Viacheslav E Bazhenov, Mikhail V Gorobinskiy, Andrey I Bazlov, Vasiliy A Bautin, Andrey V Koltygin, Alexander A Komissarov, Denis V Ten, Anna V Li, Alexey Yu Drobyshev, Yoongu Kang, In-Ho Jung, Kwang Seon Shin
Magnesium alloys are considered as promising materials for use as biodegradable implants due to their biocompatibility and similarity to human bone properties. However, their high corrosion rate in bodily fluids limits their use. To address this issue, amorphization can be used to inhibit microgalvanic corrosion and increase corrosion resistance. The Mg-Zn-Ga metallic glass system was investigated in this study, which shows potential for improving the corrosion resistance of magnesium alloys for biodegradable implants. According to clinical tests, it has been demonstrated that Ga ions are effective in the regeneration of bone tissue. The microstructure, phase composition, and phase transition temperatures of sixteen Mg-Zn-Ga alloys were analyzed. In addition, a liquidus projection of the Mg-Zn-Ga system was constructed and validated through the thermodynamic calculations based on the CALPHAD-type database. Furthermore, amorphous ribbons were prepared by rapid solidification of the melt for prospective alloys. XRD and DSC analysis indicate that the alloys with the most potential possess an amorphous structure. The ribbons exhibit an ultimate tensile strength of up to 524 MPa and a low corrosion rate of 0.1-0.3 mm/year in Hanks' solution. Therefore, it appears that Mg-Zn-Ga metallic glass alloys could be suitable for biodegradable applications.
{"title":"Investigation of Mechanical and Corrosion Properties of New Mg-Zn-Ga Amorphous Alloys for Biomedical Applications.","authors":"Viacheslav E Bazhenov, Mikhail V Gorobinskiy, Andrey I Bazlov, Vasiliy A Bautin, Andrey V Koltygin, Alexander A Komissarov, Denis V Ten, Anna V Li, Alexey Yu Drobyshev, Yoongu Kang, In-Ho Jung, Kwang Seon Shin","doi":"10.3390/jfb15090275","DOIUrl":"https://doi.org/10.3390/jfb15090275","url":null,"abstract":"<p><p>Magnesium alloys are considered as promising materials for use as biodegradable implants due to their biocompatibility and similarity to human bone properties. However, their high corrosion rate in bodily fluids limits their use. To address this issue, amorphization can be used to inhibit microgalvanic corrosion and increase corrosion resistance. The Mg-Zn-Ga metallic glass system was investigated in this study, which shows potential for improving the corrosion resistance of magnesium alloys for biodegradable implants. According to clinical tests, it has been demonstrated that Ga ions are effective in the regeneration of bone tissue. The microstructure, phase composition, and phase transition temperatures of sixteen Mg-Zn-Ga alloys were analyzed. In addition, a liquidus projection of the Mg-Zn-Ga system was constructed and validated through the thermodynamic calculations based on the CALPHAD-type database. Furthermore, amorphous ribbons were prepared by rapid solidification of the melt for prospective alloys. XRD and DSC analysis indicate that the alloys with the most potential possess an amorphous structure. The ribbons exhibit an ultimate tensile strength of up to 524 MPa and a low corrosion rate of 0.1-0.3 mm/year in Hanks' solution. Therefore, it appears that Mg-Zn-Ga metallic glass alloys could be suitable for biodegradable applications.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433529/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ayesha Siddiqua, Elwin Clutter, Olga Garklavs, Hemalatha Kanniyappan, Rong R Wang
In trauma and surgery, efficient hemorrhage control is crucial to avert fatal blood loss and increase the likelihood of survival. There is a significant demand for novel biomaterials capable of promptly and effectively managing bleeding. This study aimed to develop flexible biocomposite fibrous scaffolds with an electrospinning technique using silk fibroin (SF) and indocyanine green (ICG). The FDA-approved ICG dye has unique photothermal properties. The water permeability, degradability, and biocompatibility of Bombyx mori cocoon-derived SF make it promising for biomedical applications. While as-spun SF-ICG fibers were dissolvable in water, ethanol vapor treatment (EVT) effectively induced secondary structural changes to promote β-sheet formation. This resulted in significantly improved aqueous stability and mechanical strength of the fibers, thereby increasing their fluid uptake capability. The enhanced SF-ICG interaction effectively prevented ICG leaching from the composite fibers, enabling them to generate heat under NIR irradiation due to ICG's photothermal properties. Our results showed that an SF-ICG 0.4% fibrous matrix can uptake 473% water. When water was replaced by bovine blood, a 25 s NIR irradiation induced complete blood coagulation. However, pure silk did not have the same effect. Additionally, NIR irradiation of the SF-ICG fibers successfully stopped the flow of blood in an in vitro model that mimicked a damaged blood vessel. This novel breakthrough offers a biotextile platform poised to enhance patient outcomes across various medical scenarios, representing a significant milestone in functional biomaterials.
{"title":"Electrospun Silk-ICG Composite Fibers and the Application toward Hemorrhage Control.","authors":"Ayesha Siddiqua, Elwin Clutter, Olga Garklavs, Hemalatha Kanniyappan, Rong R Wang","doi":"10.3390/jfb15090272","DOIUrl":"https://doi.org/10.3390/jfb15090272","url":null,"abstract":"<p><p>In trauma and surgery, efficient hemorrhage control is crucial to avert fatal blood loss and increase the likelihood of survival. There is a significant demand for novel biomaterials capable of promptly and effectively managing bleeding. This study aimed to develop flexible biocomposite fibrous scaffolds with an electrospinning technique using silk fibroin (SF) and indocyanine green (ICG). The FDA-approved ICG dye has unique photothermal properties. The water permeability, degradability, and biocompatibility of Bombyx mori cocoon-derived SF make it promising for biomedical applications. While as-spun SF-ICG fibers were dissolvable in water, ethanol vapor treatment (EVT) effectively induced secondary structural changes to promote β-sheet formation. This resulted in significantly improved aqueous stability and mechanical strength of the fibers, thereby increasing their fluid uptake capability. The enhanced SF-ICG interaction effectively prevented ICG leaching from the composite fibers, enabling them to generate heat under NIR irradiation due to ICG's photothermal properties. Our results showed that an SF-ICG 0.4% fibrous matrix can uptake 473% water. When water was replaced by bovine blood, a 25 s NIR irradiation induced complete blood coagulation. However, pure silk did not have the same effect. Additionally, NIR irradiation of the SF-ICG fibers successfully stopped the flow of blood in an in vitro model that mimicked a damaged blood vessel. This novel breakthrough offers a biotextile platform poised to enhance patient outcomes across various medical scenarios, representing a significant milestone in functional biomaterials.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433354/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joshua Michaels, Anna I Kaleva, Laura Bateman, Oliver Wakelam, Joanna Stephens
Tonsillectomy is a common surgical procedure but carries a high risk of readmission for secondary bleeding and pain. This study evaluated the feasibility and effectiveness of using the hemostatic self-assembling peptide hydrogel RADA16 (PuraBond, 3-D Matrix SAS; Caluire et Cuire, France) to control bleeding from the tonsillectomy wound bed. Readmission/re-operation rates were compared between a prospective case series of 21 primarily adult tonsillectomy patients treated with topical RADA16 and an untreated historical Control group of 164 patients who underwent tonsillectomy by 10 surgeons at a single tertiary hospital in the UK between March 2019 and June 2022. Cumulative readmission rates for any reason were 2-fold elevated in Control subjects (18.9%; n = 31/164 subjects) compared to patients treated intra-operatively with RADA16 hemostatic hydrogel (9.5%; n = 2/21) (p = 0.378). Readmission rates for postoperative bleeding were 3-fold higher in Controls (14.6%; n = 24/164 subjects) than in the RADA16-treated group (4.8%; n = 1/21) (p = 0.317). A similar rate of retreatment for pain was recorded in the Control (4.3%; n = 7/164) and RADA16 (4.8%; n = 1/21) groups (p = 0.999). Two Control subjects (1.2%) required re-operation for recalcitrant bleeding; no RADA16 subject (0.0%) required re-operation for any reason. No device-related adverse events occurred in the RADA16 group. Surgeons were pleased with the easy learning curve and technical feasibility associated with intra-operatively administering RADA16 hemostatic hydrogel. Intra-operative hemostasis using RADA16 peptide hydrogel was straightforward and was associated with a trend of 3-fold lower rates of readmission for postoperative bleeding events than untreated Control subjects.
{"title":"Application of the Self-Assembling Peptide Hydrogel RADA16 for Hemostasis during Tonsillectomy: A Feasibility Study.","authors":"Joshua Michaels, Anna I Kaleva, Laura Bateman, Oliver Wakelam, Joanna Stephens","doi":"10.3390/jfb15090271","DOIUrl":"https://doi.org/10.3390/jfb15090271","url":null,"abstract":"<p><p>Tonsillectomy is a common surgical procedure but carries a high risk of readmission for secondary bleeding and pain. This study evaluated the feasibility and effectiveness of using the hemostatic self-assembling peptide hydrogel RADA16 (PuraBond, 3-D Matrix SAS; Caluire et Cuire, France) to control bleeding from the tonsillectomy wound bed. Readmission/re-operation rates were compared between a prospective case series of 21 primarily adult tonsillectomy patients treated with topical RADA16 and an untreated historical Control group of 164 patients who underwent tonsillectomy by 10 surgeons at a single tertiary hospital in the UK between March 2019 and June 2022. Cumulative readmission rates for any reason were 2-fold elevated in Control subjects (18.9%; <i>n</i> = 31/164 subjects) compared to patients treated intra-operatively with RADA16 hemostatic hydrogel (9.5%; <i>n</i> = 2/21) (<i>p</i> = 0.378). Readmission rates for postoperative bleeding were 3-fold higher in Controls (14.6%; <i>n</i> = 24/164 subjects) than in the RADA16-treated group (4.8%; <i>n</i> = 1/21) (<i>p</i> = 0.317). A similar rate of retreatment for pain was recorded in the Control (4.3%; <i>n</i> = 7/164) and RADA16 (4.8%; <i>n</i> = 1/21) groups (<i>p</i> = 0.999). Two Control subjects (1.2%) required re-operation for recalcitrant bleeding; no RADA16 subject (0.0%) required re-operation for any reason. No device-related adverse events occurred in the RADA16 group. Surgeons were pleased with the easy learning curve and technical feasibility associated with intra-operatively administering RADA16 hemostatic hydrogel. Intra-operative hemostasis using RADA16 peptide hydrogel was straightforward and was associated with a trend of 3-fold lower rates of readmission for postoperative bleeding events than untreated Control subjects.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11432850/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142336441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marija Čandrlić, Ana Terezija Jerbić Radetić, Hrvoje Omrčen, Barbara Franović, Lara Batičić, Tamara Gulić, Tea Čaljkušić-Mance, Sanja Zoričić Cvek, Lucija Malešić, Željka Perić Kačarević, Olga Cvijanović Peloza
The aim of this study was to evaluate the efficacy of autologous dentin (AD), bovine xenograft (BX) and magnesium-enriched bovine xenograft (BX + Mg) in the healing of critical cranial bone defects (CCBDs) in rats. Eighty male Wistar rats were divided into four groups: BX, BX + Mg, AD and the control group (no intervention). Eight mm CCBDs were created and treated with the respective biomaterials. Healing was assessed 7, 15, 21 and 30 days after surgery by micro-computed tomography (micro-CT), real-time polymerase chain reaction (RT-PCR) and immunohistochemical analysis. Micro-CT analysis showed that AD had the highest bone volume and the least amount of residual biomaterial at day 30, indicating robust bone formation and efficient resorption. BX + Mg showed significant bone volume but had more residual biomaterial compared to AD. RT-PCR showed that the expression of osteocalcin (OC), the receptor activator of nuclear factor κB (RANK) and sclerostin (SOST), was highest in the AD group at day 21 and vascular endothelial growth factor (VEGF) at day 15, indicating increased osteogenesis and angiogenesis in the AD group. Immunohistochemical staining confirmed intense BMP-2/4 and SMAD-1/5/8 expression in the AD group, indicating osteoinductive properties. The favorable gene expression profile and biocompatibility of AD and BX + Mg make them promising candidates for clinical applications in bone tissue engineering. Further research is required to fully exploit their potential in regenerative surgery.
{"title":"Regeneration of Critical Calvarial Bone Defects Using Bovine Xenograft, Magnesium-Enriched Bovine Xenograft and Autologous Dentin in Rats: Micro-CT, Gene Expression and Immunohistochemical Analysis.","authors":"Marija Čandrlić, Ana Terezija Jerbić Radetić, Hrvoje Omrčen, Barbara Franović, Lara Batičić, Tamara Gulić, Tea Čaljkušić-Mance, Sanja Zoričić Cvek, Lucija Malešić, Željka Perić Kačarević, Olga Cvijanović Peloza","doi":"10.3390/jfb15090270","DOIUrl":"https://doi.org/10.3390/jfb15090270","url":null,"abstract":"<p><p>The aim of this study was to evaluate the efficacy of autologous dentin (AD), bovine xenograft (BX) and magnesium-enriched bovine xenograft (BX + Mg) in the healing of critical cranial bone defects (CCBDs) in rats. Eighty male Wistar rats were divided into four groups: BX, BX + Mg, AD and the control group (no intervention). Eight mm CCBDs were created and treated with the respective biomaterials. Healing was assessed 7, 15, 21 and 30 days after surgery by micro-computed tomography (micro-CT), real-time polymerase chain reaction (RT-PCR) and immunohistochemical analysis. Micro-CT analysis showed that AD had the highest bone volume and the least amount of residual biomaterial at day 30, indicating robust bone formation and efficient resorption. BX + Mg showed significant bone volume but had more residual biomaterial compared to AD. RT-PCR showed that the expression of osteocalcin (OC), the receptor activator of nuclear factor κB (RANK) and sclerostin (SOST), was highest in the AD group at day 21 and vascular endothelial growth factor (VEGF) at day 15, indicating increased osteogenesis and angiogenesis in the AD group. Immunohistochemical staining confirmed intense BMP-2/4 and SMAD-1/5/8 expression in the AD group, indicating osteoinductive properties. The favorable gene expression profile and biocompatibility of AD and BX + Mg make them promising candidates for clinical applications in bone tissue engineering. Further research is required to fully exploit their potential in regenerative surgery.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
(1) Background: This study aimed to establish the effect of calcium lactate enamel pretreatment related to different fluoride types and concentrations on the enamel uptake of alkali-soluble fluorides. (2) Materials: In a blind and randomized in vitro study, a total of 60 teeth are used. The first 30 teeth were cut and randomly allocated into one of the following treatments: (A) calcium lactate pretreatment followed by three different fluoride solutions; (B) the "Fluoride only" group, with slabs treated with three different fluoride solutions; (C) the "Calcium only" group, with slabs treated with calcium lactate solution; (D) slabs treated with deionized water (negative control group). The next 30 teeth underwent all the above described group procedures but were treated with lower fluoride concentrations. Fluoride was extracted from enamel using 1 M KOH solution and analyzed using a fluoride ion-specific electrode. (3) Results: The findings revealed that slabs treated with NaF following calcium lactate pretreatment exhibited significantly greater enamel uptake of alkali-soluble fluoride compared to other substrates. This significant effect was not observed at lower fluoride concentrations. (4) Conclusion: The study demonstrates that pretreatment with calcium lactate followed by treatment with NaF at 226 ppm F significantly enhances the uptake of alkali-soluble fluoride in enamel compared to other fluoride types.
{"title":"Impact of Calcium Lactate Pretreatment on Enamel Fluoride Uptake: A Comparative In Vitro Study of Different Fluoride Types and Concentrations.","authors":"Fjolla Kullashi Spahija, Ivana Sutej, Kresimir Basic, Kreshnik Spahija, Kristina Peros","doi":"10.3390/jfb15090269","DOIUrl":"https://doi.org/10.3390/jfb15090269","url":null,"abstract":"<p><p>(1) Background: This study aimed to establish the effect of calcium lactate enamel pretreatment related to different fluoride types and concentrations on the enamel uptake of alkali-soluble fluorides. (2) Materials: In a blind and randomized in vitro study, a total of 60 teeth are used. The first 30 teeth were cut and randomly allocated into one of the following treatments: (A) calcium lactate pretreatment followed by three different fluoride solutions; (B) the \"Fluoride only\" group, with slabs treated with three different fluoride solutions; (C) the \"Calcium only\" group, with slabs treated with calcium lactate solution; (D) slabs treated with deionized water (negative control group). The next 30 teeth underwent all the above described group procedures but were treated with lower fluoride concentrations. Fluoride was extracted from enamel using 1 M KOH solution and analyzed using a fluoride ion-specific electrode. (3) Results: The findings revealed that slabs treated with NaF following calcium lactate pretreatment exhibited significantly greater enamel uptake of alkali-soluble fluoride compared to other substrates. This significant effect was not observed at lower fluoride concentrations. (4) Conclusion: The study demonstrates that pretreatment with calcium lactate followed by treatment with NaF at 226 ppm F significantly enhances the uptake of alkali-soluble fluoride in enamel compared to other fluoride types.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433163/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AMR occurs when bacteria, viruses, fungi, and parasites no longer respond to antimicrobial medicines, including antibiotics, antivirals, antifungals, and antiparasitics [...].
当细菌、病毒、真菌和寄生虫不再对抗菌药物(包括抗生素、抗病毒药、抗真菌药和抗寄生虫药)产生反应时,就会出现 AMR [...]。
{"title":"Functional Biomaterials and Biomaterial Composites with Antimicrobial Properties.","authors":"John H T Luong","doi":"10.3390/jfb15090267","DOIUrl":"https://doi.org/10.3390/jfb15090267","url":null,"abstract":"<p><p>AMR occurs when bacteria, viruses, fungi, and parasites no longer respond to antimicrobial medicines, including antibiotics, antivirals, antifungals, and antiparasitics [...].</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433040/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aim: With modern dentistry advancements, children and parents have significantly raised aesthetic expectations in pediatric dentistry. Pediatric zirconia crowns (PZCs) provide a superior aesthetic appearance compared with stainless steel crowns (SSCs), making them a popular treatment option. However, a comparison of the compressive stresses caused by these crowns on the roots of primary teeth and alveolar bones has not been conducted. Materials and Methods: Cone beam computed tomography (CBCT) images of an eight-year-old female patient who experienced premature loss of a primary mandibular left second molar were obtained from a dental hospital database. Rhinoceros 4.0 software was used to process and simulate images. Under simulated chewing forces, stress on the PZC, SSC, and intact primary first molars as control groups, as well as their roots and alveolar bone structures, was assessed with finite element analysis. Statistical Analyses: Depending on whether the descriptive data were normally distributed, the Student t-test and Mann-Whitney U test were used. Quantitative variables differ between the two categories of qualitative variables. One-way ANOVA and Kruskal-Wallis H tests were used depending on standard distribution assumptions. p < 0.05 indicates statistical significance differences. Results: PZCs, SSCs, and cement layers were stressed according to von Mises values, while roots and alveolar bones were stressed according to maximum and minimum stress values. When assessing crowns, SSCs exhibited the highest von Mises stress values, followed by PZCs and control groups (p < 0.001). In the cement layer, SSCs obtained significantly higher values (p = 0.003). In the root area, minimum principal stress values are more critical. The highest values were obtained from the intact tooth, PZC, and SSC, respectively (p < 0.001). Alveolar bones did not differ significantly in minimum principal stress (p = 0.950). Conclusions: Restorative full-coverage crowns exhibited higher von Mises values than intact teeth, as per current research findings. The von Mises values were highest in SSC, while lowest in PZC. As a result of this condition, the cement layer and root areas had higher von Mises stress and compressive stress. Alveolar bones were not affected regardless of restoration type. PZC transmits higher stress due to its properties.
目的:随着现代牙科技术的进步,儿童和家长对儿童牙科的审美要求也大大提高。与不锈钢冠(SSC)相比,儿童氧化锆冠(PZC)具有更优越的美学外观,因此成为一种流行的治疗选择。然而,关于这些牙冠对基牙牙根和牙槽骨造成的压应力的比较还没有进行过。材料和方法:从一家牙科医院的数据库中获取了一名八岁女性患者的锥形束计算机断层扫描(CBCT)图像,该患者的下颌左侧第二磨牙过早脱落。使用 Rhinoceros 4.0 软件处理和模拟图像。在模拟咀嚼力的作用下,通过有限元分析评估了作为对照组的 PZC、SSC 和完整的初级第一磨牙及其牙根和牙槽骨结构的应力。统计分析:根据描述性数据是否呈正态分布,采用学生 t 检验和 Mann-Whitney U 检验。定量变量在两类定性变量之间存在差异。根据标准分布假设,采用单因子方差分析和 Kruskal-Wallis H 检验。结果PZC、SSC和骨水泥层的应力是根据von Mises值计算的,而牙根和牙槽骨的应力是根据最大和最小应力值计算的。在评估牙冠时,SSCs 的 von Mises 应力值最高,其次是 PZCs 和对照组(p < 0.001)。在水泥层中,SSCs 的应力值明显更高(p = 0.003)。在根部区域,最小主应力值更为关键。完整牙齿、PZC 和 SSC 分别获得了最高值(p < 0.001)。牙槽骨在最小主应力方面没有明显差异(p = 0.950)。结论根据目前的研究结果,全覆盖修复冠的 von Mises 值高于完整牙齿。SSC 的 von Mises 值最高,而 PZC 的最低。在这种情况下,骨水泥层和牙根区域具有更高的 von Mises 应力和压缩应力。无论哪种修复类型,牙槽骨都没有受到影响。PZC 因其特性可传递更高的应力。
{"title":"Stress Distribution of Pediatric Zirconia and Stainless Steel Crowns after Pulpotomy Procedure under Vertical Loading: A Patient-Specific Finite Element Analysis.","authors":"Özgür Doğan","doi":"10.3390/jfb15090268","DOIUrl":"https://doi.org/10.3390/jfb15090268","url":null,"abstract":"<p><p><b>Aim:</b> With modern dentistry advancements, children and parents have significantly raised aesthetic expectations in pediatric dentistry. Pediatric zirconia crowns (PZCs) provide a superior aesthetic appearance compared with stainless steel crowns (SSCs), making them a popular treatment option. However, a comparison of the compressive stresses caused by these crowns on the roots of primary teeth and alveolar bones has not been conducted. <b>Materials and Methods:</b> Cone beam computed tomography (CBCT) images of an eight-year-old female patient who experienced premature loss of a primary mandibular left second molar were obtained from a dental hospital database. Rhinoceros 4.0 software was used to process and simulate images. Under simulated chewing forces, stress on the PZC, SSC, and intact primary first molars as control groups, as well as their roots and alveolar bone structures, was assessed with finite element analysis. <b>Statistical Analyses:</b> Depending on whether the descriptive data were normally distributed, the Student t-test and Mann-Whitney U test were used. Quantitative variables differ between the two categories of qualitative variables. One-way ANOVA and Kruskal-Wallis H tests were used depending on standard distribution assumptions. <i>p</i> < 0.05 indicates statistical significance differences. <b>Results:</b> PZCs, SSCs, and cement layers were stressed according to von Mises values, while roots and alveolar bones were stressed according to maximum and minimum stress values. When assessing crowns, SSCs exhibited the highest von Mises stress values, followed by PZCs and control groups (<i>p</i> < 0.001). In the cement layer, SSCs obtained significantly higher values (<i>p</i> = 0.003). In the root area, minimum principal stress values are more critical. The highest values were obtained from the intact tooth, PZC, and SSC, respectively (<i>p</i> < 0.001). Alveolar bones did not differ significantly in minimum principal stress (<i>p</i> = 0.950). <b>Conclusions:</b> Restorative full-coverage crowns exhibited higher von Mises values than intact teeth, as per current research findings. The von Mises values were highest in SSC, while lowest in PZC. As a result of this condition, the cement layer and root areas had higher von Mises stress and compressive stress. Alveolar bones were not affected regardless of restoration type. PZC transmits higher stress due to its properties.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11432998/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andreea Iosageanu, Elena Mihai, Ana-Maria Seciu-Grama, Elena Utoiu, Alexandra Gaspar-Pintiliescu, Florentina Gatea, Anisoara Cimpean, Oana Craciunescu
The present study aimed to conduct a comparative investigation of the biological properties of phenolic and polysaccharide extracts obtained using an ultrasound-assisted technique from Aloe vera gel and their effects on each stage of the wound healing process in in vitro experimental models. HPLC analysis showed that the phenolic extract contained aloin, ferulic, and caffeic acid, as well as quercetin dihydrate, as major compounds. Capillary zone electrophoresis indicated the prevalence of mannose and glucose in the polysaccharide extract. Cell culture testing revealed the anti-inflammatory properties of the phenolic extract at a concentration of 0.25 mg/mL through significant inhibition of pro-inflammatory cytokines-up to 28% TNF-α and 11% IL-8 secretion-in inflamed THP-1-derived macrophages, while a pro-inflammatory effect was observed at 0.5 mg/mL. The phenolic extract induced 18% stimulation of L929 fibroblast proliferation at a concentration of 0.5 mg/mL, enhanced the cell migration rate by 20%, and increased collagen type I synthesis by 18%. Moreover, the phenolic extract exhibited superior antioxidant properties by scavenging free DPPH (IC50 of 2.50 mg/mL) and ABTS (16.47 mM TE/g) radicals, and 46% inhibition of intracellular reactive oxygen species (ROS) production was achieved. The polysaccharide extract demonstrated a greater increase in collagen synthesis up to 25%, as well as antibacterial activity against Staphylococcus aureus with a bacteriostatic effect at 25 mg/mL and a bactericidal one at 50 mg/mL. All these findings indicate that the phenolic extract might be more beneficial in formulations intended for the initial phases of wound healing, such as inflammation and proliferation, while the polysaccharide extract could be more suitable for use during the remodeling stage. Moreover, they might be combined with other biomaterials, acting as efficient dressings with anti-inflammatory, antioxidant, and antibacterial properties for rapid recovery of chronic wounds.
{"title":"In Vitro Wound-Healing Potential of Phenolic and Polysaccharide Extracts of <i>Aloe vera</i> Gel.","authors":"Andreea Iosageanu, Elena Mihai, Ana-Maria Seciu-Grama, Elena Utoiu, Alexandra Gaspar-Pintiliescu, Florentina Gatea, Anisoara Cimpean, Oana Craciunescu","doi":"10.3390/jfb15090266","DOIUrl":"https://doi.org/10.3390/jfb15090266","url":null,"abstract":"<p><p>The present study aimed to conduct a comparative investigation of the biological properties of phenolic and polysaccharide extracts obtained using an ultrasound-assisted technique from <i>Aloe vera</i> gel and their effects on each stage of the wound healing process in in vitro experimental models. HPLC analysis showed that the phenolic extract contained aloin, ferulic, and caffeic acid, as well as quercetin dihydrate, as major compounds. Capillary zone electrophoresis indicated the prevalence of mannose and glucose in the polysaccharide extract. Cell culture testing revealed the anti-inflammatory properties of the phenolic extract at a concentration of 0.25 mg/mL through significant inhibition of pro-inflammatory cytokines-up to 28% TNF-α and 11% IL-8 secretion-in inflamed THP-1-derived macrophages, while a pro-inflammatory effect was observed at 0.5 mg/mL. The phenolic extract induced 18% stimulation of L929 fibroblast proliferation at a concentration of 0.5 mg/mL, enhanced the cell migration rate by 20%, and increased collagen type I synthesis by 18%. Moreover, the phenolic extract exhibited superior antioxidant properties by scavenging free DPPH (IC<sub>50</sub> of 2.50 mg/mL) and ABTS (16.47 mM TE/g) radicals, and 46% inhibition of intracellular reactive oxygen species (ROS) production was achieved. The polysaccharide extract demonstrated a greater increase in collagen synthesis up to 25%, as well as antibacterial activity against <i>Staphylococcus aureus</i> with a bacteriostatic effect at 25 mg/mL and a bactericidal one at 50 mg/mL. All these findings indicate that the phenolic extract might be more beneficial in formulations intended for the initial phases of wound healing, such as inflammation and proliferation, while the polysaccharide extract could be more suitable for use during the remodeling stage. Moreover, they might be combined with other biomaterials, acting as efficient dressings with anti-inflammatory, antioxidant, and antibacterial properties for rapid recovery of chronic wounds.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433545/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karolina Dudek, Aleksandra Strach, Daniel Wasilkowski, Bożena Łosiewicz, Julian Kubisztal, Anna Mrozek-Wilczkiewicz, Patryk Zioła, Adrian Barylski
To functionalize the NiTi alloy, multifunctional innovative nanocoatings of Ag-TiO2 and Ag-TiO2 doped with hydroxyapatite were engineered on its surface. The coatings were thoroughly characterized, focusing on surface topography and key functional properties, including adhesion, surface wettability, biocompatibility, antibacterial activity, and corrosion resistance. The electrochemical corrosion kinetics in a simulated body fluid and the mechanisms were analyzed. The coatings exhibited hydrophilic properties and were biocompatible with fibroblast and osteoblast cells while also demonstrating antibacterial activity against E. coli and S. epidermidis. The coatings adhered strongly to the NiTi substrate, with superior adhesion observed in the hydroxyapatite-doped layers. Conversely, the Ag-TiO2 layers showed enhanced corrosion resistance.
{"title":"Comparison of Key Properties of Ag-TiO<sub>2</sub> and Hydroxyapatite-Ag-TiO<sub>2</sub> Coatings on NiTi SMA.","authors":"Karolina Dudek, Aleksandra Strach, Daniel Wasilkowski, Bożena Łosiewicz, Julian Kubisztal, Anna Mrozek-Wilczkiewicz, Patryk Zioła, Adrian Barylski","doi":"10.3390/jfb15090264","DOIUrl":"https://doi.org/10.3390/jfb15090264","url":null,"abstract":"<p><p>To functionalize the NiTi alloy, multifunctional innovative nanocoatings of Ag-TiO<sub>2</sub> and Ag-TiO<sub>2</sub> doped with hydroxyapatite were engineered on its surface. The coatings were thoroughly characterized, focusing on surface topography and key functional properties, including adhesion, surface wettability, biocompatibility, antibacterial activity, and corrosion resistance. The electrochemical corrosion kinetics in a simulated body fluid and the mechanisms were analyzed. The coatings exhibited hydrophilic properties and were biocompatible with fibroblast and osteoblast cells while also demonstrating antibacterial activity against <i>E. coli</i> and <i>S. epidermidis</i>. The coatings adhered strongly to the NiTi substrate, with superior adhesion observed in the hydroxyapatite-doped layers. Conversely, the Ag-TiO<sub>2</sub> layers showed enhanced corrosion resistance.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433350/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joana A Moura, Hugh J Barlow, Shareen H Doak, Karl Hawkins, Iris Muller, Martin J D Clift
A hallmark of angiogenesis is the sprouting of endothelial cells. To replicate this event in vitro, biomaterial approaches can play an essential role in promoting cell migration. To study the capacity of a scaffold of fibrin (fibrinogen:thrombin mix) to support the movement of the endothelial cells, the migration area of spheroids formed with the HULEC cell line was measured. The cells were first allowed to form a spheroid using the hanging drop technique before being encapsulated in the fibrin gel. The cells' migration area was then measured after two days of embedding in the fibrin gel. Various conditions affecting fibrin gel polymerization, such as different concentrations of fibrinogen and thrombin, were evaluated alongside rheology, porosity, and fiber thickness analysis to understand how these factors influenced cell behavior within the composite biomaterial. Data point toward thrombin's role in governing fibrin gel polymerization; higher concentrations result in less rigid gels (loss tangent between 0.07 and 0.034) and increased cell migration (maximum concentration tested: 5 U/mL). The herein presented method allows for a more precise determination of the crosslinking conditions of fibrin gel that can be used to stimulate angiogenic sprouting.
{"title":"Exploring the Role of Fibrin Gels in Enhancing Cell Migration for Vasculature Formation.","authors":"Joana A Moura, Hugh J Barlow, Shareen H Doak, Karl Hawkins, Iris Muller, Martin J D Clift","doi":"10.3390/jfb15090265","DOIUrl":"https://doi.org/10.3390/jfb15090265","url":null,"abstract":"<p><p>A hallmark of angiogenesis is the sprouting of endothelial cells. To replicate this event in vitro, biomaterial approaches can play an essential role in promoting cell migration. To study the capacity of a scaffold of fibrin (fibrinogen:thrombin mix) to support the movement of the endothelial cells, the migration area of spheroids formed with the HULEC cell line was measured. The cells were first allowed to form a spheroid using the hanging drop technique before being encapsulated in the fibrin gel. The cells' migration area was then measured after two days of embedding in the fibrin gel. Various conditions affecting fibrin gel polymerization, such as different concentrations of fibrinogen and thrombin, were evaluated alongside rheology, porosity, and fiber thickness analysis to understand how these factors influenced cell behavior within the composite biomaterial. Data point toward thrombin's role in governing fibrin gel polymerization; higher concentrations result in less rigid gels (loss tangent between 0.07 and 0.034) and increased cell migration (maximum concentration tested: 5 U/mL). The herein presented method allows for a more precise determination of the crosslinking conditions of fibrin gel that can be used to stimulate angiogenic sprouting.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11432887/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}