Maria Carolina Lanzino, Long-Quan R V Le, Anika Höppel, Andreas Killinger, Wolfgang Rheinheimer, Sofia Dembski, Ali Al-Ahmad, Hermann O Mayr, Michael Seidenstuecker
Prosthesis loosening due to lack of osteointegration between an implant and surrounding bone tissue is one of the most common causes of implant failure. Further, bacterial contamination and biofilm formation onto implants represent a serious complication after surgery. The enhancement of osteointegration can be achieved by using bioconductive materials that promote biological responses in the body, stimulating bone growth and thus bonding to tissue. Through the incorporation of antibacterial substances in bioconductive, biodegradable calcium phosphate (CaP) coatings, faster osteointegration and bactericidal properties can be achieved. In this study, Cu-doped CaP supraparticles are spray-dried and suspension-sprayed CaP ceramic coatings with antibacterial properties are prepared using high-velocity suspension flame spraying (HVSFS). The objective was to increase the coatings' porosity and investigate which Cu-doped supraparticles have the strongest antibacterial properties when introduced into the coating layers. Biocompatibility was tested on human Osteosarcoma cells MG63. A porosity of at least 13% was achieved and the supraparticles could be implemented, enhancing it up to 16%. The results showed that the addition of Cu-doped supraparticles did not significantly reduce the number of viable cells compared to the Cu-free sample, demonstrating good biocompatibility. The antimicrobial activity was assessed against the bacterial strains Escherichia coli and Staphylococcus aureus, with Safe Airborne Antibacterial testing showing a significant reduction in both Gram-positive and Gram-negative strains on the Cu-doped coatings.
种植体与周围骨组织之间缺乏骨结合而导致的假体松动是种植失败的最常见原因之一。此外,种植体上的细菌污染和生物膜的形成也是术后的一个严重并发症。生物导电材料可促进体内生物反应,刺激骨生长,从而与组织结合,从而增强骨结合。通过在生物导电、可生物降解的磷酸钙(CaP)涂层中加入抗菌物质,可实现更快的骨结合和杀菌特性。本研究采用高速悬浮火焰喷涂(HVSFS)技术,对掺铜的 CaP 超微粒进行喷雾干燥,并制备出具有抗菌性能的悬浮喷涂 CaP 陶瓷涂层。目的是增加涂层的孔隙率,并研究哪种掺铜超微粒在引入涂层时具有最强的抗菌性能。在人骨肉瘤细胞 MG63 上测试了生物相容性。测试结果表明,涂层的孔隙率至少达到了 13%,超级微粒的加入可将孔隙率提高到 16%。结果表明,与不含铜的样品相比,添加掺铜的超微粒并没有明显减少存活细胞的数量,这表明该材料具有良好的生物相容性。针对细菌菌株大肠杆菌和金黄色葡萄球菌的抗菌活性进行了评估,安全空气传播抗菌测试表明,掺铜涂层上的革兰氏阳性和革兰氏阴性菌株均明显减少。
{"title":"Suspension-Sprayed Calcium Phosphate Coatings with Antibacterial Properties.","authors":"Maria Carolina Lanzino, Long-Quan R V Le, Anika Höppel, Andreas Killinger, Wolfgang Rheinheimer, Sofia Dembski, Ali Al-Ahmad, Hermann O Mayr, Michael Seidenstuecker","doi":"10.3390/jfb15100281","DOIUrl":"https://doi.org/10.3390/jfb15100281","url":null,"abstract":"<p><p>Prosthesis loosening due to lack of osteointegration between an implant and surrounding bone tissue is one of the most common causes of implant failure. Further, bacterial contamination and biofilm formation onto implants represent a serious complication after surgery. The enhancement of osteointegration can be achieved by using bioconductive materials that promote biological responses in the body, stimulating bone growth and thus bonding to tissue. Through the incorporation of antibacterial substances in bioconductive, biodegradable calcium phosphate (CaP) coatings, faster osteointegration and bactericidal properties can be achieved. In this study, Cu-doped CaP supraparticles are spray-dried and suspension-sprayed CaP ceramic coatings with antibacterial properties are prepared using high-velocity suspension flame spraying (HVSFS). The objective was to increase the coatings' porosity and investigate which Cu-doped supraparticles have the strongest antibacterial properties when introduced into the coating layers. Biocompatibility was tested on human Osteosarcoma cells MG63. A porosity of at least 13% was achieved and the supraparticles could be implemented, enhancing it up to 16%. The results showed that the addition of Cu-doped supraparticles did not significantly reduce the number of viable cells compared to the Cu-free sample, demonstrating good biocompatibility. The antimicrobial activity was assessed against the bacterial strains <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>, with Safe Airborne Antibacterial testing showing a significant reduction in both Gram-positive and Gram-negative strains on the Cu-doped coatings.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509040/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emily Ann Todd, Nicholas A Mirsky, Bruno Luís Graciliano Silva, Ankita Raja Shinde, Aris R L Arakelians, Vasudev Vivekanand Nayak, Rosemary Adriana Chiérici Marcantonio, Nikhil Gupta, Lukasz Witek, Paulo G Coelho
Bone tissue regeneration is a rapidly evolving field aimed at the development of biocompatible materials and devices, such as scaffolds, to treat diseased and damaged osseous tissue. Functional scaffolds maintain structural integrity and provide mechanical support at the defect site during the healing process, while simultaneously enabling or improving regeneration through amplified cellular cues between the scaffold and native tissues. Ample research on functionalization has been conducted to improve scaffold-host tissue interaction, including fabrication techniques, biomaterial selection, scaffold surface modifications, integration of bioactive molecular additives, and post-processing modifications. Each of these methods plays a crucial role in enabling scaffolds to not only support but actively participate in the healing and regeneration process in bone and joint surgery. This review provides a state-of-the-art, comprehensive overview of the functionalization of scaffold-based strategies used in tissue engineering, specifically for bone regeneration. Critical issues and obstacles are highlighted, applications and advances are described, and future directions are identified.
{"title":"Functional Scaffolds for Bone Tissue Regeneration: A Comprehensive Review of Materials, Methods, and Future Directions.","authors":"Emily Ann Todd, Nicholas A Mirsky, Bruno Luís Graciliano Silva, Ankita Raja Shinde, Aris R L Arakelians, Vasudev Vivekanand Nayak, Rosemary Adriana Chiérici Marcantonio, Nikhil Gupta, Lukasz Witek, Paulo G Coelho","doi":"10.3390/jfb15100280","DOIUrl":"https://doi.org/10.3390/jfb15100280","url":null,"abstract":"<p><p>Bone tissue regeneration is a rapidly evolving field aimed at the development of biocompatible materials and devices, such as scaffolds, to treat diseased and damaged osseous tissue. Functional scaffolds maintain structural integrity and provide mechanical support at the defect site during the healing process, while simultaneously enabling or improving regeneration through amplified cellular cues between the scaffold and native tissues. Ample research on functionalization has been conducted to improve scaffold-host tissue interaction, including fabrication techniques, biomaterial selection, scaffold surface modifications, integration of bioactive molecular additives, and post-processing modifications. Each of these methods plays a crucial role in enabling scaffolds to not only support but actively participate in the healing and regeneration process in bone and joint surgery. This review provides a state-of-the-art, comprehensive overview of the functionalization of scaffold-based strategies used in tissue engineering, specifically for bone regeneration. Critical issues and obstacles are highlighted, applications and advances are described, and future directions are identified.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509029/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiangyu Wang, Mai Murase, Yuka I Sumita, Ryoichi Notake, Masako Akiyama, Ryoichi Yoshimura, Noriyuki Wakabayashi
3D printing is increasingly used in dentistry, with biocompatible resins playing a key role. This study compared the radioprotective properties of a commonly used 3D-printed resin (Formlabs surgical guide resin) with traditional heat-cured resin and examined the relationship between material thickness and radiation attenuation. The specimens consisted of 3D-printed and heat-cured resin specimens, each measuring 45 × 45 mm2, with five different thicknesses (6, 8, 10, 12, and 14 mm), totaling 100 samples. Both types of resin specimens underwent testing with 150 MU external beam radiation therapy (EBRT) and 400 cGy brachytherapy. Radiation experiments indicated that under EBRT conditions, there were no significant differences in radiation attenuation between the 3D-printed and heat-cured resins across all thickness groups. In brachytherapy, the attenuation of the 3D-printed resin was significantly lower than the heat-cured resin in the 6 mm and 8 mm groups. Specifically, attenuation rates were 48.0 ± 0.7 (3D-printed) vs. 45.2 ± 1.9 (heat-cured) in the 6 mm group, and 39.6 ± 1.3 vs. 37.5 ± 1.1 in the 8 mm group. Both resins showed significant positive linear correlations between thickness and attenuation (p < 0.001) within 6-14 mm. Thus, 3D-printed resin shows promising radioprotective properties and is a viable alternative to traditional heat-cured resin.
{"title":"Radioprotection Performance Evaluation of 3D-Printed and Conventional Heat-Cured Dental Resins for Radiotherapy Prostheses.","authors":"Jiangyu Wang, Mai Murase, Yuka I Sumita, Ryoichi Notake, Masako Akiyama, Ryoichi Yoshimura, Noriyuki Wakabayashi","doi":"10.3390/jfb15100282","DOIUrl":"https://doi.org/10.3390/jfb15100282","url":null,"abstract":"<p><p>3D printing is increasingly used in dentistry, with biocompatible resins playing a key role. This study compared the radioprotective properties of a commonly used 3D-printed resin (Formlabs surgical guide resin) with traditional heat-cured resin and examined the relationship between material thickness and radiation attenuation. The specimens consisted of 3D-printed and heat-cured resin specimens, each measuring 45 × 45 mm<sup>2</sup>, with five different thicknesses (6, 8, 10, 12, and 14 mm), totaling 100 samples. Both types of resin specimens underwent testing with 150 MU external beam radiation therapy (EBRT) and 400 cGy brachytherapy. Radiation experiments indicated that under EBRT conditions, there were no significant differences in radiation attenuation between the 3D-printed and heat-cured resins across all thickness groups. In brachytherapy, the attenuation of the 3D-printed resin was significantly lower than the heat-cured resin in the 6 mm and 8 mm groups. Specifically, attenuation rates were 48.0 ± 0.7 (3D-printed) vs. 45.2 ± 1.9 (heat-cured) in the 6 mm group, and 39.6 ± 1.3 vs. 37.5 ± 1.1 in the 8 mm group. Both resins showed significant positive linear correlations between thickness and attenuation (<i>p</i> < 0.001) within 6-14 mm. Thus, 3D-printed resin shows promising radioprotective properties and is a viable alternative to traditional heat-cured resin.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508738/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana Elisabeth Olivares-Hernandez, Miguel Angel Olivares-Robles, Juan Vicente Méndez-Méndez, Claudia Gutiérrez-Camacho
Wear on the surface of the femoral head increases the risk of hip and femur fractures. Biomechanical experiments conducted on the femur are based on its bending and torsional rigidities. Studies regarding the deflection of the femur bone when the femoral head is coated with microfilms composed of durable and compatible biomaterials are poor. This study aimed to investigate the effects of different biomaterial microfilm coatings over the femoral head on the deflection of the human femur. We utilized 2023 R1 finite element analysis (FEA) software to model the directional deformation on the femoral head and examine the femur's deflection with varying microfilm thicknesses. The deflection of the femur bone was reported when the femoral head was uncoated and coated with titanium, stainless steel, and pure gold microfilms of different thicknesses (namely, 50, 75, and 100 μm). Our results show that the femur's minimum and maximum deflection occurred for stainless steel and gold, respectively. The deformation of the femur was lower when the femoral head was coated with a 50-micrometer microfilm of stainless steel, compared to the deformation obtained with gold and titanium. When the thickness of the microfilm for each of the materials was increased, the deformation continued to decrease. The minimum deformation of the femur occurred for a thickness of 100 μm with stainless steel, followed by titanium and gold. The difference in the directional deformation of the femur between the materials was more significant when the coating was 100 μm, compared to the thicknesses of 50 and 75 μm. The findings of this study are expected to significantly contribute to the development of advanced medical techniques to enhance the quality of life for patients with femur bone-related issues. This information can be used to develop more resilient coatings that can withstand wear and tear.
{"title":"Microfilm Coatings: A Biomaterial-Based Strategy for Modulating Femoral Deflection.","authors":"Ana Elisabeth Olivares-Hernandez, Miguel Angel Olivares-Robles, Juan Vicente Méndez-Méndez, Claudia Gutiérrez-Camacho","doi":"10.3390/jfb15100283","DOIUrl":"https://doi.org/10.3390/jfb15100283","url":null,"abstract":"<p><p>Wear on the surface of the femoral head increases the risk of hip and femur fractures. Biomechanical experiments conducted on the femur are based on its bending and torsional rigidities. Studies regarding the deflection of the femur bone when the femoral head is coated with microfilms composed of durable and compatible biomaterials are poor. This study aimed to investigate the effects of different biomaterial microfilm coatings over the femoral head on the deflection of the human femur. We utilized 2023 R1 finite element analysis (FEA) software to model the directional deformation on the femoral head and examine the femur's deflection with varying microfilm thicknesses. The deflection of the femur bone was reported when the femoral head was uncoated and coated with titanium, stainless steel, and pure gold microfilms of different thicknesses (namely, 50, 75, and 100 μm). Our results show that the femur's minimum and maximum deflection occurred for stainless steel and gold, respectively. The deformation of the femur was lower when the femoral head was coated with a 50-micrometer microfilm of stainless steel, compared to the deformation obtained with gold and titanium. When the thickness of the microfilm for each of the materials was increased, the deformation continued to decrease. The minimum deformation of the femur occurred for a thickness of 100 μm with stainless steel, followed by titanium and gold. The difference in the directional deformation of the femur between the materials was more significant when the coating was 100 μm, compared to the thicknesses of 50 and 75 μm. The findings of this study are expected to significantly contribute to the development of advanced medical techniques to enhance the quality of life for patients with femur bone-related issues. This information can be used to develop more resilient coatings that can withstand wear and tear.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508653/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fabio Camacho-Alonso, Osmundo Gilbel-Del Águila, Paula Ferrer-Díaz, David Peñarrocha-Oltra, Yolanda Guerrero-Sánchez, Juan Carlos Bernabeu-Mira
This study involved a randomized clinical trial that included 140 patients. Alveolar ridge preservation was performed with xenografts. Sealing in the control group consisted of a collagen membrane versus cyanoacrylate in the test group. The dental implants were placed immediately after extraction. The variables were evaluated at 3, 12, and 18 months of follow-up. Pearson's chi-squared test was used for qualitative variables and the Student t-test for related samples was used for quantitative variables. The change in buccolingual alveolar bone width was significantly greater in the CMX group than in the CX group after three months (p < 0.005). However, significance was not reached at the other follow-up timepoints (p > 0.005). CAL showed significantly greater values in the CMX group than in the CX group (p < 0.005), and MBL proved greater in the CMX group than in the CX group, with p < 0.001. Five membrane exposures were recorded in the CMX group. Cyanoacrylate as a sealing method for alveolar ridge preservation seems to afford better clinical and radiological results than collagen membrane.
{"title":"Cyanoacrylate versus Collagen Membrane as a Sealing for Alveolar Ridge Preservation: A Randomized Clinical Trial.","authors":"Fabio Camacho-Alonso, Osmundo Gilbel-Del Águila, Paula Ferrer-Díaz, David Peñarrocha-Oltra, Yolanda Guerrero-Sánchez, Juan Carlos Bernabeu-Mira","doi":"10.3390/jfb15100279","DOIUrl":"https://doi.org/10.3390/jfb15100279","url":null,"abstract":"<p><p>This study involved a randomized clinical trial that included 140 patients. Alveolar ridge preservation was performed with xenografts. Sealing in the control group consisted of a collagen membrane versus cyanoacrylate in the test group. The dental implants were placed immediately after extraction. The variables were evaluated at 3, 12, and 18 months of follow-up. Pearson's chi-squared test was used for qualitative variables and the Student t-test for related samples was used for quantitative variables. The change in buccolingual alveolar bone width was significantly greater in the CMX group than in the CX group after three months (<i>p</i> < 0.005). However, significance was not reached at the other follow-up timepoints (<i>p</i> > 0.005). CAL showed significantly greater values in the CMX group than in the CX group (<i>p</i> < 0.005), and MBL proved greater in the CMX group than in the CX group, with <i>p</i> < 0.001. Five membrane exposures were recorded in the CMX group. Cyanoacrylate as a sealing method for alveolar ridge preservation seems to afford better clinical and radiological results than collagen membrane.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508997/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer is one of the major threats to human health and lives. However, effective cancer treatments remain a great challenge in clinical medicine. As a common approach for cancer treatment, chemotherapy has saved the life of millions of people; however, patients who have gone through chemotherapy often suffer from severe side effects owing to the inherent cytotoxicity of anti-cancer drugs. Stabilizing the blood concentration of an anti-cancer drug will reduce the occurrence or severity of side effects, and relies on using an appropriate drug delivery system (DDS) for achieving sustained or even on-demand drug delivery. However, this is still an unmet clinical challenge since the mainstay of anti-cancer drugs is small molecules, which tend to be diffused rapidly in the body, and conventional DDSs exhibit the burst release phenomenon. Here, we establish a class of DDSs based on biodegradable core-shell microspheres with encapsulated doxorubicin hydrochloride-loaded gold nanoparticles (DOX@Au@MSs), with the core-shell microspheres being made of poly(lactic-co-glycolic acid) in the current study. By harnessing the physical barrier of the biodegradable shell of core-shell microspheres, DOX@Au@MSs can provide a sustained release of the anti-cancer drug in the test duration (which is 21 days in the current study). Thanks to the photothermal properties of the encapsulated gold nanoparticle carriers, the core-shell biodegradable microspheres can be ruptured through remotely controlled near-infrared (NIR) light, thereby achieving an NIR-controlled triggered release of the anti-cancer drug. Furthermore, the route of the DOX-Au@MS-enabled controlled release of the anti-cancer drug can provide durable cancer cell ablation for the long period of 72 h.
{"title":"Core-Shell Microspheres with Encapsulated Gold Nanoparticle Carriers for Controlled Release of Anti-Cancer Drugs.","authors":"Lin Guo, Qilong Zhao, Min Wang","doi":"10.3390/jfb15100277","DOIUrl":"https://doi.org/10.3390/jfb15100277","url":null,"abstract":"<p><p>Cancer is one of the major threats to human health and lives. However, effective cancer treatments remain a great challenge in clinical medicine. As a common approach for cancer treatment, chemotherapy has saved the life of millions of people; however, patients who have gone through chemotherapy often suffer from severe side effects owing to the inherent cytotoxicity of anti-cancer drugs. Stabilizing the blood concentration of an anti-cancer drug will reduce the occurrence or severity of side effects, and relies on using an appropriate drug delivery system (DDS) for achieving sustained or even on-demand drug delivery. However, this is still an unmet clinical challenge since the mainstay of anti-cancer drugs is small molecules, which tend to be diffused rapidly in the body, and conventional DDSs exhibit the burst release phenomenon. Here, we establish a class of DDSs based on biodegradable core-shell microspheres with encapsulated doxorubicin hydrochloride-loaded gold nanoparticles (DOX@Au@MSs), with the core-shell microspheres being made of poly(lactic-co-glycolic acid) in the current study. By harnessing the physical barrier of the biodegradable shell of core-shell microspheres, DOX@Au@MSs can provide a sustained release of the anti-cancer drug in the test duration (which is 21 days in the current study). Thanks to the photothermal properties of the encapsulated gold nanoparticle carriers, the core-shell biodegradable microspheres can be ruptured through remotely controlled near-infrared (NIR) light, thereby achieving an NIR-controlled triggered release of the anti-cancer drug. Furthermore, the route of the DOX-Au@MS-enabled controlled release of the anti-cancer drug can provide durable cancer cell ablation for the long period of 72 h.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509066/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Se Hoon Kahm, Sang Hwa Lee, Youbong Lim, Hyun Jeong Jeon, Kyoung-In Yun
Previous studies have highlighted the need for post-treatment of implants due to surface aging. This study investigated the effect of vacuum plasma (VP) treatment on the osseointegration of sandblasted, large grit, acid-etched (SLA) implant surfaces. The hypothesis was that VP might enhance implant stability, measured by implant stability quotient (ISQ) and histological osseointegration through bone-to-implant contact (BIC) and bone area ratio (BA) in rabbit models. Eighteen implants were either untreated or treated with VP and installed into the femurs of six rabbits, which were sacrificed after four weeks. Histological analyses of BIC and BA, along with micro-CT analysis of bone volume and ISQ, were performed. The VP-treated group showed higher levels of BA, bone volume, and ISQ, but no statistically significant differences were observed between the control and experimental groups. Despite limitations, both groups achieved better osseointegration and regeneration, warranting further studies on plasma treatment effects over varying implantation periods.
{"title":"Osseointegration of Dental Implants after Vacuum Plasma Surface Treatment In Vivo.","authors":"Se Hoon Kahm, Sang Hwa Lee, Youbong Lim, Hyun Jeong Jeon, Kyoung-In Yun","doi":"10.3390/jfb15100278","DOIUrl":"https://doi.org/10.3390/jfb15100278","url":null,"abstract":"<p><p>Previous studies have highlighted the need for post-treatment of implants due to surface aging. This study investigated the effect of vacuum plasma (VP) treatment on the osseointegration of sandblasted, large grit, acid-etched (SLA) implant surfaces. The hypothesis was that VP might enhance implant stability, measured by implant stability quotient (ISQ) and histological osseointegration through bone-to-implant contact (BIC) and bone area ratio (BA) in rabbit models. Eighteen implants were either untreated or treated with VP and installed into the femurs of six rabbits, which were sacrificed after four weeks. Histological analyses of BIC and BA, along with micro-CT analysis of bone volume and ISQ, were performed. The VP-treated group showed higher levels of BA, bone volume, and ISQ, but no statistically significant differences were observed between the control and experimental groups. Despite limitations, both groups achieved better osseointegration and regeneration, warranting further studies on plasma treatment effects over varying implantation periods.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508880/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanrui Luo, Hongtao Sheng, Yong Zhou, Li Min, Chongqi Tu, Yi Luo
This study aimed to evaluate the biomechanical compatibility of a modular hemipelvic prosthesis by comparing stress distributions between an implanted pelvis and a healthy pelvis. Finite element analysis was used to simulate bilateral standing loads on both models, analyzing critical regions such as the sacroiliac joints, iliac crest, acetabulum, and prosthesis connection points. Six models with varied displacements of the hip joint rotational center were also introduced to assess the impact of deviations on stress distribution. The implanted pelvis had a stress distribution closely matching that of the intact pelvis, indicating that the prosthesis design maintained the biomechanical integrity of the pelvis. Stress patterns in displacement models with deviations of less than 10 mm were similar to the standard model, with only minor changes in stress magnitude. However, backward, upward, and inward deviations resulted in stress concentrations, particularly in the prosthesis connection points, increasing the likelihood of mechanical failure. The modular hemipelvic prosthesis demonstrated good biomechanical compatibility with minimal impact on pelvic stress distribution, even with moderate deviations in the hip joint's rotational center; outward, forward, and downward displacements are preferable to minimize stress concentration and prevent implant failure in cases where minor deviations in the rotational center are unavoidable during surgery.
{"title":"Modular Hemipelvic Prosthesis Preserves Normal Biomechanics and Showed Good Compatibility: A Finite Element Analysis.","authors":"Yuanrui Luo, Hongtao Sheng, Yong Zhou, Li Min, Chongqi Tu, Yi Luo","doi":"10.3390/jfb15090276","DOIUrl":"https://doi.org/10.3390/jfb15090276","url":null,"abstract":"<p><p>This study aimed to evaluate the biomechanical compatibility of a modular hemipelvic prosthesis by comparing stress distributions between an implanted pelvis and a healthy pelvis. Finite element analysis was used to simulate bilateral standing loads on both models, analyzing critical regions such as the sacroiliac joints, iliac crest, acetabulum, and prosthesis connection points. Six models with varied displacements of the hip joint rotational center were also introduced to assess the impact of deviations on stress distribution. The implanted pelvis had a stress distribution closely matching that of the intact pelvis, indicating that the prosthesis design maintained the biomechanical integrity of the pelvis. Stress patterns in displacement models with deviations of less than 10 mm were similar to the standard model, with only minor changes in stress magnitude. However, backward, upward, and inward deviations resulted in stress concentrations, particularly in the prosthesis connection points, increasing the likelihood of mechanical failure. The modular hemipelvic prosthesis demonstrated good biomechanical compatibility with minimal impact on pelvic stress distribution, even with moderate deviations in the hip joint's rotational center; outward, forward, and downward displacements are preferable to minimize stress concentration and prevent implant failure in cases where minor deviations in the rotational center are unavoidable during surgery.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433228/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Veena Wenqing Xu, Mohammed Zahedul Islam Nizami, Iris Xiaoxue Yin, John Yun Niu, Ollie Yiru Yu, Chun-Hung Chu
This study examined research interest in copper materials for caries management. We conducted an exhaustive literature search of English publications on copper materials for caries management. We removed duplicate publications and screened the titles and abstracts to identify relevant publications. Then, we analyzed the bibliometric data of the publications using the Bibliometrix and VOSviewer programs. This study included 75 laboratory studies, six clinical trials, and 17 reviews. Most of the original research studied copper or copper oxide nanoparticles (45/81, 56%). The materials could be doped into topical agents, restorative fillers, dental adhesives, dental implants, and orthodontic appliances. Since the first paper was published in 1980, publication counts gradually increased and surged in 2019. Among publications on copper materials for caries management, the publication counts and citations from 2019 to 2024 accounted for 65% (64/98) and 74% (1677/2255) over the last 45 years. Cocitation analysis revealed that the two main keywords were nanoparticles and antibacterial activity, and their burst strengths (period) were 3.84 (2021-2024) and 2.21 (2020-2021). The topics of the top two publications with the highest citation burst strength (period) are the antimicrobial effect of copper oxide nanoparticles (3.14, 2021-2022) and the dental application of copper nanoparticles (2.84, 2022-2024). In conclusion, this study revealed a growing interest in copper materials for caries management.
{"title":"Research Interest in Copper Materials for Caries Management: A Bibliometric Analysis.","authors":"Veena Wenqing Xu, Mohammed Zahedul Islam Nizami, Iris Xiaoxue Yin, John Yun Niu, Ollie Yiru Yu, Chun-Hung Chu","doi":"10.3390/jfb15090274","DOIUrl":"https://doi.org/10.3390/jfb15090274","url":null,"abstract":"<p><p>This study examined research interest in copper materials for caries management. We conducted an exhaustive literature search of English publications on copper materials for caries management. We removed duplicate publications and screened the titles and abstracts to identify relevant publications. Then, we analyzed the bibliometric data of the publications using the Bibliometrix and VOSviewer programs. This study included 75 laboratory studies, six clinical trials, and 17 reviews. Most of the original research studied copper or copper oxide nanoparticles (45/81, 56%). The materials could be doped into topical agents, restorative fillers, dental adhesives, dental implants, and orthodontic appliances. Since the first paper was published in 1980, publication counts gradually increased and surged in 2019. Among publications on copper materials for caries management, the publication counts and citations from 2019 to 2024 accounted for 65% (64/98) and 74% (1677/2255) over the last 45 years. Cocitation analysis revealed that the two main keywords were nanoparticles and antibacterial activity, and their burst strengths (period) were 3.84 (2021-2024) and 2.21 (2020-2021). The topics of the top two publications with the highest citation burst strength (period) are the antimicrobial effect of copper oxide nanoparticles (3.14, 2021-2022) and the dental application of copper nanoparticles (2.84, 2022-2024). In conclusion, this study revealed a growing interest in copper materials for caries management.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433046/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surgical sutures play a crucial role in wound closure, facilitating the tissue-healing process across various fields of medicine. The objective of this study was to analyse the impact of seasoning time during the initial days/weeks of seasoning in Ringer's solution on the mechanical properties of five commercial absorbable sutures: SafilQuick+®, Novosyn®, MonosynQuick®, Monosyn® and Monoplus®, each with different absorption periods. The results demonstrated that the SafilQuick+ and MonosynQuick sutures lost strength within 9-12 days, as evidenced by statistically significant changes in tensile strength. In contrast, the Novosyn and Monoplus sutures did not exhibit significant changes in strength during the study period. Statistical analysis confirmed significant differences in the behaviour of the individual sutures, highlighting the importance of selecting appropriate suture material in the context of the specific medical procedure.
{"title":"Short-Term Hydrolytic Degradation of Mechanical Properties of Absorbable Surgical Sutures: A Comparative Study.","authors":"Jakub Szabelski, Robert Karpiński","doi":"10.3390/jfb15090273","DOIUrl":"https://doi.org/10.3390/jfb15090273","url":null,"abstract":"<p><p>Surgical sutures play a crucial role in wound closure, facilitating the tissue-healing process across various fields of medicine. The objective of this study was to analyse the impact of seasoning time during the initial days/weeks of seasoning in Ringer's solution on the mechanical properties of five commercial absorbable sutures: SafilQuick+<sup>®</sup>, Novosyn<sup>®</sup>, MonosynQuick<sup>®</sup>, Monosyn<sup>®</sup> and Monoplus<sup>®</sup>, each with different absorption periods. The results demonstrated that the SafilQuick+ and MonosynQuick sutures lost strength within 9-12 days, as evidenced by statistically significant changes in tensile strength. In contrast, the Novosyn and Monoplus sutures did not exhibit significant changes in strength during the study period. Statistical analysis confirmed significant differences in the behaviour of the individual sutures, highlighting the importance of selecting appropriate suture material in the context of the specific medical procedure.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11432777/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}