He Bai, Wei Zhang, Xuanxuan Yan, Lin Qiu, Pengfei Cui, Weiyang Chen
In recent years, factors such as the postponement of childbearing and the relaxation of the childbearing policy have led to an increase in the proportion of cesarean sections and other intrauterine surgeries among pregnant women, further increasing the incidence of uterine scars. Currently, there is a lack of effective clinical treatment methods for uterine scars. In this study, a suture loaded with gene medicine was designed for the repair of uterine scars. Specifically, the non-viral vector Lipo8000 was first used to form a complex solution with the plasmid TGF-β3. Then, it was mixed and adsorbed with the surgical sutures pretreated with recombinant human type III collagen (RhCol III). In vitro experiments confirmed that RhCol III and the plasmid were successfully loaded onto the sutures and could be released and expressed. In vivo experiments were carried out using a rat model simulating uterine scars. The section results showed that compared with the scar model group, the expression level of TGF-β3 in the RhCol III+TGF-β3 group increased by 39%, the expression level of TGF-β1 decreased by 62.8%, and the fibrosis rate decreased by 16.8%, which has a positive effect on the prevention of uterine scars. This study integrates the therapeutic medicine into the sutures, ensuring that the medicine can come into contact with the wound site after suturing. Moreover, RhCol III and the gene medicine work synergistically to promote the repair of uterine wounds.
{"title":"Suture-Mediated Delivery System Reduces the Incidence of Uterine Scarring Through the TGF-β Pathway.","authors":"He Bai, Wei Zhang, Xuanxuan Yan, Lin Qiu, Pengfei Cui, Weiyang Chen","doi":"10.3390/jfb16020052","DOIUrl":"10.3390/jfb16020052","url":null,"abstract":"<p><p>In recent years, factors such as the postponement of childbearing and the relaxation of the childbearing policy have led to an increase in the proportion of cesarean sections and other intrauterine surgeries among pregnant women, further increasing the incidence of uterine scars. Currently, there is a lack of effective clinical treatment methods for uterine scars. In this study, a suture loaded with gene medicine was designed for the repair of uterine scars. Specifically, the non-viral vector Lipo8000 was first used to form a complex solution with the plasmid TGF-β3. Then, it was mixed and adsorbed with the surgical sutures pretreated with recombinant human type III collagen (RhCol III). In vitro experiments confirmed that RhCol III and the plasmid were successfully loaded onto the sutures and could be released and expressed. In vivo experiments were carried out using a rat model simulating uterine scars. The section results showed that compared with the scar model group, the expression level of TGF-β3 in the RhCol III+TGF-β3 group increased by 39%, the expression level of TGF-β1 decreased by 62.8%, and the fibrosis rate decreased by 16.8%, which has a positive effect on the prevention of uterine scars. This study integrates the therapeutic medicine into the sutures, ensuring that the medicine can come into contact with the wound site after suturing. Moreover, RhCol III and the gene medicine work synergistically to promote the repair of uterine wounds.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 2","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143492333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Bejar-Chapa, Nicolò Rossi, Nicholas C King, David M Kostyra, Madison R Hussey, Kalyn R McGuire, Mark A Randolph, Robert W Redmond, Jonathan M Winograd
Peripheral nerve injuries affect 13-23 per 100,000 people annually in the U.S. and often result in motor and sensory deficits. Microsurgical suture repair (SR) is the standard treatment but is technically challenging and associated with complications. Photochemical tissue bonding (PTB), which uses light and a photoactivated dye to bond collagenous tissues, offers a promising alternative. We compared PTB with commercially available collagen membranes for SR and PTB using cryopreserved human amnion (HAM) in a rat sciatic nerve transection model. In total, 75 Lewis rats underwent nerve repair with one of five methods: SR, PTB-HAM, PTB with commercial collagenous membranes (human amnion monolayer (AML), human amnion-chorion-amnion trilayer (ATL), or swine intestinal submucosa (SIS)). Functional recovery was assessed with walking tracks and the Static Sciatic Index (SSI) at days 30, 60, 90, and 120; histological evaluations at days 30 and 120 examined inflammation, axon density, and fascicle structure. No significant differences in SSI scores were found between groups, though PTB-AML and PTB-SIS improved over time. Histology showed inflammation at day 30 that decreased by day 120. Histomorphometry revealed similar axon regeneration across groups. These results suggest that PTB with commercial membranes is a viable alternative to SR.
{"title":"Comparison of Photochemically Sealed Commercial Biomembranes for Nerve Regeneration.","authors":"Maria Bejar-Chapa, Nicolò Rossi, Nicholas C King, David M Kostyra, Madison R Hussey, Kalyn R McGuire, Mark A Randolph, Robert W Redmond, Jonathan M Winograd","doi":"10.3390/jfb16020050","DOIUrl":"10.3390/jfb16020050","url":null,"abstract":"<p><p>Peripheral nerve injuries affect 13-23 per 100,000 people annually in the U.S. and often result in motor and sensory deficits. Microsurgical suture repair (SR) is the standard treatment but is technically challenging and associated with complications. Photochemical tissue bonding (PTB), which uses light and a photoactivated dye to bond collagenous tissues, offers a promising alternative. We compared PTB with commercially available collagen membranes for SR and PTB using cryopreserved human amnion (HAM) in a rat sciatic nerve transection model. In total, 75 Lewis rats underwent nerve repair with one of five methods: SR, PTB-HAM, PTB with commercial collagenous membranes (human amnion monolayer (AML), human amnion-chorion-amnion trilayer (ATL), or swine intestinal submucosa (SIS)). Functional recovery was assessed with walking tracks and the Static Sciatic Index (SSI) at days 30, 60, 90, and 120; histological evaluations at days 30 and 120 examined inflammation, axon density, and fascicle structure. No significant differences in SSI scores were found between groups, though PTB-AML and PTB-SIS improved over time. Histology showed inflammation at day 30 that decreased by day 120. Histomorphometry revealed similar axon regeneration across groups. These results suggest that PTB with commercial membranes is a viable alternative to SR.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 2","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143492033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Agata Szczesio-Wlodarczyk, Karolina Kopacz, Katarzyna Ranoszek-Soliwoda, Jerzy Sokolowski, Kinga Bociong
In restorative dentistry, there are no standardized in vitro accelerated aging methods to evaluate the long-term stability of dental composites. Current research aimed at extending the clinical success of restorations emphasizes the need for post-aging evaluation. This study represents the final stage of assessing three selected aging protocols that utilize a 0.1 M sodium hydroxide solution as the primary agent to accelerate degradation processes. Twelve resin-based composites, categorized into five types, were evaluated for flexural strength (FS), diametral tensile strength (DTS), hardness (HV), and fracture toughness (FT) both before and after aging. The proposed aging methods significantly degraded the mechanical properties of most materials, highlighting the effectiveness of 0.1 M NaOH as a medium for hydrolytic stability testing. Materials with a high filler content (approximately 80 wt.%) were notably prone to degradation, underscoring the importance of optimizing the filler and coupling agent. The findings suggest that incorporating thermocycling into aging protocols may enhance the development and evaluation of innovative dental composites. This work contributes to establishing a foundation for standardized aging protocols, supporting the accurate assessment of composites in vitro.
在牙科修复领域,还没有标准化的体外加速老化方法来评估牙科复合材料的长期稳定性。目前旨在延长修复体临床成功率的研究强调了进行老化后评估的必要性。本研究是对三种选定老化方案进行评估的最后阶段,这些方案使用 0.1 M 氢氧化钠溶液作为加速降解过程的主剂。研究人员将 12 种树脂基复合材料分为五种类型,分别在老化前和老化后对其抗弯强度 (FS)、直径拉伸强度 (DTS)、硬度 (HV) 和断裂韧性 (FT) 进行了评估。所建议的老化方法明显降低了大多数材料的机械性能,突出了 0.1 M NaOH 作为水解稳定性测试介质的有效性。填料含量较高(约 80 wt.%)的材料明显容易发生降解,这凸显了优化填料和偶联剂的重要性。研究结果表明,将热循环纳入老化方案可促进创新牙科复合材料的开发和评估。这项工作有助于为标准化老化方案奠定基础,支持对复合材料进行准确的体外评估。
{"title":"Towards the Standardization of Artificial Aging Protocols for Dental Composites: Evaluation of Proposed Methods.","authors":"Agata Szczesio-Wlodarczyk, Karolina Kopacz, Katarzyna Ranoszek-Soliwoda, Jerzy Sokolowski, Kinga Bociong","doi":"10.3390/jfb16020049","DOIUrl":"10.3390/jfb16020049","url":null,"abstract":"<p><p>In restorative dentistry, there are no standardized in vitro accelerated aging methods to evaluate the long-term stability of dental composites. Current research aimed at extending the clinical success of restorations emphasizes the need for post-aging evaluation. This study represents the final stage of assessing three selected aging protocols that utilize a 0.1 M sodium hydroxide solution as the primary agent to accelerate degradation processes. Twelve resin-based composites, categorized into five types, were evaluated for flexural strength (FS), diametral tensile strength (DTS), hardness (HV), and fracture toughness (FT) both before and after aging. The proposed aging methods significantly degraded the mechanical properties of most materials, highlighting the effectiveness of 0.1 M NaOH as a medium for hydrolytic stability testing. Materials with a high filler content (approximately 80 wt.%) were notably prone to degradation, underscoring the importance of optimizing the filler and coupling agent. The findings suggest that incorporating thermocycling into aging protocols may enhance the development and evaluation of innovative dental composites. This work contributes to establishing a foundation for standardized aging protocols, supporting the accurate assessment of composites in vitro.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 2","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143492350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Codruţa-Eliza Ille, Anca Jivănescu, Daniel Pop, Eniko Tunde Stoica, Razvan Flueras, Ioana-Cristina Talpoş-Niculescu, Raluca Mioara Cosoroabă, Ramona-Amina Popovici, Iustin Olariu
The present review provides an up-to-date overview of chairside CAD/CAM materials used in restorative dentistry, focusing on their classification, properties, and clinical applications. If CAD/CAM technology was only an aspiration in the past, a higher proportion of clinics are employing it nowadays. The market is overflowing with biomaterials, and these materials are constantly evolving, making it challenging for practitioners to choose the most appropriate one, especially in correlation with patients' medical diseases. The evolution of CAD/CAM technology has revolutionized dental practice, enabling the efficient fabrication of high-quality restorations in a single appointment. The main categories of chairside CAD/CAM materials include feldspathic ceramics, leucite-reinforced ceramics, lithium disilicate, zirconia, hybrid ceramics, and acrylic resins. The mechanical, physical, and aesthetic properties of these materials are discussed, along with their advantages and limitations for different clinical scenarios. Factors influencing material selection, such as strength, aesthetics, and ease of use, are also assessed. Ultimately, the guiding principle of dentistry is minimally invasive treatment following the particularity of the clinical case to obtain the envisioned result. Correlating all these factors, a simple, up-to-date classification is required to begin an individualized treatment. By synthesizing current evidence, this comprehensive review aims to guide clinicians in selecting appropriate chairside CAD/CAM materials to achieve optimal functional and aesthetic outcomes in restorative procedures. The integration of digital workflows and continued development of novel materials promise to further enhance the capabilities of chairside CAD/CAM systems in modern dental practice.
{"title":"Exploring the Properties and Indications of Chairside CAD/CAM Materials in Restorative Dentistry.","authors":"Codruţa-Eliza Ille, Anca Jivănescu, Daniel Pop, Eniko Tunde Stoica, Razvan Flueras, Ioana-Cristina Talpoş-Niculescu, Raluca Mioara Cosoroabă, Ramona-Amina Popovici, Iustin Olariu","doi":"10.3390/jfb16020046","DOIUrl":"10.3390/jfb16020046","url":null,"abstract":"<p><p>The present review provides an up-to-date overview of chairside CAD/CAM materials used in restorative dentistry, focusing on their classification, properties, and clinical applications. If CAD/CAM technology was only an aspiration in the past, a higher proportion of clinics are employing it nowadays. The market is overflowing with biomaterials, and these materials are constantly evolving, making it challenging for practitioners to choose the most appropriate one, especially in correlation with patients' medical diseases. The evolution of CAD/CAM technology has revolutionized dental practice, enabling the efficient fabrication of high-quality restorations in a single appointment. The main categories of chairside CAD/CAM materials include feldspathic ceramics, leucite-reinforced ceramics, lithium disilicate, zirconia, hybrid ceramics, and acrylic resins. The mechanical, physical, and aesthetic properties of these materials are discussed, along with their advantages and limitations for different clinical scenarios. Factors influencing material selection, such as strength, aesthetics, and ease of use, are also assessed. Ultimately, the guiding principle of dentistry is minimally invasive treatment following the particularity of the clinical case to obtain the envisioned result. Correlating all these factors, a simple, up-to-date classification is required to begin an individualized treatment. By synthesizing current evidence, this comprehensive review aims to guide clinicians in selecting appropriate chairside CAD/CAM materials to achieve optimal functional and aesthetic outcomes in restorative procedures. The integration of digital workflows and continued development of novel materials promise to further enhance the capabilities of chairside CAD/CAM systems in modern dental practice.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 2","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143492251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shijia Ye, Boyu Chen, Lakshmi Jeevithan, Haoze Yang, Yaqi Kong, Xiaozhen Diao, Wenhui Wu
Collagen and its peptides exhibit remarkable antioxidant activity, superior biocompatibility, and water solubility, making them a significant research focus in skin care. Hence, the recombinant humanized collagen types I, III, and XVII complexed with niacinamide were developed to address damage in human foreskin fibroblasts (HFF-1) caused by ultraviolet radiation and to evaluate basement membrane proteins in a rat skin model. The Cell Counting Kit-8 (CCK-8) assay showed that higher concentrations of the complex increased the survival of damaged cells by approximately 10% and 22%, respectively, compared to the normal group after 16 and 48 h of treatment. Further biochemical analyses using ELISA and immunofluorescence (IF) confirmed that the complex enhanced the expression of collagen type IV, laminin, P63, and transforming growth factor-β (TGF-β) in the damaged cells. Additionally, the complex boosted the activity of the basement membrane in rat skin and stimulated the secretion of integrin, laminin, and perlecan. Overall, the recombinant humanized collagen complex effectively reinforced the skin's basement membrane.
{"title":"Recombinant Humanized Collagen Enhances Secreted Protein Levels of Fibroblasts and Facilitates Rats' Skin Basement Membrane Reinforcement.","authors":"Shijia Ye, Boyu Chen, Lakshmi Jeevithan, Haoze Yang, Yaqi Kong, Xiaozhen Diao, Wenhui Wu","doi":"10.3390/jfb16020047","DOIUrl":"10.3390/jfb16020047","url":null,"abstract":"<p><p>Collagen and its peptides exhibit remarkable antioxidant activity, superior biocompatibility, and water solubility, making them a significant research focus in skin care. Hence, the recombinant humanized collagen types I, III, and XVII complexed with niacinamide were developed to address damage in human foreskin fibroblasts (HFF-1) caused by ultraviolet radiation and to evaluate basement membrane proteins in a rat skin model. The Cell Counting Kit-8 (CCK-8) assay showed that higher concentrations of the complex increased the survival of damaged cells by approximately 10% and 22%, respectively, compared to the normal group after 16 and 48 h of treatment. Further biochemical analyses using ELISA and immunofluorescence (IF) confirmed that the complex enhanced the expression of collagen type IV, laminin, P63, and transforming growth factor-β (TGF-β) in the damaged cells. Additionally, the complex boosted the activity of the basement membrane in rat skin and stimulated the secretion of integrin, laminin, and perlecan. Overall, the recombinant humanized collagen complex effectively reinforced the skin's basement membrane.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 2","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143492286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Agnieszka Święszek, Wiktor Kruczek, Michał Serafin, Dorota Łyko-Morawska, Tomasz Urbanek, Wacław Kuczmik
Introduction: Vascular graft infections (VGEIs) are rare but severe complications in vascular surgery. The choice of reconstruction material following graft removal is critical, particularly for infection prevention. This study evaluates the use of No-React® BioIntegral Surgical Grafts, made from bovine pericardium, in the treatment of VGEIs. Materials and Methods: A retrospective study of 12 patients (mean age 66.5 years; 67% male) treated between 2020 and 2022 was conducted. The follow-up period included in the study extended from the date of the procedure to 30 June 2024. Results: The study observed a 0% reinfection rate, underscoring the anti-infective potential of No-React® grafts. However, in-hospital complications were frequent, affecting six (50%) patients, with sepsis (3; 25%) related to preoperative VGEIs being the most common. Most importantly, in-hospital mortality was notably high (42%), primarily driven by infection-related sepsis. The overall complication rate after discharge was 14%, with only one case of graft occlusion (1/7) observed. Among discharged patients (7; 58%), the three-month survival rate was 71%. In-hospital complications were a predictive factor for overall survival (OS) (HR = 15.88, 95% CI = 1.81-139.47). Conclusions: Xenogeneic No-React® grafts show promise for managing VGEIs, offering low reinfection rates. However, high morbidity and mortality underline the challenges of treating patients with severe VGEIs. Early postoperative complications were a key predictor of OS. Further research is needed to confirm these findings and optimize treatment protocols for VGEIs.
{"title":"Treatment of Peripheral Vascular Graft Infections with Xenogeneic Grafts-A Single-Center Experience.","authors":"Agnieszka Święszek, Wiktor Kruczek, Michał Serafin, Dorota Łyko-Morawska, Tomasz Urbanek, Wacław Kuczmik","doi":"10.3390/jfb16020048","DOIUrl":"10.3390/jfb16020048","url":null,"abstract":"<p><p><b>Introduction:</b> Vascular graft infections (VGEIs) are rare but severe complications in vascular surgery. The choice of reconstruction material following graft removal is critical, particularly for infection prevention. This study evaluates the use of No-React<sup>®</sup> BioIntegral Surgical Grafts, made from bovine pericardium, in the treatment of VGEIs. <b>Materials and Methods:</b> A retrospective study of 12 patients (mean age 66.5 years; 67% male) treated between 2020 and 2022 was conducted. The follow-up period included in the study extended from the date of the procedure to 30 June 2024. <b>Results:</b> The study observed a 0% reinfection rate, underscoring the anti-infective potential of No-React<sup>®</sup> grafts. However, in-hospital complications were frequent, affecting six (50%) patients, with sepsis (3; 25%) related to preoperative VGEIs being the most common. Most importantly, in-hospital mortality was notably high (42%), primarily driven by infection-related sepsis. The overall complication rate after discharge was 14%, with only one case of graft occlusion (1/7) observed. Among discharged patients (7; 58%), the three-month survival rate was 71%. In-hospital complications were a predictive factor for overall survival (OS) (HR = 15.88, 95% CI = 1.81-139.47). <b>Conclusions:</b> Xenogeneic No-React<sup>®</sup> grafts show promise for managing VGEIs, offering low reinfection rates. However, high morbidity and mortality underline the challenges of treating patients with severe VGEIs. Early postoperative complications were a key predictor of OS. Further research is needed to confirm these findings and optimize treatment protocols for VGEIs.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 2","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143492353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chitosan is a positively charged natural polymer with several properties conducive to wound-healing applications, such as biodegradability, structural integrity, hydrophilicity, adhesiveness to tissue, and bacteriostatic potential. Along with other mechanical properties, some of the properties discussed in this review are antibacterial properties, mucoadhesive properties, biocompatibility, high fluid absorption capacity, and anti-inflammatory response. Chitosan forms stable complexes with oppositely charged polymers, arising from electrostatic interactions between (+) amino groups of chitosan and (-) groups of other polymers. These polyelectrolyte complexes (PECs) can be manufactured using various materials and methods, which brings a diversity of formulations and properties that can be optimized for specific wound healing as well as other applications. For example, chitosan-based PEC can be made into dressings/films, hydrogels, and membranes. There are various pros and cons associated with manufacturing the dressings; for instance, a layer-by-layer casting technique can optimize the nanoparticle release and affect the mechanical strength due to the formation of a heterostructure. Furthermore, chitosan's molecular weight and degree of deacetylation, as well as the nature of the negatively charged biomaterial with which it is cross-linked, are major factors that govern the mechanical properties and biodegradation kinetics of the PEC dressing. The use of chitosan in wound care products is forecasted to drive the growth of the global chitosan market, which is expected to increase by approximately 14.3% within the next decade. This growth is driven by products such as chitoderm-containing ointments, which provide scaffolding for skin cell regeneration. Despite significant advancements, there remains a critical gap in translating chitosan-based biomaterials from research to clinical applications.
{"title":"Recent Advancements in Chitosan-Based Biomaterials for Wound Healing.","authors":"Jahnavi Shah, Dhruv Patel, Dnyaneshwari Rananavare, Dev Hudson, Maxwell Tran, Rene Schloss, Noshir Langrana, Francois Berthiaume, Suneel Kumar","doi":"10.3390/jfb16020045","DOIUrl":"10.3390/jfb16020045","url":null,"abstract":"<p><p>Chitosan is a positively charged natural polymer with several properties conducive to wound-healing applications, such as biodegradability, structural integrity, hydrophilicity, adhesiveness to tissue, and bacteriostatic potential. Along with other mechanical properties, some of the properties discussed in this review are antibacterial properties, mucoadhesive properties, biocompatibility, high fluid absorption capacity, and anti-inflammatory response. Chitosan forms stable complexes with oppositely charged polymers, arising from electrostatic interactions between (+) amino groups of chitosan and (-) groups of other polymers. These polyelectrolyte complexes (PECs) can be manufactured using various materials and methods, which brings a diversity of formulations and properties that can be optimized for specific wound healing as well as other applications. For example, chitosan-based PEC can be made into dressings/films, hydrogels, and membranes. There are various pros and cons associated with manufacturing the dressings; for instance, a layer-by-layer casting technique can optimize the nanoparticle release and affect the mechanical strength due to the formation of a heterostructure. Furthermore, chitosan's molecular weight and degree of deacetylation, as well as the nature of the negatively charged biomaterial with which it is cross-linked, are major factors that govern the mechanical properties and biodegradation kinetics of the PEC dressing. The use of chitosan in wound care products is forecasted to drive the growth of the global chitosan market, which is expected to increase by approximately 14.3% within the next decade. This growth is driven by products such as chitoderm-containing ointments, which provide scaffolding for skin cell regeneration. Despite significant advancements, there remains a critical gap in translating chitosan-based biomaterials from research to clinical applications.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 2","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143492284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arkadiusz Szarek, Grzegorz Golański, Zbigniew Bałaga, Marcin Godzierz, Mariusz Radecki
The study is a metallographic analysis of commercial bone plates used for stabilizing long bones. The plates examined were delivered to the hospital in different years, and the course of treatment of patients with similar goniometric and anthropometric parameters varied dramatically. To determine the characteristics of displacement of bony fragments in the area of the simulated fracture and relate it to the strength parameters of the bone plate, experimental tests were carried out on composite femurs loaded according to the biomechanical loading model at known values of forces acting on the femoral head. In order to assess the influence of material parameters of the plate on the biomechanics of the bone-bone plate system, microstructural and strength tests were performed, i.e., three-point bending tests, chemical composition and hardness assessments, as well as evaluation of the state of internal stresses in the tested materials. The research conducted allowed us to develop guidelines for companies producing bone fixations and orthopedic surgeons who use bone plates to stabilize bones after mechanical trauma, allowing the plates to be tailored to individual patient characteristics.
{"title":"Impact of Strength Parameters and Material Structure of Bone Plates on Displacement of Bone Fragments in the Injured Area.","authors":"Arkadiusz Szarek, Grzegorz Golański, Zbigniew Bałaga, Marcin Godzierz, Mariusz Radecki","doi":"10.3390/jfb16020044","DOIUrl":"10.3390/jfb16020044","url":null,"abstract":"<p><p>The study is a metallographic analysis of commercial bone plates used for stabilizing long bones. The plates examined were delivered to the hospital in different years, and the course of treatment of patients with similar goniometric and anthropometric parameters varied dramatically. To determine the characteristics of displacement of bony fragments in the area of the simulated fracture and relate it to the strength parameters of the bone plate, experimental tests were carried out on composite femurs loaded according to the biomechanical loading model at known values of forces acting on the femoral head. In order to assess the influence of material parameters of the plate on the biomechanics of the bone-bone plate system, microstructural and strength tests were performed, i.e., three-point bending tests, chemical composition and hardness assessments, as well as evaluation of the state of internal stresses in the tested materials. The research conducted allowed us to develop guidelines for companies producing bone fixations and orthopedic surgeons who use bone plates to stabilize bones after mechanical trauma, allowing the plates to be tailored to individual patient characteristics.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 2","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143492264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antanas Straksys, Adei Abouhagger, Monika Kirsnytė-Šniokė, Tatjana Kavleiskaja, Arunas Stirke, Wanessa C M A Melo
Photoactive hydrogels facilitate light-triggered photochemical processes, positioning them as innovative solutions in biomedical applications, especially in antimicrobial photodynamic therapy. This study presents a novel methylene blue-based photoactive hydrogel designed as a topical gel solution to overcome the limitations of traditional pad-based systems by offering enhanced adaptability to irregular wound surfaces, uniform photosensitizer distribution, and deeper therapeutic light penetration. This study investigated the development of hydrogels by cross-linking gelatin with glutaraldehyde (GA) and incorporating methylene blue (MB) to investigate the effects of cross-linking density, network structure, and small molecule inclusion on hydrogel properties. The results showed that while glutaraldehyde concentration influenced swelling behavior and network structure, the inclusion of MB altered these properties, particularly reducing swelling and MB retention at higher GA concentrations. Rheological and thermal analyses confirmed that higher GA concentrations made the hydrogels more rigid, with MB influencing both mechanical and thermal properties. Additionally, the hydrogels exhibited enhanced antimicrobial properties through increased reactive oxygen species production, particularly in light-activated conditions, demonstrating the potential of MB-based photoactive hydrogels for improving antimicrobial efficacy, especially against S. aureus, E. coli, and C. albicans, offering as a possible alternative to traditional antimicrobial treatments.
{"title":"Development and Characterization of a Gelatin-Based Photoactive Hydrogel for Biomedical Application.","authors":"Antanas Straksys, Adei Abouhagger, Monika Kirsnytė-Šniokė, Tatjana Kavleiskaja, Arunas Stirke, Wanessa C M A Melo","doi":"10.3390/jfb16020043","DOIUrl":"10.3390/jfb16020043","url":null,"abstract":"<p><p>Photoactive hydrogels facilitate light-triggered photochemical processes, positioning them as innovative solutions in biomedical applications, especially in antimicrobial photodynamic therapy. This study presents a novel methylene blue-based photoactive hydrogel designed as a topical gel solution to overcome the limitations of traditional pad-based systems by offering enhanced adaptability to irregular wound surfaces, uniform photosensitizer distribution, and deeper therapeutic light penetration. This study investigated the development of hydrogels by cross-linking gelatin with glutaraldehyde (GA) and incorporating methylene blue (MB) to investigate the effects of cross-linking density, network structure, and small molecule inclusion on hydrogel properties. The results showed that while glutaraldehyde concentration influenced swelling behavior and network structure, the inclusion of MB altered these properties, particularly reducing swelling and MB retention at higher GA concentrations. Rheological and thermal analyses confirmed that higher GA concentrations made the hydrogels more rigid, with MB influencing both mechanical and thermal properties. Additionally, the hydrogels exhibited enhanced antimicrobial properties through increased reactive oxygen species production, particularly in light-activated conditions, demonstrating the potential of MB-based photoactive hydrogels for improving antimicrobial efficacy, especially against <i>S. aureus</i>, <i>E. coli</i>, and <i>C. albicans</i>, offering as a possible alternative to traditional antimicrobial treatments.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 2","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143491982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carmem S Pfeifer, Fernanda S Lucena, Fernanda M Tsuzuki
The preservation of interfacial integrity in esthetic dental restorations remains a critical challenge, with hybrid layer degradation being a primary factor in restoration failure. This degradation is driven by a combination of host-derived enzymatic activity, including matrix metalloproteinases (MMPs), bacterial proteases, and hydrolytic breakdown of the polymerized adhesive due to moisture exposure. This review examines the multifactorial mechanisms underlying hybrid layer degradation and presents current advancements in restorative materials aimed at counteracting these effects. Principal strategies include collagen preservation through the inhibition of enzymatic activity, the integration of antimicrobial agents to limit biofilm formation, and the use of ester-free, hydrolysis-resistant polymeric systems. Recent research highlights acrylamide-based adhesives, which exhibit enhanced resistance to acidic and enzymatic environments, as well as dual functionality in collagen stabilization. Furthermore, innovations in bioactive resins and self-healing materials present promising future directions for developing adhesives that actively contribute to long-term restoration stability. These findings underscore the importance of continuous advancements in adhesive technology to enhance the durability and clinical performance of dental restorations.
{"title":"Preservation Strategies for Interfacial Integrity in Restorative Dentistry: A Non-Comprehensive Literature Review.","authors":"Carmem S Pfeifer, Fernanda S Lucena, Fernanda M Tsuzuki","doi":"10.3390/jfb16020042","DOIUrl":"10.3390/jfb16020042","url":null,"abstract":"<p><p>The preservation of interfacial integrity in esthetic dental restorations remains a critical challenge, with hybrid layer degradation being a primary factor in restoration failure. This degradation is driven by a combination of host-derived enzymatic activity, including matrix metalloproteinases (MMPs), bacterial proteases, and hydrolytic breakdown of the polymerized adhesive due to moisture exposure. This review examines the multifactorial mechanisms underlying hybrid layer degradation and presents current advancements in restorative materials aimed at counteracting these effects. Principal strategies include collagen preservation through the inhibition of enzymatic activity, the integration of antimicrobial agents to limit biofilm formation, and the use of ester-free, hydrolysis-resistant polymeric systems. Recent research highlights acrylamide-based adhesives, which exhibit enhanced resistance to acidic and enzymatic environments, as well as dual functionality in collagen stabilization. Furthermore, innovations in bioactive resins and self-healing materials present promising future directions for developing adhesives that actively contribute to long-term restoration stability. These findings underscore the importance of continuous advancements in adhesive technology to enhance the durability and clinical performance of dental restorations.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 2","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143492311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}