and total and dissolved organic carbon. Consequently, the AT<sub>4</sub> parameter provides new information on the composition and stability of organic matter in hazardous industrial waste. Its incorporation into pre-disposal waste characterization protocols allows to identify waste that exceeds recommended biodegradability thresholds. This approach ensures that only waste meeting specified biodegradability standards is deposited, avoiding landfill emissions and related environmental impacts, and thereby improving the overall effectiveness and sustainability of waste management practices.</p>","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":"53 6","pages":"1164-1175"},"PeriodicalIF":2.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jeq2.20624","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alayna A. Jacobs, Michael D. Flythe, Donald G. Ely, Leah Munoz, John B. May, Jim A. Nelson, Victoria Stanton, Rebecca K. McGrail, Kent Pham, Rebecca L. McCulley
Sustainable growth in livestock production requires reductions in trace gas emissions on grazing lands. Urine excreta patches are hot spots for accelerated emissions of carbon and nitrogen. Ruminant dietary supplementation with the isoflavone biochanin A (BCA) has been shown to improve cattle weight gain. To determine if BCA supplementation affects urine N excretion and soil trace gas emissions, soil in microcosms was amended with urine from lambs fed 0, 0.45, or 0.90 g BCA day−1. Soil gas emissions were measured over 60 days and analyzed with a linear mixed-effects model with repeated measures. On 2 days during the incubation, BCA addition across doses significantly reduced nitrous oxide emissions by 73% and methane by 98% compared to urine from non-dosed lambs. Cumulative ammonia volatilization was significantly reduced by 33% but cumulative nitrous oxide and methane emissions were not. Alterations in trace gas emissions occurred despite no change in urine N content with BCA feed supplementation. A separate laboratory incubation using urine from a non-supplemented lamb that was exogenously spiked with varying BCA concentrations supported these results: BCA significantly altered ammonia and methane emission dynamics and reduced cumulative nitrous oxide emissions by up to 41%. BCA did not change soil microbial community structure, suggesting alterations to other processes, such as soil enzyme activity, were affecting soil trace gas emissions. Overall, lamb BCA supplementation did not affect urine N but reduced ammonia volatilization, which may contribute to greater sustainability in livestock production systems.
{"title":"Biochanin A feed supplementation alters dynamics of trace gas emissions from lamb urine-amended soil","authors":"Alayna A. Jacobs, Michael D. Flythe, Donald G. Ely, Leah Munoz, John B. May, Jim A. Nelson, Victoria Stanton, Rebecca K. McGrail, Kent Pham, Rebecca L. McCulley","doi":"10.1002/jeq2.20628","DOIUrl":"10.1002/jeq2.20628","url":null,"abstract":"<p>Sustainable growth in livestock production requires reductions in trace gas emissions on grazing lands. Urine excreta patches are hot spots for accelerated emissions of carbon and nitrogen. Ruminant dietary supplementation with the isoflavone biochanin A (BCA) has been shown to improve cattle weight gain. To determine if BCA supplementation affects urine N excretion and soil trace gas emissions, soil in microcosms was amended with urine from lambs fed 0, 0.45, or 0.90 g BCA day<sup>−1</sup>. Soil gas emissions were measured over 60 days and analyzed with a linear mixed-effects model with repeated measures. On 2 days during the incubation, BCA addition across doses significantly reduced nitrous oxide emissions by 73% and methane by 98% compared to urine from non-dosed lambs. Cumulative ammonia volatilization was significantly reduced by 33% but cumulative nitrous oxide and methane emissions were not. Alterations in trace gas emissions occurred despite no change in urine N content with BCA feed supplementation. A separate laboratory incubation using urine from a non-supplemented lamb that was exogenously spiked with varying BCA concentrations supported these results: BCA significantly altered ammonia and methane emission dynamics and reduced cumulative nitrous oxide emissions by up to 41%. BCA did not change soil microbial community structure, suggesting alterations to other processes, such as soil enzyme activity, were affecting soil trace gas emissions. Overall, lamb BCA supplementation did not affect urine N but reduced ammonia volatilization, which may contribute to greater sustainability in livestock production systems.</p>","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":"53 6","pages":"1086-1098"},"PeriodicalIF":2.2,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jackson C. Verley, Everald McLennon, Kathleen S. Rein, Johane Dikgang, Vanaja Kankarla
Per‐ and polyfluoroalkyl substances (PFASs) are one of the more well‐known highly persistent organic pollutants with potential risks to agroecological systems. These compounds are of global concern due to their persistence and mobility, and they often lead to serious impacts on environmental, agricultural, and human health. In the past 20 years, the number of science publications on PFAS has risen; despite this, certain fundamental questions about PFAS occurrence, sources, mechanism of transport, and impacts on agroecosystems and the societies dependent on them are still open and evolving. There is a lack of systematic and comprehensive analysis of these concerns in agroecosystems. Therefore, we reviewed the current literature on PFAS with a focus on agroecosystems; our review suggests that PFASs are nearly ubiquitous in agricultural systems. We found the current research has limitations in analyzing PFAS in complex matrices because of their small size, distribution, and persistence within various environmental systems. There is consistency in the properties and composition of PFAS in and around agroecosystems, suggesting evidence of shared sources and similar components within different tropic levels. The introduction of new and varied sources of PFAS appear to be growing, adding to their residual accumulation in environmental matrices and leading to possible new types of chemical compounds that are difficult to assess accurately. This review determines existing research trends, understands mechanisms and incidence of PFAS within agroecosystems and their impact on human health, and thereby recommends further studies to remedy research gaps.
{"title":"Current trends and patterns of PFAS in agroecosystems and environment: A review","authors":"Jackson C. Verley, Everald McLennon, Kathleen S. Rein, Johane Dikgang, Vanaja Kankarla","doi":"10.1002/jeq2.20607","DOIUrl":"https://doi.org/10.1002/jeq2.20607","url":null,"abstract":"Per‐ and polyfluoroalkyl substances (PFASs) are one of the more well‐known highly persistent organic pollutants with potential risks to agroecological systems. These compounds are of global concern due to their persistence and mobility, and they often lead to serious impacts on environmental, agricultural, and human health. In the past 20 years, the number of science publications on PFAS has risen; despite this, certain fundamental questions about PFAS occurrence, sources, mechanism of transport, and impacts on agroecosystems and the societies dependent on them are still open and evolving. There is a lack of systematic and comprehensive analysis of these concerns in agroecosystems. Therefore, we reviewed the current literature on PFAS with a focus on agroecosystems; our review suggests that PFASs are nearly ubiquitous in agricultural systems. We found the current research has limitations in analyzing PFAS in complex matrices because of their small size, distribution, and persistence within various environmental systems. There is consistency in the properties and composition of PFAS in and around agroecosystems, suggesting evidence of shared sources and similar components within different tropic levels. The introduction of new and varied sources of PFAS appear to be growing, adding to their residual accumulation in environmental matrices and leading to possible new types of chemical compounds that are difficult to assess accurately. This review determines existing research trends, understands mechanisms and incidence of PFAS within agroecosystems and their impact on human health, and thereby recommends further studies to remedy research gaps.","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":"207 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lindsey Witthaus, Ethan D. Pawlowski, Eric Stevens, Amitava Chatterjee, Martin A. Locke, Sarah McNamara, Matthew T. Moore
Legacies can become intertwined, none more so than the body of work of Dr. Andrew Sharpley examining agricultural nutrient delivery to waterbodies and the phosphorus (P) accumulation in agricultural soils, or “legacy P.” Although Sharpley's work focused on the anthropogenic influence on soil P, our study suggests soils of the Lower Mississippi Alluvial Plain (MAP) represent a natural legacy with moderate levels of available P resulting from minimal anthropogenic input. In 2019, we collected surface (0–5 cm) soil samples from four regionally dominant soil series in either cropland or forested land uses, spanning 76 locations within the MAP. Soil chemical and physical properties were measured utilizing a suite of extractions and texture analysis to correlate properties with soil P values. Total soil P did not vary between land uses. Mehlich‐3 extractable P was slightly higher in cropland soils due to higher concentrations in Forestdale and Sharkey soils. Dundee, Forestdale, and Sharkey cropland soils showed significant associations between Mehlich‐3‐extractable iron (Fe) and P. Ratios of total carbon (TC) to total nitrogen (C:N) and TC to P (C:P) were consistent across all sampled soil series but differed between forest and cropland soils. These ratios are critical for establishing baseline soil nutrient values in simulation models and can be used to improve water quality model simulations that help guide P management in the MAP. As Sharpley routinely demonstrated, understanding sources of P is critical for developing an appropriate management strategy. This study provides critical knowledge on soil P dynamics in the MAP region.
遗产是相互交织的,安德鲁-夏普利博士(Dr. Andrew Sharpley)对水体的农业养分输送和农业土壤中磷(P)的积累(或称 "遗产 P")进行了研究。尽管 Sharpley 的研究侧重于人为因素对土壤磷的影响,但我们的研究表明,密西西比河下冲积平原 (MAP) 的土壤是自然遗留下来的,人为输入的磷极少,因此土壤中的磷含量适中。2019 年,我们从密西西比冲积平原内 76 个地点的耕地或林地中采集了四个区域主要土壤系列的表层(0-5 厘米)土壤样本。通过一系列提取和质地分析,测量了土壤的化学和物理特性,从而将这些特性与土壤中的 P 值联系起来。不同土地用途的土壤总磷量没有差异。由于 Forestdale 和 Sharkey 土壤中的 P 含量较高,因此耕地土壤中的 Mehlich-3 可提取 P 略高。总碳(TC)与总氮(C:N)和总碳与总磷(C:P)的比率在所有取样土壤系列中都是一致的,但在森林土壤和耕地土壤中有所不同。这些比率对于在模拟模型中建立土壤养分基准值至关重要,可用于改进水质模型模拟,从而帮助指导 MAP 中的磷管理。正如 Sharpley 常常演示的那样,了解 P 的来源对于制定适当的管理策略至关重要。这项研究提供了有关 MAP 地区土壤钾动态的重要知识。
{"title":"Phosphorus distributions in alluvial soils of the Lower Mississippi River Basin: A case of dual legacies","authors":"Lindsey Witthaus, Ethan D. Pawlowski, Eric Stevens, Amitava Chatterjee, Martin A. Locke, Sarah McNamara, Matthew T. Moore","doi":"10.1002/jeq2.20623","DOIUrl":"https://doi.org/10.1002/jeq2.20623","url":null,"abstract":"Legacies can become intertwined, none more so than the body of work of Dr. Andrew Sharpley examining agricultural nutrient delivery to waterbodies and the phosphorus (P) accumulation in agricultural soils, or “legacy P.” Although Sharpley's work focused on the anthropogenic influence on soil P, our study suggests soils of the Lower Mississippi Alluvial Plain (MAP) represent a natural legacy with moderate levels of available P resulting from minimal anthropogenic input. In 2019, we collected surface (0–5 cm) soil samples from four regionally dominant soil series in either cropland or forested land uses, spanning 76 locations within the MAP. Soil chemical and physical properties were measured utilizing a suite of extractions and texture analysis to correlate properties with soil P values. Total soil P did not vary between land uses. Mehlich‐3 extractable P was slightly higher in cropland soils due to higher concentrations in Forestdale and Sharkey soils. Dundee, Forestdale, and Sharkey cropland soils showed significant associations between Mehlich‐3‐extractable iron (Fe) and P. Ratios of total carbon (TC) to total nitrogen (C:N) and TC to P (C:P) were consistent across all sampled soil series but differed between forest and cropland soils. These ratios are critical for establishing baseline soil nutrient values in simulation models and can be used to improve water quality model simulations that help guide P management in the MAP. As Sharpley routinely demonstrated, understanding sources of P is critical for developing an appropriate management strategy. This study provides critical knowledge on soil P dynamics in the MAP region.","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":"24 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qicheng Tang, Owen W. Duckworth, Daniel R. Obenour, Stephanie B. Kulesza, Nathan A. Slaton, Andrew H. Whitaker, Natalie G. Nelson
National nutrient inventories provide surplus phosphorus (P) estimates derived from county-scale mass balance calculations using P inputs from manure and fertilizer sales and P outputs from crop yield data. Although bioavailable P and surplus P are often correlated at the field scale, few studies have investigated the relationship between measured soil P concentrations of large-scale soil testing programs and inventory-based surplus P estimates. In this study, we assessed the relationship between national surplus P data from the NuGIS dataset and laboratory-measured soil test phosphorus (STP) at the county scale for Arkansas, North Carolina, and Oklahoma. For optimal periods of surplus P aggregation, surplus P was positively correlated with STP based on both Pearson (Arkansas: r = 0.65, North Carolina: r = 0.45, Oklahoma: r = 0.52) and Spearman correlation coefficients (Arkansas: ρ = 0.57, North Carolina: ρ = 0.28, and Oklahoma: ρ = 0.66). Based on Pearson correlations, the optimal surplus P aggregation periods were 10, 30, and 4 years for AR, NC, and OK, respectively. On average, STP was more strongly correlated with surplus P than with individual P inventory components (fertilizer, manure, and crop removal), except in North Carolina. In Arkansas and North Carolina, manure P was positively correlated with STP, and fertilizer P was negatively correlated with STP. Altogether, results suggest that surplus P moderately correlates with STP concentrations, but aggregation period and location-specific factors influence the strength of the relationship.
{"title":"Relationships between soil test phosphorus and county-level agricultural surplus phosphorus","authors":"Qicheng Tang, Owen W. Duckworth, Daniel R. Obenour, Stephanie B. Kulesza, Nathan A. Slaton, Andrew H. Whitaker, Natalie G. Nelson","doi":"10.1002/jeq2.20622","DOIUrl":"10.1002/jeq2.20622","url":null,"abstract":"<p>National nutrient inventories provide surplus phosphorus (P) estimates derived from county-scale mass balance calculations using P inputs from manure and fertilizer sales and P outputs from crop yield data. Although bioavailable P and surplus P are often correlated at the field scale, few studies have investigated the relationship between measured soil P concentrations of large-scale soil testing programs and inventory-based surplus P estimates. In this study, we assessed the relationship between national surplus P data from the NuGIS dataset and laboratory-measured soil test phosphorus (STP) at the county scale for Arkansas, North Carolina, and Oklahoma. For optimal periods of surplus P aggregation, surplus P was positively correlated with STP based on both Pearson (Arkansas: <i>r</i> = 0.65, North Carolina: <i>r</i> = 0.45, Oklahoma: <i>r</i> = 0.52) and Spearman correlation coefficients (Arkansas: <i>ρ</i> = 0.57, North Carolina: <i>ρ</i> = 0.28, and Oklahoma: <i>ρ</i> = 0.66). Based on Pearson correlations, the optimal surplus P aggregation periods were 10, 30, and 4 years for AR, NC, and OK, respectively. On average, STP was more strongly correlated with surplus P than with individual P inventory components (fertilizer, manure, and crop removal), except in North Carolina. In Arkansas and North Carolina, manure P was positively correlated with STP, and fertilizer P was negatively correlated with STP. Altogether, results suggest that surplus P moderately correlates with STP concentrations, but aggregation period and location-specific factors influence the strength of the relationship.</p>","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":"53 6","pages":"1127-1139"},"PeriodicalIF":2.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jeq2.20622","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Information is needed on the effect of long-term cropping systems on greenhouse gas (GHG) emissions in dryland conditions. The effect of 34 years of dryland cropping system was examined on N2O and CH4 emissions, greenhouse gas balance (GHGB), crop yield, and yield-scaled GHG balance (YSGB) from 2016–2017 to 2017–2018 in the US northern Great Plains. Cropping systems were no-till continuous spring wheat (Triticum aestivum L.) (NTCW), no-till spring wheat-pea (Pisum sativum L.) (NTWP), and conventional till spring wheat-fallow (CTWF). Gases were sampled twice a week to once a month throughout the year using a static chamber and flux determined. Soil C sequestration rate at 0–10 cm was determined from samples taken in 2012 and 2019. The N2O emissions occurred immediately after planting, fertilization, and intense rainfall from May to September in both years when the emissions greater for NTCW and NTWP than CTWF. The CH4 emissions were minimal and mostly negative throughout the year. Carbon sequestration rate was positive for NTCW and NTWP due to greater C input, but negative for CTWF due to rapid C mineralization. As a result, GHGB was 170%–362% lower for NTCW than NTWP and CTWF. Annualized crop yield was 23%–60% greater for NTWP than NTCW and CTWF in 2016–2017, but not different among cropping systems in 2017–2018. The YSGB was also 129%–132% lower for NTCW and NTWP than CTWF in both years. Because of greater annualized crop yield, but lower GHG emissions, NTWP is recommended for reducing GHG emissions while sustaining long-term dryland crop yields in the northern Great Plains.
{"title":"Long-term continuous cropping reduces greenhouse gas emissions while sustaining crop yields","authors":"Upendra M. Sainju, Brett L. Allen, Jalal D. Jabro","doi":"10.1002/jeq2.20627","DOIUrl":"10.1002/jeq2.20627","url":null,"abstract":"<p>Information is needed on the effect of long-term cropping systems on greenhouse gas (GHG) emissions in dryland conditions. The effect of 34 years of dryland cropping system was examined on N<sub>2</sub>O and CH<sub>4</sub> emissions, greenhouse gas balance (GHGB), crop yield, and yield-scaled GHG balance (YSGB) from 2016–2017 to 2017–2018 in the US northern Great Plains. Cropping systems were no-till continuous spring wheat <i>(Triticum aestivum</i> L.) (NTCW), no-till spring wheat-pea <i>(Pisum sativum</i> L.) (NTWP), and conventional till spring wheat-fallow (CTWF). Gases were sampled twice a week to once a month throughout the year using a static chamber and flux determined. Soil C sequestration rate at 0–10 cm was determined from samples taken in 2012 and 2019. The N<sub>2</sub>O emissions occurred immediately after planting, fertilization, and intense rainfall from May to September in both years when the emissions greater for NTCW and NTWP than CTWF. The CH<sub>4</sub> emissions were minimal and mostly negative throughout the year. Carbon sequestration rate was positive for NTCW and NTWP due to greater C input, but negative for CTWF due to rapid C mineralization. As a result, GHGB was 170%–362% lower for NTCW than NTWP and CTWF. Annualized crop yield was 23%–60% greater for NTWP than NTCW and CTWF in 2016–2017, but not different among cropping systems in 2017–2018. The YSGB was also 129%–132% lower for NTCW and NTWP than CTWF in both years. Because of greater annualized crop yield, but lower GHG emissions, NTWP is recommended for reducing GHG emissions while sustaining long-term dryland crop yields in the northern Great Plains.</p>","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":"53 6","pages":"1073-1085"},"PeriodicalIF":2.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jeq2.20627","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gilbert J. Miito, Femi Alege, Joe Harrison, Pius Ndegwa
The dairy industry has seen notable changes in the last couple of decades, including increased size of farms and regional concentrations of dairies. This has resulted in substantial manure production in small geographical areas, raising environmental concerns. Vermifiltration, an emerging low cost and eco-friendly technology for treating wastewater, was evaluated to assess the influence of earthworm population density on the performance of a laboratory-scale vermifilter treating liquid dairy manure. We monitored the reduction efficiencies of various components, including total nitrogen (TN), ammonium-nitrogen (NH4+-N), nitrate-nitrogen (NO3−-N), total phosphorus (TP), orthophosphate (ortho-P), chemical oxygen demand (COD), total solids (TS), and total suspended solids (TSS), in treated dairy wastewater. This evaluation was conducted at 0; 5000; 10,000; and 15,000 earthworm densities per cubic meter (m−3) of bedding. Reduction efficiencies of 41%–89% (TN), 46%–86% (NH4+-N), 34%–74% (NO3−-N), 3%–17% (TP), 18%–38% (ortho-P), 35%–66% (COD), 24%–54% (TS), and 50%–87% (TSS) were observed with higher earthworm densities exhibiting greater reduction efficiencies. Notably, the densities of Eisenia fetida at 10,000 and 15,000 earthworms m−3 showed no significant difference in vermifilter performance. This suggests that increasing the Eisenia fetida density beyond 10,000 earthworms m−3 may not further improve the vermifilter's performance in treating dairy wastewater. This study's findings indicate that using vermifiltration with an earthworm population density of 10,000 earthworms m−3 could effectively mitigate the negative environmental impact of liquid dairy wastewater at a low cost and sustainably.
{"title":"Influence of earthworm population density on the performance of vermifiltration for treating liquid dairy manure","authors":"Gilbert J. Miito, Femi Alege, Joe Harrison, Pius Ndegwa","doi":"10.1002/jeq2.20626","DOIUrl":"10.1002/jeq2.20626","url":null,"abstract":"<p>The dairy industry has seen notable changes in the last couple of decades, including increased size of farms and regional concentrations of dairies. This has resulted in substantial manure production in small geographical areas, raising environmental concerns. Vermifiltration, an emerging low cost and eco-friendly technology for treating wastewater, was evaluated to assess the influence of earthworm population density on the performance of a laboratory-scale vermifilter treating liquid dairy manure. We monitored the reduction efficiencies of various components, including total nitrogen (TN), ammonium-nitrogen (NH<sub>4</sub><sup>+</sup>-N), nitrate-nitrogen (NO<sub>3</sub><sup>−</sup>-N), total phosphorus (TP), orthophosphate (ortho-P), chemical oxygen demand (COD), total solids (TS), and total suspended solids (TSS), in treated dairy wastewater. This evaluation was conducted at 0; 5000; 10,000; and 15,000 earthworm densities per cubic meter (m<sup>−3</sup>) of bedding. Reduction efficiencies of 41%–89% (TN), 46%–86% (NH<sub>4</sub><sup>+</sup>-N), 34%–74% (NO<sub>3</sub><sup>−</sup>-N), 3%–17% (TP), 18%–38% (ortho-P), 35%–66% (COD), 24%–54% (TS), and 50%–87% (TSS) were observed with higher earthworm densities exhibiting greater reduction efficiencies. Notably, the densities of <i>Eisenia fetida</i> at 10,000 and 15,000 earthworms m<sup>−3</sup> showed no significant difference in vermifilter performance. This suggests that increasing the <i>Eisenia fetida</i> density beyond 10,000 earthworms m<sup>−3</sup> may not further improve the vermifilter's performance in treating dairy wastewater. This study's findings indicate that using vermifiltration with an earthworm population density of 10,000 earthworms m<sup>−3</sup> could effectively mitigate the negative environmental impact of liquid dairy wastewater at a low cost and sustainably.</p>","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":"53 6","pages":"1176-1187"},"PeriodicalIF":2.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jeq2.20626","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brent J. Dalzell, John M. Baker, Rodney T. Venterea, Kurt A. Spokas, Gary W. Feyereisen, Pamela J. Rice, Jonathan R. Alexander
The Soil and Water Management Research Unit of the USDA-Agricultural Research Service is located in St. Paul, MN, and conducts long-term research at the University of Minnesota Research and Outreach Center located at Rosemount, MN. As part of USDA's Long-Term Agroecosystem Research (LTAR) network, the croplands common experiment (CCE) at this location is focused on integration of a kura clover (Trifolium ambiguum M. Bieb.) living mulch (KCLM) system into the prevailing 2-year rotation of corn (Zea mays L.) and soybean (Glycine max L.) that is typical of the midwestern Corn Belt. The LTAR-CCE conducted at Rosemount, MN, aims to compare the long-term environmental and agronomic performance of KCLM while identifying challenges and developing management strategies for this alternative practice. The use of a living mulch for this region is advantageous because, once established, it does not require additional time for fall field operations typically associated with winter cover crops. Results from LTAR-CCE studies at this site show that KCLM results in a substantial increase in soil field-saturated hydraulic conductivity and decreases in leaching of nitrate-nitrogen (NO3−-N). Disadvantages of the KCLM system include potential for increased emissions of nitrous oxide (N2O) and reduced crop yields, particularly during drought. Also, the optimal approach for crop row establishment in the spring remains uncertain. Ongoing LTAR-CCE research with KCLM aims to better understand and quantify both benefits and risks across conditions of interannual weather variability and changing climate to develop guidance for suitable adoption and management of this alternative practice.
{"title":"The LTAR Cropland Common Experiment at Upper Mississippi River Basin–St. Paul","authors":"Brent J. Dalzell, John M. Baker, Rodney T. Venterea, Kurt A. Spokas, Gary W. Feyereisen, Pamela J. Rice, Jonathan R. Alexander","doi":"10.1002/jeq2.20615","DOIUrl":"10.1002/jeq2.20615","url":null,"abstract":"<p>The Soil and Water Management Research Unit of the USDA-Agricultural Research Service is located in St. Paul, MN, and conducts long-term research at the University of Minnesota Research and Outreach Center located at Rosemount, MN. As part of USDA's Long-Term Agroecosystem Research (LTAR) network, the croplands common experiment (CCE) at this location is focused on integration of a kura clover (<i>Trifolium ambiguum</i> M. Bieb.) living mulch (KCLM) system into the prevailing 2-year rotation of corn (<i>Zea mays</i> L.) and soybean (<i>Glycine max</i> L.) that is typical of the midwestern Corn Belt. The LTAR-CCE conducted at Rosemount, MN, aims to compare the long-term environmental and agronomic performance of KCLM while identifying challenges and developing management strategies for this alternative practice. The use of a living mulch for this region is advantageous because, once established, it does not require additional time for fall field operations typically associated with winter cover crops. Results from LTAR-CCE studies at this site show that KCLM results in a substantial increase in soil field-saturated hydraulic conductivity and decreases in leaching of nitrate-nitrogen (NO<sub>3</sub><sup>−</sup>-N). Disadvantages of the KCLM system include potential for increased emissions of nitrous oxide (N<sub>2</sub>O) and reduced crop yields, particularly during drought. Also, the optimal approach for crop row establishment in the spring remains uncertain. Ongoing LTAR-CCE research with KCLM aims to better understand and quantify both benefits and risks across conditions of interannual weather variability and changing climate to develop guidance for suitable adoption and management of this alternative practice.</p>","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":"53 6","pages":"1008-1016"},"PeriodicalIF":2.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jeq2.20615","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soumitra Nath, Kingsley Erhons Enerijiofi, Ashim Das Astapati, Anupam Guha
The present review discusses the growing concern of microplastics (MPs) and nanoplastics (NPs) in soil, together with their sources, concentration, distribution, and impact on soil microorganisms, human health, and ecosystems. MPs and NPs can enter the soil through various pathways, such as agricultural activities, sewage sludge application, and atmospheric deposition. Once in the soil, they can accumulate in the upper layers and affect soil structure, water retention, and nutrient availability. The presence of MPs and NPs in soil can also have ecological consequences, acting as carriers for pollutants and contaminants, such as heavy metals and persistent organic pollutants. Additionally, the leaching of chemicals and additives from MPs and NPs can pose public health risks through the food web and groundwater contamination. The detection and analyses of MPs and NPs in soil can be challenging, and methods involve spectroscopic and microscopy techniques, such as Fourier-transform infrared spectroscopy and scanning electron microscopy. To mitigate the presence and effects of MPs and NPs in soil, it is essential to reduce plastic waste production, improve waste management practices, and adopt sustainable agricultural practices. Effective mitigation measures include implementing stricter regulations on plastic use, promoting biodegradable alternatives, and enhancing recycling infrastructure. Additionally, soil amendments, such as biochar and compost, can help immobilize MPs and NPs, reducing their mobility and bioavailability. This review article aims to provide a comprehensive understanding of these emerging environmental issues and identify potential solutions to alleviate their impact on soil health, ecosystem functioning, and community health.
{"title":"Microplastics and nanoplastics in soil: Sources, impacts, and solutions for soil health and environmental sustainability","authors":"Soumitra Nath, Kingsley Erhons Enerijiofi, Ashim Das Astapati, Anupam Guha","doi":"10.1002/jeq2.20625","DOIUrl":"10.1002/jeq2.20625","url":null,"abstract":"<p>The present review discusses the growing concern of microplastics (MPs) and nanoplastics (NPs) in soil, together with their sources, concentration, distribution, and impact on soil microorganisms, human health, and ecosystems. MPs and NPs can enter the soil through various pathways, such as agricultural activities, sewage sludge application, and atmospheric deposition. Once in the soil, they can accumulate in the upper layers and affect soil structure, water retention, and nutrient availability. The presence of MPs and NPs in soil can also have ecological consequences, acting as carriers for pollutants and contaminants, such as heavy metals and persistent organic pollutants. Additionally, the leaching of chemicals and additives from MPs and NPs can pose public health risks through the food web and groundwater contamination. The detection and analyses of MPs and NPs in soil can be challenging, and methods involve spectroscopic and microscopy techniques, such as Fourier-transform infrared spectroscopy and scanning electron microscopy. To mitigate the presence and effects of MPs and NPs in soil, it is essential to reduce plastic waste production, improve waste management practices, and adopt sustainable agricultural practices. Effective mitigation measures include implementing stricter regulations on plastic use, promoting biodegradable alternatives, and enhancing recycling infrastructure. Additionally, soil amendments, such as biochar and compost, can help immobilize MPs and NPs, reducing their mobility and bioavailability. This review article aims to provide a comprehensive understanding of these emerging environmental issues and identify potential solutions to alleviate their impact on soil health, ecosystem functioning, and community health.</p>","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":"53 6","pages":"1048-1072"},"PeriodicalIF":2.2,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abagael N. Pruitt, Kynser Wahwahsuck, Samantha G. Thomas, Amy J. Burgin
Agriculture is necessary for food production, but agricultural inputs of phosphorus (P) to waterways can lead to harmful algal blooms in downstream reservoirs. Some of the P that enters these water bodies can be stored in reservoir sediments and later contribute to internal P loading, supplementing external P loads carried in from rivers. Increased P can lead to harmful algal blooms. However, how P is cycling in the sediment of these water bodies varies spatially and temporally has been relatively unstudied. Our objective was to understand how P concentration and form vary spatiotemporally, as well as how P is processed in the sediment of the reservoir. We sampled 30 locations in both August and October 2018 around Milford Reservoir (Kansas), a man-made eutrophic reservoir with frequent harmful algal blooms. We collected water chemistry samples, field measurements of temperature, dissolved oxygen, and pH, and sediment samples to analyze for P chemical speciation and phosphatase enzyme activity. We show that P release by phosphatase activity was higher under anaerobic and basic conditions, which subsequently affects spatiotemporal variation in sediment P pools. We found that low oxygen positively influenced phosphatase activity and sediment P pools, and may drive high internal P loading and harmful algal blooms in the summer months. This research increased our understanding of P cycling in a reservoir highly impacted by agricultural inputs and contributed to a small but growing body of research on internal P loading in midwestern reservoirs.
{"title":"Spatial heterogeneity in sediment phosphorus pools and phosphatase activity in a eutrophic reservoir","authors":"Abagael N. Pruitt, Kynser Wahwahsuck, Samantha G. Thomas, Amy J. Burgin","doi":"10.1002/jeq2.20621","DOIUrl":"10.1002/jeq2.20621","url":null,"abstract":"<p>Agriculture is necessary for food production, but agricultural inputs of phosphorus (P) to waterways can lead to harmful algal blooms in downstream reservoirs. Some of the P that enters these water bodies can be stored in reservoir sediments and later contribute to internal P loading, supplementing external P loads carried in from rivers. Increased P can lead to harmful algal blooms. However, how P is cycling in the sediment of these water bodies varies spatially and temporally has been relatively unstudied. Our objective was to understand how P concentration and form vary spatiotemporally, as well as how P is processed in the sediment of the reservoir. We sampled 30 locations in both August and October 2018 around Milford Reservoir (Kansas), a man-made eutrophic reservoir with frequent harmful algal blooms. We collected water chemistry samples, field measurements of temperature, dissolved oxygen, and pH, and sediment samples to analyze for P chemical speciation and phosphatase enzyme activity. We show that P release by phosphatase activity was higher under anaerobic and basic conditions, which subsequently affects spatiotemporal variation in sediment P pools. We found that low oxygen positively influenced phosphatase activity and sediment P pools, and may drive high internal P loading and harmful algal blooms in the summer months. This research increased our understanding of P cycling in a reservoir highly impacted by agricultural inputs and contributed to a small but growing body of research on internal P loading in midwestern reservoirs.</p>","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":"53 6","pages":"1140-1151"},"PeriodicalIF":2.2,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}