Plant physiology and metabolism rely on the function of stomata, structures on the surface of above-ground organs that facilitate the exchange of gases with the atmosphere. The morphology of the guard cells and corresponding pore that make up the stomata, as well as the density (number per unit area), are critical in determining overall gas exchange capacity. These characteristics can be quantified visually from images captured using microscopy, traditionally relying on time-consuming manual analysis. However, deep learning (DL) models provide a promising route to increase the throughput and accuracy of plant phenotyping tasks, including stomatal analysis. Here we review the published literature on the application of DL for stomatal analysis. We discuss the variation in pipelines used, from data acquisition, pre-processing, DL architecture, and output evaluation to post-processing. We introduce the most common network structures, the plant species that have been studied, and the measurements that have been performed. Through this review, we hope to promote the use of DL methods for plant phenotyping tasks and highlight future requirements to optimize uptake, predominantly focusing on the sharing of datasets and generalization of models as well as the caveats associated with utilizing image data to infer physiological function.
{"title":"Application of deep learning for the analysis of stomata: a review of current methods and future directions.","authors":"Jonathon A Gibbs, Alexandra J Burgess","doi":"10.1093/jxb/erae207","DOIUrl":"10.1093/jxb/erae207","url":null,"abstract":"<p><p>Plant physiology and metabolism rely on the function of stomata, structures on the surface of above-ground organs that facilitate the exchange of gases with the atmosphere. The morphology of the guard cells and corresponding pore that make up the stomata, as well as the density (number per unit area), are critical in determining overall gas exchange capacity. These characteristics can be quantified visually from images captured using microscopy, traditionally relying on time-consuming manual analysis. However, deep learning (DL) models provide a promising route to increase the throughput and accuracy of plant phenotyping tasks, including stomatal analysis. Here we review the published literature on the application of DL for stomatal analysis. We discuss the variation in pipelines used, from data acquisition, pre-processing, DL architecture, and output evaluation to post-processing. We introduce the most common network structures, the plant species that have been studied, and the measurements that have been performed. Through this review, we hope to promote the use of DL methods for plant phenotyping tasks and highlight future requirements to optimize uptake, predominantly focusing on the sharing of datasets and generalization of models as well as the caveats associated with utilizing image data to infer physiological function.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"6704-6718"},"PeriodicalIF":8.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565211/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140876581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John N Ferguson, Peter Schmuker, Anna Dmitrieva, Truyen Quach, Tieling Zhang, Zhengxiang Ge, Natalya Nersesian, Shirley J Sato, Tom E Clemente, Andrew D B Leakey
Enhancing crop water use efficiency (WUE) is a key target trait for climatic resilience and expanding cultivation on marginal lands. Engineering lower stomatal density to reduce stomatal conductance (gs) has improved WUE in multiple C3 crop species. However, reducing gs in C3 species often reduces photosynthetic carbon gain. A different response is expected in C4 plants because they possess specialized anatomy and biochemistry which concentrates CO2 at the site of fixation. This modifies the relationship of photosynthesis (AN) with intracellular CO2 concentration (ci), such that photosynthesis is CO2 saturated and reductions in gs are unlikely to limit AN. To test this hypothesis, genetic strategies were investigated to reduce stomatal density in the C4 crop sorghum. Constitutive expression of a synthetic epidermal patterning factor (EPF) transgenic allele in sorghum led to reduced stomatal densities, reduced gs, reduced plant water use, and avoidance of stress during a period of water deprivation. In addition, moderate reduction in stomatal density did not increase stomatal limitation to AN. However, these positive outcomes were associated with negative pleiotropic effects on reproductive development and photosynthetic capacity. Avoiding pleiotropy by targeting expression of the transgene to specific tissues could provide a pathway to improved agronomic outcomes.
{"title":"Reducing stomatal density by expression of a synthetic epidermal patterning factor increases leaf intrinsic water use efficiency and reduces plant water use in a C4 crop.","authors":"John N Ferguson, Peter Schmuker, Anna Dmitrieva, Truyen Quach, Tieling Zhang, Zhengxiang Ge, Natalya Nersesian, Shirley J Sato, Tom E Clemente, Andrew D B Leakey","doi":"10.1093/jxb/erae289","DOIUrl":"10.1093/jxb/erae289","url":null,"abstract":"<p><p>Enhancing crop water use efficiency (WUE) is a key target trait for climatic resilience and expanding cultivation on marginal lands. Engineering lower stomatal density to reduce stomatal conductance (gs) has improved WUE in multiple C3 crop species. However, reducing gs in C3 species often reduces photosynthetic carbon gain. A different response is expected in C4 plants because they possess specialized anatomy and biochemistry which concentrates CO2 at the site of fixation. This modifies the relationship of photosynthesis (AN) with intracellular CO2 concentration (ci), such that photosynthesis is CO2 saturated and reductions in gs are unlikely to limit AN. To test this hypothesis, genetic strategies were investigated to reduce stomatal density in the C4 crop sorghum. Constitutive expression of a synthetic epidermal patterning factor (EPF) transgenic allele in sorghum led to reduced stomatal densities, reduced gs, reduced plant water use, and avoidance of stress during a period of water deprivation. In addition, moderate reduction in stomatal density did not increase stomatal limitation to AN. However, these positive outcomes were associated with negative pleiotropic effects on reproductive development and photosynthetic capacity. Avoiding pleiotropy by targeting expression of the transgene to specific tissues could provide a pathway to improved agronomic outcomes.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"6823-6836"},"PeriodicalIF":8.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565208/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141633683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cause-and-effect arrows are drawn from genotype (G), environment (E), and agronomic management (M) to the plant phenotype in crop stands in a useful but incomplete framework that informs research questions, experimental design, statistical analysis, data interpretation, modelling, and breeding and agronomic applications. Here we focus on the overlooked bidirectionality of these arrows. The phenotype-to-genotype arrow includes increased mutation rates in stressed phenotypes, relative to basal rates. From a developmental viewpoint, the phenotype modulates gene expression returning multiple cellular phenotypes with a common genome. The phenotype-to-environment arrow is captured in the process of niche construction, which spans from persistent and global to transient and local. Research on crop rotations recognises the influence of the phenotype on the environment but is divorced of niche construction theory. The phenotype-to-management arrow involves, for example, a diseased crop that may trigger fungicide treatment. Making explicit the bidirectionality of the arrows in the G × E × M framework contributes to narrowing the gap between data-driven technologies and integrative theory and is an invitation to cautiously think of the internal teleonomy of plants in contrast to the view of the phenotype as the passive end of the arrows in the current framework.
从基因型(G)、环境(E)和农艺管理(M)到作物植株表型的因果箭头是一个有用但不完整的框架,它为研究问题、实验设计、统计分析、数据解释、建模以及育种和农艺应用提供了信息。在此,我们将重点关注这些箭头被忽视的双向性。从表型到基因型的箭头包括受压表型的突变率相对于基础突变率的增加。从发育的角度来看,表型会调节基因表达,使多个细胞表型回归共同的基因组。表型-环境箭头体现在生态位构建过程中,从持久的、全球性的到短暂的、局部的。轮作研究承认表型对环境的影响,但却脱离了生态位构建理论。例如,表型到管理的箭头涉及可能引发杀菌剂处理的病害作物。明确 G × E × M 框架中箭头的双向性,有助于缩小数据驱动技术与综合理论之间的差距,也有助于谨慎地思考植物的内部远程控制,而不是将表型视为当前框架中箭头的被动端。
{"title":"The causal arrows from genotype, environment and management to plant phenotype are double headed.","authors":"Victor O Sadras, Peter T Hayman","doi":"10.1093/jxb/erae455","DOIUrl":"https://doi.org/10.1093/jxb/erae455","url":null,"abstract":"<p><p>Cause-and-effect arrows are drawn from genotype (G), environment (E), and agronomic management (M) to the plant phenotype in crop stands in a useful but incomplete framework that informs research questions, experimental design, statistical analysis, data interpretation, modelling, and breeding and agronomic applications. Here we focus on the overlooked bidirectionality of these arrows. The phenotype-to-genotype arrow includes increased mutation rates in stressed phenotypes, relative to basal rates. From a developmental viewpoint, the phenotype modulates gene expression returning multiple cellular phenotypes with a common genome. The phenotype-to-environment arrow is captured in the process of niche construction, which spans from persistent and global to transient and local. Research on crop rotations recognises the influence of the phenotype on the environment but is divorced of niche construction theory. The phenotype-to-management arrow involves, for example, a diseased crop that may trigger fungicide treatment. Making explicit the bidirectionality of the arrows in the G × E × M framework contributes to narrowing the gap between data-driven technologies and integrative theory and is an invitation to cautiously think of the internal teleonomy of plants in contrast to the view of the phenotype as the passive end of the arrows in the current framework.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142639059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joseph D Crawford, Robert J Twohey, Varsha S Pathare, Anthony J Studer, Asaph B Cousins
The ratio of net CO2 uptake (Anet) and stomatal conductance (gs) is an intrinsic measurement of leaf water use efficiency (WUEi); however, its measurement can be challenging for large phenotypic screens. Measurements of the leaf carbon isotope composition (δ13Cleaf) may be a scalable tool to approximate WUEi for screening because it in part reflects the competing influences of Anet and gs on the CO2 partial pressure (pCO2) inside the leaf over time. However, in C4 photosynthesis, the CO2-concentrating mechanism complicates the relationship between δ13Cleaf and WUEi. Despite this complicated relationship, several studies have shown genetic variation in δ13Cleaf across C4 plants. Yet there has not been a clear demonstration of if Anet or gs are the causal mechanisms controlling WUEi and δ13Cleaf. Our approach was to characterize leaf photosynthetic traits of two Zea mays recombinant inbred lines (Z007E0067 and Z007E0150) which consistently differ for δ13Cleaf even though they have minimal confounding genetic differences. We demonstrate that these two genotypes contrasted in WUEi driven by differences in the speed of stomatal responses to changes in pCO2 and light that lead to unproductive leaf water loss. These findings provide support that differences in δ13Cleaf in closely related genotypes do reflect greater WUEi and further suggest that differences in stomatal kinetic response to changing environmental conditions is a key target to improve WUEi.
{"title":"Differences in stomatal sensitivity to CO2 and light influence variation in water use efficiency and leaf carbon isotope composition in two genotypes of the C4 plant Zea mays.","authors":"Joseph D Crawford, Robert J Twohey, Varsha S Pathare, Anthony J Studer, Asaph B Cousins","doi":"10.1093/jxb/erae286","DOIUrl":"10.1093/jxb/erae286","url":null,"abstract":"<p><p>The ratio of net CO2 uptake (Anet) and stomatal conductance (gs) is an intrinsic measurement of leaf water use efficiency (WUEi); however, its measurement can be challenging for large phenotypic screens. Measurements of the leaf carbon isotope composition (δ13Cleaf) may be a scalable tool to approximate WUEi for screening because it in part reflects the competing influences of Anet and gs on the CO2 partial pressure (pCO2) inside the leaf over time. However, in C4 photosynthesis, the CO2-concentrating mechanism complicates the relationship between δ13Cleaf and WUEi. Despite this complicated relationship, several studies have shown genetic variation in δ13Cleaf across C4 plants. Yet there has not been a clear demonstration of if Anet or gs are the causal mechanisms controlling WUEi and δ13Cleaf. Our approach was to characterize leaf photosynthetic traits of two Zea mays recombinant inbred lines (Z007E0067 and Z007E0150) which consistently differ for δ13Cleaf even though they have minimal confounding genetic differences. We demonstrate that these two genotypes contrasted in WUEi driven by differences in the speed of stomatal responses to changes in pCO2 and light that lead to unproductive leaf water loss. These findings provide support that differences in δ13Cleaf in closely related genotypes do reflect greater WUEi and further suggest that differences in stomatal kinetic response to changing environmental conditions is a key target to improve WUEi.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"6748-6761"},"PeriodicalIF":8.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Lunn, Baskaran Kannan, Amandine Germon, Alistair Leverett, Tom E Clemente, Fredy Altpeter, Andrew D B Leakey
Stomata regulate CO2 and water vapor exchange between leaves and the atmosphere. Stomata are a target for engineering to improve crop intrinsic water use efficiency (iWUE). One example is by expressing genes that lower stomatal density (SD) and reduce stomatal conductance (gsw). However, the quantitative relationship between reduced SD, gsw, and the mechanisms underlying it is poorly understood. We addressed this knowledge gap using low-SD sugarcane (Saccharum spp. hybrid) as a case study alongside a meta-analysis of data from 10 species. Transgenic expression of EPIDERMAL PATTERNING FACTOR 2 from Sorghum bicolor (SbEPF2) in sugarcane reduced SD by 26-38% but did not affect gsw compared with the wild type. Further, no changes occurred in stomatal complex size or proxies for photosynthetic capacity. Measurements of gas exchange at low CO2 concentrations that promote complete stomatal opening to normalize aperture size between genotypes were combined with modeling of maximum gsw from anatomical data. These data suggest that increased stomatal aperture is the only possible explanation for maintaining gsw when SD is reduced. Meta-analysis across C3 dicots, C3 monocots, and C4 monocots revealed that engineered reductions in SD are strongly correlated with lower gsw (r2=0.60-0.98), but this response is damped relative to the change in anatomy.
{"title":"Greater aperture counteracts effects of reduced stomatal density on water use efficiency: a case study on sugarcane and meta-analysis.","authors":"Daniel Lunn, Baskaran Kannan, Amandine Germon, Alistair Leverett, Tom E Clemente, Fredy Altpeter, Andrew D B Leakey","doi":"10.1093/jxb/erae271","DOIUrl":"10.1093/jxb/erae271","url":null,"abstract":"<p><p>Stomata regulate CO2 and water vapor exchange between leaves and the atmosphere. Stomata are a target for engineering to improve crop intrinsic water use efficiency (iWUE). One example is by expressing genes that lower stomatal density (SD) and reduce stomatal conductance (gsw). However, the quantitative relationship between reduced SD, gsw, and the mechanisms underlying it is poorly understood. We addressed this knowledge gap using low-SD sugarcane (Saccharum spp. hybrid) as a case study alongside a meta-analysis of data from 10 species. Transgenic expression of EPIDERMAL PATTERNING FACTOR 2 from Sorghum bicolor (SbEPF2) in sugarcane reduced SD by 26-38% but did not affect gsw compared with the wild type. Further, no changes occurred in stomatal complex size or proxies for photosynthetic capacity. Measurements of gas exchange at low CO2 concentrations that promote complete stomatal opening to normalize aperture size between genotypes were combined with modeling of maximum gsw from anatomical data. These data suggest that increased stomatal aperture is the only possible explanation for maintaining gsw when SD is reduced. Meta-analysis across C3 dicots, C3 monocots, and C4 monocots revealed that engineered reductions in SD are strongly correlated with lower gsw (r2=0.60-0.98), but this response is damped relative to the change in anatomy.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"6837-6849"},"PeriodicalIF":8.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565199/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141633682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michele Faralli, Greg Mellers, Shellie Wall, Silvere Vialet-Chabrand, Guillaume Forget, Alexander Galle, Jeron Van Rie, Keith A Gardner, Eric S Ober, James Cockram, Tracy Lawson
Recent research has shown that optimizing photosynthetic and stomatal traits holds promise for improved crop performance. However, standard phenotyping tools such as gas exchange systems have limited throughput. In this work, a novel approach based on a bespoke gas exchange chamber allowing combined measurement of the quantum yield of PSII (Fq'/Fm'), with an estimation of stomatal conductance via thermal imaging was used to phenotype a range of bread wheat (Triticum aestivum L.) genotypes. Using the dual-imaging methods and traditional approaches, we found broad and significant variation in key traits, including photosynthetic CO2 uptake at saturating light and ambient CO2 concentration (Asat), photosynthetic CO2 uptake at saturating light and elevated CO2 concentration (Amax), the maximum velocity of Rubisco for carboxylation (Vcmax), time for stomatal opening (Ki), and leaf evaporative cooling. Anatomical analysis revealed significant variation in flag leaf adaxial stomatal density. Associations between traits highlighted significant relationships between leaf evaporative cooling, leaf stomatal conductance, and Fq'/Fm', highlighting the importance of stomatal conductance and stomatal rapidity in maintaining optimal leaf temperature for photosynthesis in wheat. Additionally, gsmin and gsmax were positively associated, indicating that potential combinations of preferable traits (i.e. inherently high gsmax, low Ki, and maintained leaf evaporative cooling) are present in wheat. This work highlights the effectiveness of thermal imaging in screening dynamic gs in a panel of wheat genotypes. The wide phenotypic variation observed suggested the presence of exploitable genetic variability in bread wheat for dynamic stomatal conductance traits and photosynthetic capacity for targeted optimization within future breeding programmes.
更好地了解动态环境条件下的作物表型,将有助于开发出能更好地适应不断变化的田间条件的新品种。最近的研究表明,优化光合作用和气孔导度性状有望提高作物性能。然而,标准的表型工具(如气体交换系统)因其吞吐量而受到限制。在这项工作中,采用了一种基于定制气体交换室的新方法,通过热成像技术结合测量光系统 II(PSII)的量子产率和估算气孔导度,对一系列面包小麦(Triticum aestivum L.)基因型进行了表型,这些基因型是多创始人实验群体的子集。通过测量光合能力和气孔密度进一步补充了数据集。首先,我们发现,使用我们的双成像系统测量气孔性状与标准 IRGA 方法相比,在气孔开放速度(Ki)方面,两种方法具有良好的一致性(R2=0.86),双成像方法导致基因型内差异较小。利用双成像方法和传统方法,我们发现关键性状存在广泛而显著的差异,包括饱和光照和环境 CO2 浓度下的光合 CO2 摄取量(Asat)、饱和光照和 CO2 浓度升高时的光合 CO2 摄取量(Amax)、Rubisco 羧化的最大速度(Vcmax)、气孔开放时间(Ki)和叶片蒸发冷却。解剖分析表明,旗叶正面气孔密度存在显著差异。性状之间的关联突显了叶片蒸发冷却、低光照强度(gsmin)和高光照强度(gsmax)下的叶片气孔导度以及 PSII 的运行效率(Fq'/Fm')之间的显著关系,突出了气孔导度和气孔快速性在维持小麦光合作用的最佳叶片温度方面的重要性。此外,gsmin 和 gsmax 呈正相关,表明小麦中存在潜在的优良性状组合(即固有的高 gsmax、低 Ki 和维持叶片蒸发冷却)。这项研究首次强调了热成像技术在筛选大量小麦基因型的动态气孔导度方面的有效性。观察到的广泛表型变异表明,面包小麦的动态气孔导度性状和光合能力存在可利用的遗传变异,可在未来的育种计划中进行有针对性的优化。
{"title":"Exploring natural genetic diversity in a bread wheat multi-founder population: dual imaging of photosynthesis and stomatal kinetics.","authors":"Michele Faralli, Greg Mellers, Shellie Wall, Silvere Vialet-Chabrand, Guillaume Forget, Alexander Galle, Jeron Van Rie, Keith A Gardner, Eric S Ober, James Cockram, Tracy Lawson","doi":"10.1093/jxb/erae233","DOIUrl":"10.1093/jxb/erae233","url":null,"abstract":"<p><p>Recent research has shown that optimizing photosynthetic and stomatal traits holds promise for improved crop performance. However, standard phenotyping tools such as gas exchange systems have limited throughput. In this work, a novel approach based on a bespoke gas exchange chamber allowing combined measurement of the quantum yield of PSII (Fq'/Fm'), with an estimation of stomatal conductance via thermal imaging was used to phenotype a range of bread wheat (Triticum aestivum L.) genotypes. Using the dual-imaging methods and traditional approaches, we found broad and significant variation in key traits, including photosynthetic CO2 uptake at saturating light and ambient CO2 concentration (Asat), photosynthetic CO2 uptake at saturating light and elevated CO2 concentration (Amax), the maximum velocity of Rubisco for carboxylation (Vcmax), time for stomatal opening (Ki), and leaf evaporative cooling. Anatomical analysis revealed significant variation in flag leaf adaxial stomatal density. Associations between traits highlighted significant relationships between leaf evaporative cooling, leaf stomatal conductance, and Fq'/Fm', highlighting the importance of stomatal conductance and stomatal rapidity in maintaining optimal leaf temperature for photosynthesis in wheat. Additionally, gsmin and gsmax were positively associated, indicating that potential combinations of preferable traits (i.e. inherently high gsmax, low Ki, and maintained leaf evaporative cooling) are present in wheat. This work highlights the effectiveness of thermal imaging in screening dynamic gs in a panel of wheat genotypes. The wide phenotypic variation observed suggested the presence of exploitable genetic variability in bread wheat for dynamic stomatal conductance traits and photosynthetic capacity for targeted optimization within future breeding programmes.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"6733-6747"},"PeriodicalIF":8.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565207/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141097132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Feizollah A Maleki, Irmgard Seidl-Adams, Gary W Felton, Mônica F Kersch-Becker, James H Tumlinson
Plants adapt to balance growth-defense tradeoffs in response to both biotic and abiotic stresses. Green leaf volatiles (GLVs) are released after biotic and abiotic stresses and function as damage-associated signals in plants. Although, GLVs enter plants primarily through stomata, the role of stomatal regulation on the kinetics of GLV uptake remains largely unknown. Here, we illustrate the effect of stomatal closure on the timing and magnitude of GLV uptake. We closed stomata by either exposing maize (Zea mays) plants to darkness or applying abscisic acid, a phytohormone that closes the stomata in light. Then, we exposed maize seedlings to (Z)-3-hexen-1-ol and compared its dynamic uptake under different stomatal conditions. Additionally, we used (E)-3-hexen-1-ol, an isomer of (Z)-3-hexen-1-ol not made by maize, to exclude the role of internal GLVs in our assays. We demonstrate that closed stomata effectively prevent GLV entry into exposed plants, even at high concentrations. Furthermore, our findings indicate that reduced GLV uptake impairs GLV-driven induction of biosynthesis of sesquiterpenes, a group of GLV-inducible secondary metabolites, with or without herbivory. These results elucidate how stomata regulate the perception of GLV signals, thereby dramatically changing the plant responses to herbivory, particularly under water stress or dark conditions.
{"title":"Stomata: gatekeepers of uptake and defense signaling by green leaf volatiles in maize.","authors":"Feizollah A Maleki, Irmgard Seidl-Adams, Gary W Felton, Mônica F Kersch-Becker, James H Tumlinson","doi":"10.1093/jxb/erae401","DOIUrl":"10.1093/jxb/erae401","url":null,"abstract":"<p><p>Plants adapt to balance growth-defense tradeoffs in response to both biotic and abiotic stresses. Green leaf volatiles (GLVs) are released after biotic and abiotic stresses and function as damage-associated signals in plants. Although, GLVs enter plants primarily through stomata, the role of stomatal regulation on the kinetics of GLV uptake remains largely unknown. Here, we illustrate the effect of stomatal closure on the timing and magnitude of GLV uptake. We closed stomata by either exposing maize (Zea mays) plants to darkness or applying abscisic acid, a phytohormone that closes the stomata in light. Then, we exposed maize seedlings to (Z)-3-hexen-1-ol and compared its dynamic uptake under different stomatal conditions. Additionally, we used (E)-3-hexen-1-ol, an isomer of (Z)-3-hexen-1-ol not made by maize, to exclude the role of internal GLVs in our assays. We demonstrate that closed stomata effectively prevent GLV entry into exposed plants, even at high concentrations. Furthermore, our findings indicate that reduced GLV uptake impairs GLV-driven induction of biosynthesis of sesquiterpenes, a group of GLV-inducible secondary metabolites, with or without herbivory. These results elucidate how stomata regulate the perception of GLV signals, thereby dramatically changing the plant responses to herbivory, particularly under water stress or dark conditions.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"6872-6887"},"PeriodicalIF":5.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stomata: custodians of leaf gaseous exchange.","authors":"Tracy Lawson, Andrew D B Leakey","doi":"10.1093/jxb/erae425","DOIUrl":"10.1093/jxb/erae425","url":null,"abstract":"","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":"75 21","pages":"6677-6682"},"PeriodicalIF":5.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565196/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The stomatal response to red light appears to link stomatal conductance (gs) with photosynthetic rates. Initially, it was suggested that changes in intercellular CO2 concentration (Ci) provide the main cue via a Ci-dependent response. However, evidence for Ci-independent mechanisms suggests an additional, more direct relationship with photosynthesis. While both Ci-dependent and -independent mechanisms clearly function in stomatal red light responses, little is known regarding their relative contribution. The present study aimed to quantify the relative magnitude of Ci-dependent and -independent mechanisms on the stomatal red light response, to characterize their interplay and to assess the putative link between plastoquinone redox state and Ci-independent stomatal responses. Red light response curves measured at a range of Ci values for wild-type Arabidopsis (Col-0) and the CO2 hyposensitive mutant ca1ca4 allowed deconvolution of Ci-dependent and -independent pathways. Surprisingly, we observed that both mechanisms contribute equally to stomatal red light responses, but Ci-independent stomatal opening is suppressed at high Ci. The present data are also consistent with the involvement of the plastoquinone redox state in coordinating the Ci-independent component. Overall, it seems that while Ci-independent mechanisms are distinct from responses to Ci, interplay between these two pathways is important to facilitate effective coordination between gs and photosynthesis.
气孔对红光的反应似乎与气孔导度(gs)和光合速率有关。最初,有人认为细胞间二氧化碳(Ci)的变化通过依赖于 Ci 的反应提供了主要线索。然而,Ci 依赖性机制的证据表明,气孔导度与光合作用之间还有一种更直接的关系。虽然依赖 Ci 和不依赖 Ci 的机制都明显在气孔红光反应中发挥作用,但人们对它们的相对贡献知之甚少。本研究旨在量化依赖 Ci 和不依赖 Ci 的机制对气孔红光反应的相对影响程度,描述它们之间的相互作用,并评估质醌(PQ)氧化还原状态与不依赖 Ci 的气孔反应之间的潜在联系。在一系列 Ci 值下测量野生型拟南芥(Col-0)和 CO2 低敏感突变体 ca1ca4 的红光响应曲线,可以解构依赖 Ci 和不依赖 Ci 的途径。令人惊讶的是,我们观察到这两种机制对气孔红光反应的贡献相同,但依赖于 Ci 的气孔开放在高 Ci 时受到抑制。目前的数据也与 PQ 氧化还原参与协调 Ci 依赖性成分的情况一致。总体看来,虽然独立于 Ci 的机制不同于对 Ci 的反应,但这两种途径之间的相互作用对于促进 gs 与光合作用之间的有效协调非常重要。
{"title":"Illuminating stomatal responses to red light: establishing the role of Ci-dependent versus -independent mechanisms in control of stomatal behaviour.","authors":"Georgia Taylor, Julia Walter, Johannes Kromdijk","doi":"10.1093/jxb/erae093","DOIUrl":"10.1093/jxb/erae093","url":null,"abstract":"<p><p>The stomatal response to red light appears to link stomatal conductance (gs) with photosynthetic rates. Initially, it was suggested that changes in intercellular CO2 concentration (Ci) provide the main cue via a Ci-dependent response. However, evidence for Ci-independent mechanisms suggests an additional, more direct relationship with photosynthesis. While both Ci-dependent and -independent mechanisms clearly function in stomatal red light responses, little is known regarding their relative contribution. The present study aimed to quantify the relative magnitude of Ci-dependent and -independent mechanisms on the stomatal red light response, to characterize their interplay and to assess the putative link between plastoquinone redox state and Ci-independent stomatal responses. Red light response curves measured at a range of Ci values for wild-type Arabidopsis (Col-0) and the CO2 hyposensitive mutant ca1ca4 allowed deconvolution of Ci-dependent and -independent pathways. Surprisingly, we observed that both mechanisms contribute equally to stomatal red light responses, but Ci-independent stomatal opening is suppressed at high Ci. The present data are also consistent with the involvement of the plastoquinone redox state in coordinating the Ci-independent component. Overall, it seems that while Ci-independent mechanisms are distinct from responses to Ci, interplay between these two pathways is important to facilitate effective coordination between gs and photosynthesis.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"6810-6822"},"PeriodicalIF":8.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565200/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140039556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lekshmy Sathee, Suriyaprakash R, Dipankar Barman, Sandeep B Adavi, Shailendra K Jha, Viswanathan Chinnusamy
Plants have developed complex mechanisms to perceive, transduce, and respond to environmental signals, such as light, which are essential for acquiring and allocating resources, including nitrogen (N). This review delves into the complex interaction between light signals and N metabolism, emphasising light-mediated regulation of N uptake and assimilation. Firstly, we discuss the details of light-mediated regulation of N uptake and assimilation, focusing on the light-responsive activity of nitrate reductase (NR) and nitrate transporters. Secondly, we discuss the influence of light on N-dependent developmental plasticity, elucidating how N availability regulates crucial developmental transitions such as flowering time, shoot branching, and root growth, as well as how light modulates these processes. Additionally, we discuss the molecular interaction between light and N signalling, focusing on photoreceptors and transcription factors such as HY5, which are necessary for N uptake and assimilation under varying light conditions. A recent understanding of the nitrate signalling and perception of low N is also highlighted. The insilico transcriptome analysis suggests a reprogramming of N signalling genes by shade and identifies NLP7, bZIP1, CPK30, CBL1, LBD37, LBD38 and HRS1 as crucial molecular regulators integrating light-regulated N metabolism.
植物已经形成了感知、传递和响应光等环境信号的复杂机制,这些信号对于获取和分配包括氮(N)在内的资源至关重要。本综述深入探讨了光信号与氮代谢之间复杂的相互作用,重点是光介导的氮吸收和同化调控。首先,我们讨论了光介导的氮吸收和同化调控的细节,重点是硝酸还原酶(NR)和硝酸盐转运体的光响应活性。其次,我们讨论了光对氮依赖的发育可塑性的影响,阐明了氮的可用性如何调控关键的发育转换,如开花时间、芽分枝和根系生长,以及光如何调节这些过程。此外,我们还讨论了光和氮(N)信号之间的分子相互作用,重点关注光感受器和转录因子(如 HY5),它们在不同光照条件下对氮的吸收和同化是必需的。此外,还重点介绍了最近对硝酸盐信号和低氮感知的理解。内部转录组分析表明,N 信号基因会因遮光而重新编程,并确定 NLP7、bZIP1、CPK30、CBL1、LBD37、LBD38 和 HRS1 为整合光调 N 代谢的关键分子调控因子。
{"title":"Nitrogen at the crossroads of light: Integration of light signalling and plant nitrogen metabolism.","authors":"Lekshmy Sathee, Suriyaprakash R, Dipankar Barman, Sandeep B Adavi, Shailendra K Jha, Viswanathan Chinnusamy","doi":"10.1093/jxb/erae437","DOIUrl":"https://doi.org/10.1093/jxb/erae437","url":null,"abstract":"<p><p>Plants have developed complex mechanisms to perceive, transduce, and respond to environmental signals, such as light, which are essential for acquiring and allocating resources, including nitrogen (N). This review delves into the complex interaction between light signals and N metabolism, emphasising light-mediated regulation of N uptake and assimilation. Firstly, we discuss the details of light-mediated regulation of N uptake and assimilation, focusing on the light-responsive activity of nitrate reductase (NR) and nitrate transporters. Secondly, we discuss the influence of light on N-dependent developmental plasticity, elucidating how N availability regulates crucial developmental transitions such as flowering time, shoot branching, and root growth, as well as how light modulates these processes. Additionally, we discuss the molecular interaction between light and N signalling, focusing on photoreceptors and transcription factors such as HY5, which are necessary for N uptake and assimilation under varying light conditions. A recent understanding of the nitrate signalling and perception of low N is also highlighted. The insilico transcriptome analysis suggests a reprogramming of N signalling genes by shade and identifies NLP7, bZIP1, CPK30, CBL1, LBD37, LBD38 and HRS1 as crucial molecular regulators integrating light-regulated N metabolism.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}