Distant metastasis is the primary cause of unsuccessful treatment in nasopharyngeal carcinoma (NPC), suggesting the crucial need to comprehend this process. A tumor related to NPC does not have flat surfaces, but consists of confined microenvironments, proteins, and surface topography. To mimic the complex microenvironment, three-dimensional platforms with microwells and connecting channels were designed and developed with a fibronectin (FN) coating or nanohole topography. The potential of the transforming growth factor-β (TGF-β) inhibitor (galunisertib) for treating NPC was also investigated using the proposed platform. Our results demonstrated an increased traversing probability of NPC43 cells through channels with an FN coating, which correlated with enhanced cell motility and dispersion. Conversely, the presence of nanohole topography patterned on the platform bottom and the TGF-β inhibitor led to a reduced cell traversing probability and decreased cell motility, likely due to the decrease in the F-actin concentration in NPC43 cells. This study highlights the significant impact of confinement levels, surface proteins, nanotopography, and the TGF-β inhibitor on the metastatic probability of cancer cells, providing valuable insights for the development of novel treatment therapies for NPC. The developed platforms proved to be useful tools for evaluating the metastatic potential of cells and are applicable for drug screening.
{"title":"Effects of Confined Microenvironments with Protein Coating, Nanotopography, and TGF-β Inhibitor on Nasopharyngeal Carcinoma Cell Migration through Channels.","authors":"Xiao Hong, Yuanhao Xu, Stella W Pang","doi":"10.3390/jfb15090263","DOIUrl":"https://doi.org/10.3390/jfb15090263","url":null,"abstract":"<p><p>Distant metastasis is the primary cause of unsuccessful treatment in nasopharyngeal carcinoma (NPC), suggesting the crucial need to comprehend this process. A tumor related to NPC does not have flat surfaces, but consists of confined microenvironments, proteins, and surface topography. To mimic the complex microenvironment, three-dimensional platforms with microwells and connecting channels were designed and developed with a fibronectin (FN) coating or nanohole topography. The potential of the transforming growth factor-β (TGF-β) inhibitor (galunisertib) for treating NPC was also investigated using the proposed platform. Our results demonstrated an increased traversing probability of NPC43 cells through channels with an FN coating, which correlated with enhanced cell motility and dispersion. Conversely, the presence of nanohole topography patterned on the platform bottom and the TGF-β inhibitor led to a reduced cell traversing probability and decreased cell motility, likely due to the decrease in the F-actin concentration in NPC43 cells. This study highlights the significant impact of confinement levels, surface proteins, nanotopography, and the TGF-β inhibitor on the metastatic probability of cancer cells, providing valuable insights for the development of novel treatment therapies for NPC. The developed platforms proved to be useful tools for evaluating the metastatic potential of cells and are applicable for drug screening.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433299/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thi Xuan Thuy Tran, Gyu-Min Sun, Hue Vy An Tran, Young Hun Jeong, Petr Slama, Young-Chae Chang, In-Jeong Lee, Jong-Young Kwak
An ideal extracellular matrix (ECM) replacement scaffold in a three-dimensional cell (3D) culture should induce in vivo-like interactions between the ECM and cultured cells. Highly hydrophilic polyvinyl alcohol (PVA) nanofibers disintegrate upon contact with water, resulting in the loss of their fibrous morphology in cell cultures. This can be resolved by using chemical crosslinkers and post-crosslinking. A crosslinked, water-stable, porous, and optically transparent PVA nanofibrous membrane (NM) supports the 3D growth of various cell types. The binding of cells attached to the porous PVA NM is low, resulting in the aggregation of cultured cells in prolonged cultures. PVA NMs containing integrin-binding peptides of fibronectin and laminin were produced to retain the blended peptides as cell-binding substrates. These peptide-blended PVA NMs promote peptide-specific cell adherence and growth. Various cells, including epithelial cells, cultured on these PVA NMs form layers instead of cell aggregates and spheroids, and their growth patterns are similar to those of the cells cultured on an ECM-coated PVA NM. The peptide-retained PVA NMs are non-stimulatory to dendritic cells cultured on the membranes. These peptide-retaining PVA NMs can be used as an ECM replacement matrix by providing in vivo-like interactions between the matrix and cultured cells.
{"title":"Synthetic Extracellular Matrix of Polyvinyl Alcohol Nanofibers for Three-Dimensional Cell Culture.","authors":"Thi Xuan Thuy Tran, Gyu-Min Sun, Hue Vy An Tran, Young Hun Jeong, Petr Slama, Young-Chae Chang, In-Jeong Lee, Jong-Young Kwak","doi":"10.3390/jfb15090262","DOIUrl":"https://doi.org/10.3390/jfb15090262","url":null,"abstract":"<p><p>An ideal extracellular matrix (ECM) replacement scaffold in a three-dimensional cell (3D) culture should induce in vivo-like interactions between the ECM and cultured cells. Highly hydrophilic polyvinyl alcohol (PVA) nanofibers disintegrate upon contact with water, resulting in the loss of their fibrous morphology in cell cultures. This can be resolved by using chemical crosslinkers and post-crosslinking. A crosslinked, water-stable, porous, and optically transparent PVA nanofibrous membrane (NM) supports the 3D growth of various cell types. The binding of cells attached to the porous PVA NM is low, resulting in the aggregation of cultured cells in prolonged cultures. PVA NMs containing integrin-binding peptides of fibronectin and laminin were produced to retain the blended peptides as cell-binding substrates. These peptide-blended PVA NMs promote peptide-specific cell adherence and growth. Various cells, including epithelial cells, cultured on these PVA NMs form layers instead of cell aggregates and spheroids, and their growth patterns are similar to those of the cells cultured on an ECM-coated PVA NM. The peptide-retained PVA NMs are non-stimulatory to dendritic cells cultured on the membranes. These peptide-retaining PVA NMs can be used as an ECM replacement matrix by providing in vivo-like interactions between the matrix and cultured cells.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433135/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The mucosa height has always been of interest in modern implant dentistry to obtain biomimetic results. Papilla height, mucosa scalloping, and free mucosal margin level are crucial to achieve "pink aesthetics". The aim of this study was to investigate the vertical increase in the peri-implant soft tissues with a porcine cross-linked collagen matrix (Geistlich Fibro-Gide®). Methods: A total of 60 patients were divided into the following three groups: Group 1-patients who received porcine cross-linked collagen matrix for vertical soft tissue augmentation and a cover screw combined with a coronally advanced flap (CAF); Group 2-patients who received the collagen matrix combined with a healing abutment and CAF; Group 3 (control group)-patients who received a traditional surgical approach based on crestal incision and no collagen matrix as well as no CAF. Results: The average horizontal tissue thickness growth after 3 months was more effective for Group 1 (1.35 ± 1.23 mm) compared to Group 2 (0.85 ± 0.67 mm) and the control group (0.20 ± 0.41 mm). The average tissue height growth was 1.05 ± 1.39 mm for Group 1, 0.32 ± 1.28 mm for Group 2, and -0.05 ± 0.39 mm for the control group. Finally, the average increase in the band of keratinized mucosa was 0.60 ± 1.23 mm for Group 1, -0.60 ± 0.94 mm for Group 2, and 0.45 ± 0.60 mm for the control group. Conclusions: The combination of the CAF, porcine cross-linked collagen matrix, and cover screw resulted in better clinical results compared to Group 2 and 3.
{"title":"Porcine Cross-Linked Collagen Matrix for Peri-Implant Vertical Soft Tissue Augmentation: A Randomized Prospective Observational Study.","authors":"Giorgio Tabanella, Massimiliano Viale","doi":"10.3390/jfb15090261","DOIUrl":"https://doi.org/10.3390/jfb15090261","url":null,"abstract":"<p><p>The mucosa height has always been of interest in modern implant dentistry to obtain biomimetic results. Papilla height, mucosa scalloping, and free mucosal margin level are crucial to achieve \"pink aesthetics\". The aim of this study was to investigate the vertical increase in the peri-implant soft tissues with a porcine cross-linked collagen matrix (Geistlich Fibro-Gide<sup>®</sup>). <b>Methods:</b> A total of 60 patients were divided into the following three groups: Group 1-patients who received porcine cross-linked collagen matrix for vertical soft tissue augmentation and a cover screw combined with a coronally advanced flap (CAF); Group 2-patients who received the collagen matrix combined with a healing abutment and CAF; Group 3 (control group)-patients who received a traditional surgical approach based on crestal incision and no collagen matrix as well as no CAF. <b>Results:</b> The average horizontal tissue thickness growth after 3 months was more effective for Group 1 (1.35 ± 1.23 mm) compared to Group 2 (0.85 ± 0.67 mm) and the control group (0.20 ± 0.41 mm). The average tissue height growth was 1.05 ± 1.39 mm for Group 1, 0.32 ± 1.28 mm for Group 2, and -0.05 ± 0.39 mm for the control group. Finally, the average increase in the band of keratinized mucosa was 0.60 ± 1.23 mm for Group 1, -0.60 ± 0.94 mm for Group 2, and 0.45 ± 0.60 mm for the control group. <b>Conclusions:</b> The combination of the CAF, porcine cross-linked collagen matrix, and cover screw resulted in better clinical results compared to Group 2 and 3.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433425/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nikola Petricevic, Asja Celebic, Dario Puljic, Ognjen Milat, Alan Divjak, Ines Kovacic
Clinical indications for the Ti-Zr alloy (Roxolid®) mini-implants (MDIs) in subjects with narrow ridges are still under review. The aim was to analyze peri-implant and posterior edentulous area strains dependent on the MDI number, splinting status, loading force, and loading position. Six models were digitally designed and printed. Two, three, or four Ti-Zr MDIs, splinted with a bar or unsplinted (single units), supported mandibular overdentures (ODs), loaded with 50-300 N forces unilaterally, bilaterally, and anteriorly. The artificial mucosa thickness was 2 mm. Strain gauges were bonded on the vestibular and oral peri-implant sides of each MDI, and on the posterior edentulous area under the ODs. Loadings were performed through the metal plate placed on ODs' artificial teeth (15 times repeated). Arithmetic means with standard deviations and the significance of the differences (MANOVA, Sheffe post hoc) were calculated. Different MDI numbers, loading positions, forces, and splinting elicited different peri-implant microstrains. In the two-MDI models, 300 N force during unilateral loading elicited the highest microstrains (almost 3000 εμ on the loaded side), which can jeopardize bone reparation. On the opposite side, >2500 εμ was registered, which represents high strains. During bilateral loadings, microstrains hardly exceeded 2000 εμ, indicating that bilateral chewers or subjects having lower forces can benefit from the two Ti-Zr MDIs, irrespective of splinting. However, in subjects chewing unilaterally, and inducing higher forces (natural teeth antagonists), or bruxers, only two MDIs may not be sufficient to support the OD. By increasing implant numbers, peri-implant strains decrease in both splinted and single-unit MDI models, far beyond values that can interfere with bone reparation, indicating that splinting is not necessary. When the positions of the loading forces are closer to the implant, higher peri-implant strains are induced. Regarding the distal edentulous area, microstrains reached 2000 εμ only during unilateral loadings in the two-MDI models, and all other strains were lower, below 1500 εμ, confirming that implant-supported overdentures do not lead to edentulous ridge atrophy.
{"title":"Effects of Loading Forces, Loading Positions, and Splinting of Two, Three, or Four Ti-Zr (Roxolid<sup>®</sup>) Mini-Implants Supporting the Mandibular Overdentures on Peri-Implant and Posterior Edentulous Area Strains.","authors":"Nikola Petricevic, Asja Celebic, Dario Puljic, Ognjen Milat, Alan Divjak, Ines Kovacic","doi":"10.3390/jfb15090260","DOIUrl":"https://doi.org/10.3390/jfb15090260","url":null,"abstract":"<p><p>Clinical indications for the Ti-Zr alloy (Roxolid<sup>®</sup>) mini-implants (MDIs) in subjects with narrow ridges are still under review. The aim was to analyze peri-implant and posterior edentulous area strains dependent on the MDI number, splinting status, loading force, and loading position. Six models were digitally designed and printed. Two, three, or four Ti-Zr MDIs, splinted with a bar or unsplinted (single units), supported mandibular overdentures (ODs), loaded with 50-300 N forces unilaterally, bilaterally, and anteriorly. The artificial mucosa thickness was 2 mm. Strain gauges were bonded on the vestibular and oral peri-implant sides of each MDI, and on the posterior edentulous area under the ODs. Loadings were performed through the metal plate placed on ODs' artificial teeth (15 times repeated). Arithmetic means with standard deviations and the significance of the differences (MANOVA, Sheffe <i>post hoc</i>) were calculated. Different MDI numbers, loading positions, forces, and splinting elicited different peri-implant microstrains. In the two-MDI models, 300 N force during unilateral loading elicited the highest microstrains (almost 3000 εμ on the loaded side), which can jeopardize bone reparation. On the opposite side, >2500 εμ was registered, which represents high strains. During bilateral loadings, microstrains hardly exceeded 2000 εμ, indicating that bilateral chewers or subjects having lower forces can benefit from the two Ti-Zr MDIs, irrespective of splinting. However, in subjects chewing unilaterally, and inducing higher forces (natural teeth antagonists), or bruxers, only two MDIs may not be sufficient to support the OD. By increasing implant numbers, peri-implant strains decrease in both splinted and single-unit MDI models, far beyond values that can interfere with bone reparation, indicating that splinting is not necessary. When the positions of the loading forces are closer to the implant, higher peri-implant strains are induced. Regarding the distal edentulous area, microstrains reached 2000 εμ only during unilateral loadings in the two-MDI models, and all other strains were lower, below 1500 εμ, confirming that implant-supported overdentures do not lead to edentulous ridge atrophy.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433416/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yeji Jeon, Tae Ryeol Kim, Eun Seo Park, Jae Hyun Park, Han Sung Youn, Dae Youn Hwang, Sungbaek Seo
Silica nanoparticles are innovative solutions of surgical glue that can readily adhere to various tissue-like substrates without the need for time-consuming chemical reactions or ultraviolet irradiation. Herein, 10 nm-sized silica nanoparticle (SiNP10) treatment exhibited maximum adhesion strength in the porcine heart tissue model, which was approximately 7.15 times higher than that of the control group of non-treatment. We assessed the effects of silica nanoparticle treatment on in vivo skin wounds by scoring tissue adhesion and inflammation using histological images. Compared to the commercial cyanoacrylate skin adhesive (Dermabond), suppression of inflammatory cytokine levels in the incision wound skin was observed. We further quantified the expression of angiogenic growth factors and connective tissue formation-related proteins. On day 5 after wound closing treatment, the expression levels of PDGF-BB growth factor were significantly higher in SiNP10 treatment (0.64 ± 0.03) compared to Dermabond (0.07 ± 0.05). This stimulated angiogenesis and connective tissue formation in the skin of the incision wound may be associated with the promoting effects of SiNP10 treatment on wound closure and tissue adhesion.
{"title":"Effect of Silica Nanoparticle Treatment on Adhesion between Tissue-like Substrates and In Vivo Skin Wound Sealing.","authors":"Yeji Jeon, Tae Ryeol Kim, Eun Seo Park, Jae Hyun Park, Han Sung Youn, Dae Youn Hwang, Sungbaek Seo","doi":"10.3390/jfb15090259","DOIUrl":"https://doi.org/10.3390/jfb15090259","url":null,"abstract":"<p><p>Silica nanoparticles are innovative solutions of surgical glue that can readily adhere to various tissue-like substrates without the need for time-consuming chemical reactions or ultraviolet irradiation. Herein, 10 nm-sized silica nanoparticle (SiNP<sub>10</sub>) treatment exhibited maximum adhesion strength in the porcine heart tissue model, which was approximately 7.15 times higher than that of the control group of non-treatment. We assessed the effects of silica nanoparticle treatment on in vivo skin wounds by scoring tissue adhesion and inflammation using histological images. Compared to the commercial cyanoacrylate skin adhesive (Dermabond), suppression of inflammatory cytokine levels in the incision wound skin was observed. We further quantified the expression of angiogenic growth factors and connective tissue formation-related proteins. On day 5 after wound closing treatment, the expression levels of PDGF-BB growth factor were significantly higher in SiNP<sub>10</sub> treatment (0.64 ± 0.03) compared to Dermabond (0.07 ± 0.05). This stimulated angiogenesis and connective tissue formation in the skin of the incision wound may be associated with the promoting effects of SiNP<sub>10</sub> treatment on wound closure and tissue adhesion.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433542/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bioactive glasses (BGs) have attracted significant attention in the biomaterials field due to their ability to promote soft and hard tissue regeneration and their potential for various clinical applications. BGs offer enriched features through the integration of different therapeutic inorganic ions within their composition. These ions can trigger specific responses in the body conducive to a battery of applications. For example, zinc, a vital trace element, plays a role in numerous physiological processes within the human body. By incorporating zinc, BGs can inhibit bacterial growth, exert anti-inflammatory effects, and modify bioactivity, promoting better integration with surrounding tissues when used in scaffolds for tissue regeneration. This article reviews recent developments in zinc-containing BGs (ZBGs), focusing on their synthesis, physicochemical, and biological properties. ZBGs represent a significant advancement in applications extending beyond bone regeneration. Overall, their biological roles hold promise for various applications, such as bone tissue engineering, wound healing, and biomedical coatings. Ongoing research continues to explore the potential benefits of ZBGs and to optimize their properties for diverse clinical applications.
{"title":"Advances in Zinc-Containing Bioactive Glasses: A Comprehensive Review.","authors":"Fariborz Sharifianjazi, Mohammadjavad Sharifianjazi, Maryam Irandoost, Ketevan Tavamaishvili, Mehdi Mohabatkhah, Maziar Montazerian","doi":"10.3390/jfb15090258","DOIUrl":"https://doi.org/10.3390/jfb15090258","url":null,"abstract":"<p><p>Bioactive glasses (BGs) have attracted significant attention in the biomaterials field due to their ability to promote soft and hard tissue regeneration and their potential for various clinical applications. BGs offer enriched features through the integration of different therapeutic inorganic ions within their composition. These ions can trigger specific responses in the body conducive to a battery of applications. For example, zinc, a vital trace element, plays a role in numerous physiological processes within the human body. By incorporating zinc, BGs can inhibit bacterial growth, exert anti-inflammatory effects, and modify bioactivity, promoting better integration with surrounding tissues when used in scaffolds for tissue regeneration. This article reviews recent developments in zinc-containing BGs (ZBGs), focusing on their synthesis, physicochemical, and biological properties. ZBGs represent a significant advancement in applications extending beyond bone regeneration. Overall, their biological roles hold promise for various applications, such as bone tissue engineering, wound healing, and biomedical coatings. Ongoing research continues to explore the potential benefits of ZBGs and to optimize their properties for diverse clinical applications.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433484/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dimitra Statha, Asimina Papaioannou, Stefanos Kikionis, Maria Kostaki, Ioannis Sfiniadakis, Andreas Vitsos, Jane Anastassopoulou, Efstathia Ioannou, Vassilios Roussis, Michail Christou Rallis
The treatment of second-degree burn wounds presents a significant clinical challenge, often characterized by prolonged healing times and risk of complications. In this study, the wound healing potential of bioactive marine sulfated polysaccharides ulvan and carrageenan formulated in gels at concentrations of 1.5%, 5.0%, and 10% w/w was evaluated. Hairless female SKH-hr2 mice (n = 7 per treatment) with burn-inflamed skin were treated with the polysaccharide-based gels, and the therapeutic efficacy was assessed using a comprehensive array of evaluation methods, including a histopathological analysis, clinical observation, photo-documentation, an image analysis, an evaluation of biophysical skin parameters, and FT-IR spectroscopy. Our findings indicate that the 10% w/w carrageenan gel exhibited significant enhancement in wound healing, particularly in the early stages of the healing process. This was evidenced by the restoration of the α-helix structure of collagen and the configuration of glycosaminoglycans, as demonstrated by FT-IR absorption bands of the skin both in vivo and ex vivo. Furthermore, the 5% w/w ulvan gel also demonstrated notable efficacy in promoting wound healing, particularly in the later stages of the healing process. These results suggest that carrageenan and ulvan gels hold promise for improving the efficiency of wound healing in second-degree burn wounds. Our study contributes to the understanding of the therapeutic potential of marine polysaccharides and provides insights into their mechanism of action in promoting wound healing.
{"title":"Healing Potential of the Marine Polysaccharides Carrageenan and Ulvan on Second-Degree Burns.","authors":"Dimitra Statha, Asimina Papaioannou, Stefanos Kikionis, Maria Kostaki, Ioannis Sfiniadakis, Andreas Vitsos, Jane Anastassopoulou, Efstathia Ioannou, Vassilios Roussis, Michail Christou Rallis","doi":"10.3390/jfb15090257","DOIUrl":"https://doi.org/10.3390/jfb15090257","url":null,"abstract":"<p><p>The treatment of second-degree burn wounds presents a significant clinical challenge, often characterized by prolonged healing times and risk of complications. In this study, the wound healing potential of bioactive marine sulfated polysaccharides ulvan and carrageenan formulated in gels at concentrations of 1.5%, 5.0%, and 10% w/w was evaluated. Hairless female SKH-hr2 mice (n = 7 per treatment) with burn-inflamed skin were treated with the polysaccharide-based gels, and the therapeutic efficacy was assessed using a comprehensive array of evaluation methods, including a histopathological analysis, clinical observation, photo-documentation, an image analysis, an evaluation of biophysical skin parameters, and FT-IR spectroscopy. Our findings indicate that the 10% w/w carrageenan gel exhibited significant enhancement in wound healing, particularly in the early stages of the healing process. This was evidenced by the restoration of the α-helix structure of collagen and the configuration of glycosaminoglycans, as demonstrated by FT-IR absorption bands of the skin both <i>in vivo</i> and <i>ex vivo</i>. Furthermore, the 5% w/w ulvan gel also demonstrated notable efficacy in promoting wound healing, particularly in the later stages of the healing process. These results suggest that carrageenan and ulvan gels hold promise for improving the efficiency of wound healing in second-degree burn wounds. Our study contributes to the understanding of the therapeutic potential of marine polysaccharides and provides insights into their mechanism of action in promoting wound healing.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433208/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Satheesh B Haralur, Abdullah Turki Albarqi, Abdulellah Gharmallah Alamodi, Abdulmajeed Ali Alamri, Saad Awdah Aldail, Mohammed A Al-Qarni, Saeed M AlQahtani, Nasser M Alqahtani
Esthetically pleasing temporary prostheses are often necessary for extended periods in a variety of clinical scenarios. Adjustments to the occlusion or margins are commonly needed before cementing the temporary prosthesis. Therefore, it is clinically necessary to repolish the rough surface to avoid biological and esthetic issues associated with rough surfaces. The purpose of this in vitro study was to assess and compare the impact of various polishing protocols on the surface roughness and color stability of three resin materials used for provisional crowns. A total of 150 specimens were fabricated from auto-polymerizing polymethyl methacrylate, bis-acryl composite, and Methyl methacrylate-LC resin using a stainless steel mold. Each material group was divided into five groups (n = 10) based on the applied surface treatment: positive control group (G1): no roughening or surface treatment, Negative control group (G2): acrylic bur-roughened surface without any polishing, the different surface treatment groups of silicon carbide and aluminum oxide stone polishing (G3), diamond-coated rubber twist (G4), and Surface Glaze (G5). An optical profilometer was used to assess the surface roughness of all samples. After undergoing 6000 cycles of thermocycling followed by immersion in a coffee solution for 15 days at 37 °C, color parameters were measured using a spectrophotometer both before and after a storage period to evaluate color differences. A two-way ANOVA test with α = 0.05 significance level was carried out to determine the impacts of both the materials utilized and the polishing protocol. Among the three types of resin examined, the bisacryl group exhibited superior surface quality in positive control groups, while PMMA resin demonstrated higher polishability. The diamond-coated rubber twits resulted in lower Ra values of 0.36 (0.01) µm, 0.52 (0.11) µm, and 0.28 (0.05) µm for PMMA, BAMA, and MMLC resins, respectively. The application of photo-polymerized surface glaze led to a plaque accumulation threshold of 0.2 µm across all resin groups. The greatest mean color change occurred in the negative control group, indicating a propensity for more staining on rougher surfaces. The Bisacryl resin exhibited higher ΔE values, whereas PMMA showed better color stability. The lowest ΔE values were found when the surface glaze was applied to all of the provisional crown resins. Untreated Bisacryl resin exhibited the lowest Ra values, while PMMA resins demonstrated superior surface morphology after polishing. PMMA provisional crown resins showed increased resistance to staining. The use of surface glaze enhanced both smoothness and color stability on the surfaces.
{"title":"Comparison of Various Surface Treatment Procedures on the Roughness and Susceptibility to Staining of Provisional Prosthodontic Materials.","authors":"Satheesh B Haralur, Abdullah Turki Albarqi, Abdulellah Gharmallah Alamodi, Abdulmajeed Ali Alamri, Saad Awdah Aldail, Mohammed A Al-Qarni, Saeed M AlQahtani, Nasser M Alqahtani","doi":"10.3390/jfb15090256","DOIUrl":"https://doi.org/10.3390/jfb15090256","url":null,"abstract":"<p><p>Esthetically pleasing temporary prostheses are often necessary for extended periods in a variety of clinical scenarios. Adjustments to the occlusion or margins are commonly needed before cementing the temporary prosthesis. Therefore, it is clinically necessary to repolish the rough surface to avoid biological and esthetic issues associated with rough surfaces. The purpose of this in vitro study was to assess and compare the impact of various polishing protocols on the surface roughness and color stability of three resin materials used for provisional crowns. A total of 150 specimens were fabricated from auto-polymerizing polymethyl methacrylate, bis-acryl composite, and Methyl methacrylate-LC resin using a stainless steel mold. Each material group was divided into five groups (<i>n</i> = 10) based on the applied surface treatment: positive control group (G1): no roughening or surface treatment, Negative control group (G2): acrylic bur-roughened surface without any polishing, the different surface treatment groups of silicon carbide and aluminum oxide stone polishing (G3), diamond-coated rubber twist (G4), and Surface Glaze (G5). An optical profilometer was used to assess the surface roughness of all samples. After undergoing 6000 cycles of thermocycling followed by immersion in a coffee solution for 15 days at 37 °C, color parameters were measured using a spectrophotometer both before and after a storage period to evaluate color differences. A two-way ANOVA test with α = 0.05 significance level was carried out to determine the impacts of both the materials utilized and the polishing protocol. Among the three types of resin examined, the bisacryl group exhibited superior surface quality in positive control groups, while PMMA resin demonstrated higher polishability. The diamond-coated rubber twits resulted in lower Ra values of 0.36 (0.01) µm, 0.52 (0.11) µm, and 0.28 (0.05) µm for PMMA, BAMA, and MMLC resins, respectively. The application of photo-polymerized surface glaze led to a plaque accumulation threshold of 0.2 µm across all resin groups. The greatest mean color change occurred in the negative control group, indicating a propensity for more staining on rougher surfaces. The Bisacryl resin exhibited higher ΔE values, whereas PMMA showed better color stability. The lowest ΔE values were found when the surface glaze was applied to all of the provisional crown resins. Untreated Bisacryl resin exhibited the lowest Ra values, while PMMA resins demonstrated superior surface morphology after polishing. PMMA provisional crown resins showed increased resistance to staining. The use of surface glaze enhanced both smoothness and color stability on the surfaces.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433105/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Khushbakht Asad, Sumaira Shams, Eliana Ibáñez-Arancibia, Patricio R De Los Ríos-Escalante, Farhad Badshah, Farooq Ahmad, Muhammad Salman Khan, Asar Khan
In the original publication [...].
在最初的出版物中 [......] 。
{"title":"Correction: Asad et al. Anti-Inflammatory, Antipyretic, and Analgesic Potential of Chitin and Chitosan Derived from Cockroaches (<i>Periplaneta americana</i>) and Termites. <i>J. Funct. Biomater.</i> 2024, <i>15</i>, 80.","authors":"Khushbakht Asad, Sumaira Shams, Eliana Ibáñez-Arancibia, Patricio R De Los Ríos-Escalante, Farhad Badshah, Farooq Ahmad, Muhammad Salman Khan, Asar Khan","doi":"10.3390/jfb15090255","DOIUrl":"https://doi.org/10.3390/jfb15090255","url":null,"abstract":"<p><p>In the original publication [...].</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433369/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142336442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maha Alghofaily, Fahd Alsalleeh, Lamees Alssum, Manikandan Muthurangan, Musaad Alfayez, Michael D Weir, Hockin H K Xu
The study aimed to develop a biodegradable scaffold incorporating valproic acid (VPA) for improved human bone marrow-derived mesenchymal stem cell (hBMSC) proliferation, differentiation, and bone mineral synthesis. A chitosan-gelatin (CH-G) scaffold was fabricated and loaded with varying concentrations of VPA (1, 3, 5 mM/L). In vitro studies assessed drug release, cell proliferation, morphology, mineralization, and gene expression. VPA was rapidly released from the scaffold, with over 90% cumulative release within seven days. Cells cultured on VPA-loaded scaffolds exhibited significantly enhanced proliferation and mineralization compared to the control. VPA treatment upregulated osteocalcin and runt-related transcription factor 2 (Runx-2) expression, key markers of osteogenic differentiation. The CH-G scaffold, particularly with 1 mM/L VPA, demonstrates excellent biocompatibility and promotes hBMSC-mediated bone regeneration. This novel approach holds promise for future applications in bone tissue engineering.
{"title":"Novel Chitosan-Gelatin Scaffold with Valproic Acid Augments In Vitro Osteoblast Differentiation of Mesenchymal Stem Cells.","authors":"Maha Alghofaily, Fahd Alsalleeh, Lamees Alssum, Manikandan Muthurangan, Musaad Alfayez, Michael D Weir, Hockin H K Xu","doi":"10.3390/jfb15090252","DOIUrl":"https://doi.org/10.3390/jfb15090252","url":null,"abstract":"<p><p>The study aimed to develop a biodegradable scaffold incorporating valproic acid (VPA) for improved human bone marrow-derived mesenchymal stem cell (hBMSC) proliferation, differentiation, and bone mineral synthesis. A chitosan-gelatin (CH-G) scaffold was fabricated and loaded with varying concentrations of VPA (1, 3, 5 mM/L). In vitro studies assessed drug release, cell proliferation, morphology, mineralization, and gene expression. VPA was rapidly released from the scaffold, with over 90% cumulative release within seven days. Cells cultured on VPA-loaded scaffolds exhibited significantly enhanced proliferation and mineralization compared to the control. VPA treatment upregulated osteocalcin and runt-related transcription factor 2 (Runx-2) expression, key markers of osteogenic differentiation. The CH-G scaffold, particularly with 1 mM/L VPA, demonstrates excellent biocompatibility and promotes hBMSC-mediated bone regeneration. This novel approach holds promise for future applications in bone tissue engineering.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433281/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}