Pirko Jalakas, Ingmar Tulva, Nele Malvīne Bērziņa, Hanna Hõrak
Stomatal pores in leaves mediate CO2 uptake into the plant and water loss via transpiration. Most plants are hypostomatous with stomata present only in the lower leaf surface (abaxial epidermis). Many herbs, including the model plant Arabidopsis, have substantial numbers of stomata also on the upper (adaxial) leaf surface. Studies of stomatal development have mostly focused on abaxial stomata and very little is known of adaxial stomatal formation. We analysed the role of leaf number in determining stomatal density and stomatal ratio, and studied adaxial and abaxial stomatal patterns in Arabidopsis mutants deficient in known abaxial stomatal development regulators. We found that stomatal density in some genetic backgrounds varies between different fully expanded leaves, and thus we recommend using defined leaves for analyses of stomatal patterning. Our results indicate that stomatal development is at least partly independently regulated in adaxial and abaxial epidermis, as (i) plants deficient in ABA biosynthesis and perception have increased stomatal ratios, (ii) the epf1epf2, tmm, and sdd1 mutants have reduced stomatal ratios, (iii) erl2 mutants have increased adaxial but not abaxial stomatal index, and (iv) stomatal precursors preferentially occur in abaxial epidermis. Further studies of adaxial stomata can reveal new insights into stomatal form and function.
{"title":"Stomatal patterning is differently regulated in adaxial and abaxial epidermis in Arabidopsis.","authors":"Pirko Jalakas, Ingmar Tulva, Nele Malvīne Bērziņa, Hanna Hõrak","doi":"10.1093/jxb/erae354","DOIUrl":"10.1093/jxb/erae354","url":null,"abstract":"<p><p>Stomatal pores in leaves mediate CO2 uptake into the plant and water loss via transpiration. Most plants are hypostomatous with stomata present only in the lower leaf surface (abaxial epidermis). Many herbs, including the model plant Arabidopsis, have substantial numbers of stomata also on the upper (adaxial) leaf surface. Studies of stomatal development have mostly focused on abaxial stomata and very little is known of adaxial stomatal formation. We analysed the role of leaf number in determining stomatal density and stomatal ratio, and studied adaxial and abaxial stomatal patterns in Arabidopsis mutants deficient in known abaxial stomatal development regulators. We found that stomatal density in some genetic backgrounds varies between different fully expanded leaves, and thus we recommend using defined leaves for analyses of stomatal patterning. Our results indicate that stomatal development is at least partly independently regulated in adaxial and abaxial epidermis, as (i) plants deficient in ABA biosynthesis and perception have increased stomatal ratios, (ii) the epf1epf2, tmm, and sdd1 mutants have reduced stomatal ratios, (iii) erl2 mutants have increased adaxial but not abaxial stomatal index, and (iv) stomatal precursors preferentially occur in abaxial epidermis. Further studies of adaxial stomata can reveal new insights into stomatal form and function.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"6476-6488"},"PeriodicalIF":5.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523041/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant cell walls are complex, multifunctional structures, built up of polysaccharides and proteins. The configuration and abundance of cell wall constituents determine cellular elongation and plant growth. The emphasis of this review is on rice, a staple crop with economic importance, serving as model for grasses/cereals. Recent advancements have contributed to a better understanding of the grass/cereal cell wall. This review brings together current knowledge of the organization and metabolism of the rice cell wall, and addresses gaps in the information regarding the cell wall and enzymes involved. Several cell wall fractions, including cellulose, mixed-linkage glucans, and glucuronoarabinoxylans, are well understood in rice and other grasses/grains. Conversely, there are still open questions and missing links in relation to xyloglucans, glucomannans, pectin, lignin, and arabinogalactan proteins. There is still a large and untapped potential to identify carbohydrate-active enzymes (CAZymes), to characterize their activity, and to elucidate their involvement in the metabolism of the mentioned cell wall fractions. This review highlights the involvement of carbohydrate-active enzymes in rice cell wall metabolism, providing an update of current understanding with the aim of demarcating research areas with potential for further investigations.
{"title":"Carbohydrate-active enzymes involved in rice cell wall metabolism.","authors":"Tibo De Coninck, Tom Desmet, Els J M Van Damme","doi":"10.1093/jxb/erae295","DOIUrl":"10.1093/jxb/erae295","url":null,"abstract":"<p><p>Plant cell walls are complex, multifunctional structures, built up of polysaccharides and proteins. The configuration and abundance of cell wall constituents determine cellular elongation and plant growth. The emphasis of this review is on rice, a staple crop with economic importance, serving as model for grasses/cereals. Recent advancements have contributed to a better understanding of the grass/cereal cell wall. This review brings together current knowledge of the organization and metabolism of the rice cell wall, and addresses gaps in the information regarding the cell wall and enzymes involved. Several cell wall fractions, including cellulose, mixed-linkage glucans, and glucuronoarabinoxylans, are well understood in rice and other grasses/grains. Conversely, there are still open questions and missing links in relation to xyloglucans, glucomannans, pectin, lignin, and arabinogalactan proteins. There is still a large and untapped potential to identify carbohydrate-active enzymes (CAZymes), to characterize their activity, and to elucidate their involvement in the metabolism of the mentioned cell wall fractions. This review highlights the involvement of carbohydrate-active enzymes in rice cell wall metabolism, providing an update of current understanding with the aim of demarcating research areas with potential for further investigations.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"6206-6227"},"PeriodicalIF":5.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peng Zhang, Yahui Wang, Zhimin Wang, Shengqiang Di, Xinyi Zhang, Di Ma, Zhilong Bao, Fangfang Ma
The morphology of ray florets in chrysanthemums is tightly associated with cell division and expansion, both of which require proper progression of the cell cycle. Here, we identified a Chrysanthemum lavandulifolium homolog, CYCLIN A2;1 (CYCA2;1), the expression of which in ray florets is negatively correlated with petal width. We found that CYC2a, a TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factor in the CYCLOIDEA2 (CYC2) family, interacts with and stabilizes CYC2b, and the latter can bind to the promoter of CYCA2;1 to activate its transcription. Overexpression of CYCA2;1 in C. lavandulifolium reduced the size of capitula and ray florets. Cytological analysis revealed that CYCA2;1 overexpression inhibited both cell division and expansion via repression of the mitotic cell cycle in ray florets, the latitudinal development of which was more relatively negatively influenced, thereby leading to increased ratios of petal length to width at later developmental stages. Yeast two-hybrid library screening revealed multiple proteins that interacted with CYCA2;1 including ACTIN-RELATED PROTEIN7 (ARP7), and silencing ARP7 inhibited the development of ray florets. Co-immunoprecipitation assays confirmed that CYCA2;1 could induce the degradation of ARP7 to inhibit the development of ray florets. Taken together, our results indicate the presence of a regulatory network in ray floret development in chrysanthemum consisting of CYC2b-CYCA2;1-ARP7 that acts via governing mitosis. The identification of this network has the potential to facilitate breeding efforts targeted at producing novel ornamental traits in the flowers.
{"title":"Chrysanthemum lavandulifolium homolog CYCLIN A2;1 modulates cell division in ray florets.","authors":"Peng Zhang, Yahui Wang, Zhimin Wang, Shengqiang Di, Xinyi Zhang, Di Ma, Zhilong Bao, Fangfang Ma","doi":"10.1093/jxb/erae325","DOIUrl":"10.1093/jxb/erae325","url":null,"abstract":"<p><p>The morphology of ray florets in chrysanthemums is tightly associated with cell division and expansion, both of which require proper progression of the cell cycle. Here, we identified a Chrysanthemum lavandulifolium homolog, CYCLIN A2;1 (CYCA2;1), the expression of which in ray florets is negatively correlated with petal width. We found that CYC2a, a TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factor in the CYCLOIDEA2 (CYC2) family, interacts with and stabilizes CYC2b, and the latter can bind to the promoter of CYCA2;1 to activate its transcription. Overexpression of CYCA2;1 in C. lavandulifolium reduced the size of capitula and ray florets. Cytological analysis revealed that CYCA2;1 overexpression inhibited both cell division and expansion via repression of the mitotic cell cycle in ray florets, the latitudinal development of which was more relatively negatively influenced, thereby leading to increased ratios of petal length to width at later developmental stages. Yeast two-hybrid library screening revealed multiple proteins that interacted with CYCA2;1 including ACTIN-RELATED PROTEIN7 (ARP7), and silencing ARP7 inhibited the development of ray florets. Co-immunoprecipitation assays confirmed that CYCA2;1 could induce the degradation of ARP7 to inhibit the development of ray florets. Taken together, our results indicate the presence of a regulatory network in ray floret development in chrysanthemum consisting of CYC2b-CYCA2;1-ARP7 that acts via governing mitosis. The identification of this network has the potential to facilitate breeding efforts targeted at producing novel ornamental traits in the flowers.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"6423-6440"},"PeriodicalIF":5.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141912914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sylvia Pal Stolsmo, Camilla Lorange Lindberg, Rebekka Eriksen Ween, Laura Schat, Jill Christine Preston, Aelys Muriel Humphreys, Siri Fjellheim
Frost tolerance has evolved many times independently across flowering plants. However, conservation of several frost tolerance mechanisms among distant relatives suggests that apparently independent entries into freezing climates may have been facilitated by repeated modification of existing traits ('precursor traits'). One possible precursor trait for freezing tolerance is drought tolerance, because palaeoclimatic data suggest plants were exposed to drought before frost and several studies have demonstrated shared physiological and genetic responses to drought and frost stress. Here, we combine ecophysiological experiments and comparative analyses to test the hypothesis that drought tolerance acted as a precursor to frost tolerance in cool-season grasses (Pooideae). Contrary to our predictions, we measured the highest levels of frost tolerance in species with the lowest ancestral drought tolerance, indicating that the two stress responses evolved independently in different lineages. We further show that drought tolerance is more evolutionarily labile than frost tolerance. This could limit our ability to reconstruct the order in which drought and frost responses evolved relative to each other. Further research is needed to determine whether our results are unique to Pooideae or general for flowering plants.
{"title":"Evolution of drought and frost responses in cool season grasses (Pooideae): was drought tolerance a precursor to frost tolerance?","authors":"Sylvia Pal Stolsmo, Camilla Lorange Lindberg, Rebekka Eriksen Ween, Laura Schat, Jill Christine Preston, Aelys Muriel Humphreys, Siri Fjellheim","doi":"10.1093/jxb/erae316","DOIUrl":"10.1093/jxb/erae316","url":null,"abstract":"<p><p>Frost tolerance has evolved many times independently across flowering plants. However, conservation of several frost tolerance mechanisms among distant relatives suggests that apparently independent entries into freezing climates may have been facilitated by repeated modification of existing traits ('precursor traits'). One possible precursor trait for freezing tolerance is drought tolerance, because palaeoclimatic data suggest plants were exposed to drought before frost and several studies have demonstrated shared physiological and genetic responses to drought and frost stress. Here, we combine ecophysiological experiments and comparative analyses to test the hypothesis that drought tolerance acted as a precursor to frost tolerance in cool-season grasses (Pooideae). Contrary to our predictions, we measured the highest levels of frost tolerance in species with the lowest ancestral drought tolerance, indicating that the two stress responses evolved independently in different lineages. We further show that drought tolerance is more evolutionarily labile than frost tolerance. This could limit our ability to reconstruct the order in which drought and frost responses evolved relative to each other. Further research is needed to determine whether our results are unique to Pooideae or general for flowering plants.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"6405-6422"},"PeriodicalIF":5.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522984/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141766292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Upon abiotic stress or senescence, the size and/or abundance of plastid-localized plastoglobules and cytosolic lipid droplets, both compartments devoted to neutral lipid storage, increase in leaves. Meanwhile, plant lipid metabolism is also perturbed, notably with the degradation of thylakoidal monogalactosyldiacylglycerol (MGDG) and the accumulation of neutral lipids. Although these mechanisms are probably linked, they have never been jointly studied, and the respective roles of plastoglobules and lipid droplets in the plant response to stress are totally unknown. To address this question, we determined and compared the glycerolipid composition of both lipid droplets and plastoglobules, followed their formation in response to nitrogen starvation, and studied the kinetics of lipid metabolism in Arabidopsis leaves. Our results demonstrated that plastoglobules preferentially store phytyl-esters, while triacylglycerols (TAGs) and steryl-esters accumulated within lipid droplets. Thanks to a pulse-chase labeling approach and lipid analyses of the fatty acid desaturase 2 (fad2) mutant, we showed that MGDG-derived C18:3 fatty acids were exported to lipid droplets, while MGDG-derived C16:3 fatty acids were stored within plastoglobules. The export of lipids from plastids to lipid droplets was probably facilitated by the physical contact occurring between both organelles, as demonstrated by our electron tomography study. The accumulation of lipid droplets and neutral lipids was transient, suggesting that stress-induced TAGs were remobilized during the plant recovery phase by a mechanism that remains to be explored.
{"title":"Roles of plastoglobules and lipid droplets in leaf neutral lipid accumulation during senescence and nitrogen deprivation.","authors":"Denis Coulon, Houda Nacir, Delphine Bahammou, Juliette Jouhet, Jean-Jacques Bessoule, Laëtitia Fouillen, Claire Bréhélin","doi":"10.1093/jxb/erae301","DOIUrl":"10.1093/jxb/erae301","url":null,"abstract":"<p><p>Upon abiotic stress or senescence, the size and/or abundance of plastid-localized plastoglobules and cytosolic lipid droplets, both compartments devoted to neutral lipid storage, increase in leaves. Meanwhile, plant lipid metabolism is also perturbed, notably with the degradation of thylakoidal monogalactosyldiacylglycerol (MGDG) and the accumulation of neutral lipids. Although these mechanisms are probably linked, they have never been jointly studied, and the respective roles of plastoglobules and lipid droplets in the plant response to stress are totally unknown. To address this question, we determined and compared the glycerolipid composition of both lipid droplets and plastoglobules, followed their formation in response to nitrogen starvation, and studied the kinetics of lipid metabolism in Arabidopsis leaves. Our results demonstrated that plastoglobules preferentially store phytyl-esters, while triacylglycerols (TAGs) and steryl-esters accumulated within lipid droplets. Thanks to a pulse-chase labeling approach and lipid analyses of the fatty acid desaturase 2 (fad2) mutant, we showed that MGDG-derived C18:3 fatty acids were exported to lipid droplets, while MGDG-derived C16:3 fatty acids were stored within plastoglobules. The export of lipids from plastids to lipid droplets was probably facilitated by the physical contact occurring between both organelles, as demonstrated by our electron tomography study. The accumulation of lipid droplets and neutral lipids was transient, suggesting that stress-induced TAGs were remobilized during the plant recovery phase by a mechanism that remains to be explored.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"6542-6562"},"PeriodicalIF":5.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Membrane proteins targeted to the plasma membrane are first transported from the endoplasmic reticulum (ER) to the Golgi apparatus. This study explored the mechanisms controlling plasma membrane trafficking of the boric acid channel AtNIP5;1 from the ER. Imaging-based screening using transgenic Arabidopsis identified six mutants in which GFP-NIP5;1 was localized in the ER in addition to the plasma membrane. Genetic mapping and whole-genome resequencing identified the responsible gene in four among the six mutants as KAONASHI3 (KNS3)/SPOTTY1/IMPERFECTIVE EXINE FORMATION. Among the plasma membrane-localized proteins tested, NIP5;1 and its homolog NIP6;1 were retained in the ER of the kns3 mutants. Our genetic analysis further discovered that two homologs of KNS3, KNSTH1 and KNSTH2, were also involved in the ER exit of NIP5;1. In Arabidopsis protoplasts and tobacco leaves, mCherry-fused KNS3 localized to the ER and Golgi, whereas KNSTH2 localized to the ER. The cytosolic C-terminal tail of KNS3 contains amino acids important for Golgi-to-ER trafficking. Furthermore, the ER-to-Golgi trafficking of KNS3 depended on KNSTH1 and KNSTH2, and the accumulation of these three proteins in Arabidopsis roots depended on each other. We propose that KNS3, KNSTH1, and KNSTH2 function as a cargo-receptor complex mediating the ER exit of NIP5;1.
靶向质膜的膜蛋白首先从内质网(ER)运输到高尔基体。本研究探索了控制硼酸通道 AtNIP5;1 从 ER 向质膜运输的机制。通过使用转基因拟南芥进行基于成像的筛选,发现了六个突变体,在这些突变体中,GFP-NIP5;1除了定位于质膜外,还定位于ER。基因图谱和全基因组重测序确定了这六个突变体中四个突变体的责任基因为 KAONASHI3 (KNS3)/SPOTTY1/IMPERFECTIVE EXINE FORMATION。在测试的质膜定位蛋白中,NIP5;1及其同源物NIP6;1保留在kns3突变体的ER中。在拟南芥原生质体和烟草叶片中,mCherry融合的KNS3定位于ER和高尔基体,而KNSTH2定位于ER。KNS3 的细胞质 C 端尾部含有对高尔基体到 ER 转运很重要的氨基酸。此外,KNS3从ER到高尔基体的转运依赖于KNSTH1和KNSTH2,这三种蛋白在拟南芥根中的积累也相互依赖。我们认为,KNS3、KNSTH1和KNSTH2作为一个货物-受体复合物介导了NIP5;1的ER出口。
{"title":"Arabidopsis KNS3 and its two homologs mediate endoplasmic reticulum-to-plasma membrane traffic of boric acid channels.","authors":"Zhe Zhang, Shunsuke Nakamura, Arisa Yamasaki, Masataka Uehara, Shunsuke Takemura, Kohei Tsuchida, Takehiro Kamiya, Shuji Shigenobu, Katsushi Yamaguchi, Toru Fujiwara, Sumie Ishiguro, Junpei Takano","doi":"10.1093/jxb/erae380","DOIUrl":"https://doi.org/10.1093/jxb/erae380","url":null,"abstract":"<p><p>Membrane proteins targeted to the plasma membrane are first transported from the endoplasmic reticulum (ER) to the Golgi apparatus. This study explored the mechanisms controlling plasma membrane trafficking of the boric acid channel AtNIP5;1 from the ER. Imaging-based screening using transgenic Arabidopsis identified six mutants in which GFP-NIP5;1 was localized in the ER in addition to the plasma membrane. Genetic mapping and whole-genome resequencing identified the responsible gene in four among the six mutants as KAONASHI3 (KNS3)/SPOTTY1/IMPERFECTIVE EXINE FORMATION. Among the plasma membrane-localized proteins tested, NIP5;1 and its homolog NIP6;1 were retained in the ER of the kns3 mutants. Our genetic analysis further discovered that two homologs of KNS3, KNSTH1 and KNSTH2, were also involved in the ER exit of NIP5;1. In Arabidopsis protoplasts and tobacco leaves, mCherry-fused KNS3 localized to the ER and Golgi, whereas KNSTH2 localized to the ER. The cytosolic C-terminal tail of KNS3 contains amino acids important for Golgi-to-ER trafficking. Furthermore, the ER-to-Golgi trafficking of KNS3 depended on KNSTH1 and KNSTH2, and the accumulation of these three proteins in Arabidopsis roots depended on each other. We propose that KNS3, KNSTH1, and KNSTH2 function as a cargo-receptor complex mediating the ER exit of NIP5;1.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Piercing/sucking insects such as green peach aphid (GPA) (Myzus persicae) cause direct damage by obtaining phloem nutrients and indirect damage by spreading plant viruses. To investigate the response of peach trees (Prunus persica) to aphids, the leaf transcriptome and metabolome of two genotypes with different sensitivities to GPA were studied. The gene expression of aphid-susceptible plants infested with aphids was similar to that of control plants, whereas the gene expression of aphid-resistant plants infested with aphids showed strong induced changes in gene expression compared with control plants. Furthermore, gene transcripts in defense-related pathways, including plant-pathogen interaction, MAPK signaling, and several metabolic pathways, were strongly enriched upon aphid infestation. Untargeted secondary metabolite profiling confirmed that aphid infestation induced larger changes in aphid-resistant than in aphid-susceptible peaches. Consistent with transcriptomic alterations, nine triterpenoids showed highly significant GPA-induced accumulation in aphid-resistant peaches, whereas triterpenoid abundance remained predominantly unchanged or undetected in aphid-susceptible peaches. Furthermore, some types of transcription factors (including WRKYs, ERFs, and NACs) were strongly induced upon GPA infestation in aphid-resistant, but not in aphid-susceptible peaches. These results suggested that the accumulation of specialized triterpenoids and the corresponding pathway transcripts may play a key role in peach GPA resistance.
{"title":"Combined transcriptome and metabolome analysis identifies triterpenoid-induced defense responses in Myzus persicae Sülzer-infested peach.","authors":"Lei Pan, Rui Huang, Zhenhua Lu, Wenyi Duan, Shihang Sun, Lele Yan, Guochao Cui, Liang Niu, Zhiqiang Wang, Wenfang Zeng","doi":"10.1093/jxb/erae339","DOIUrl":"10.1093/jxb/erae339","url":null,"abstract":"<p><p>Piercing/sucking insects such as green peach aphid (GPA) (Myzus persicae) cause direct damage by obtaining phloem nutrients and indirect damage by spreading plant viruses. To investigate the response of peach trees (Prunus persica) to aphids, the leaf transcriptome and metabolome of two genotypes with different sensitivities to GPA were studied. The gene expression of aphid-susceptible plants infested with aphids was similar to that of control plants, whereas the gene expression of aphid-resistant plants infested with aphids showed strong induced changes in gene expression compared with control plants. Furthermore, gene transcripts in defense-related pathways, including plant-pathogen interaction, MAPK signaling, and several metabolic pathways, were strongly enriched upon aphid infestation. Untargeted secondary metabolite profiling confirmed that aphid infestation induced larger changes in aphid-resistant than in aphid-susceptible peaches. Consistent with transcriptomic alterations, nine triterpenoids showed highly significant GPA-induced accumulation in aphid-resistant peaches, whereas triterpenoid abundance remained predominantly unchanged or undetected in aphid-susceptible peaches. Furthermore, some types of transcription factors (including WRKYs, ERFs, and NACs) were strongly induced upon GPA infestation in aphid-resistant, but not in aphid-susceptible peaches. These results suggested that the accumulation of specialized triterpenoids and the corresponding pathway transcripts may play a key role in peach GPA resistance.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"6644-6662"},"PeriodicalIF":5.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Unlike early land plants, flowering plants have evolved a pollen tube that transports a pair of non-motile sperm cells to the female gametophyte. This process, known as siphonogamy, was first observed in gymnosperms and later became prevalent in angiosperms. However, the precise molecular mechanisms underlying the male-female interactions remain enigmatic. From the landing of the pollen grain on the stigma to gamete fusion, the male part needs to pass various tests: how does the stigma distinguish between compatible and incompatible pollen? what mechanisms guide the pollen tube towards the ovule? what factors trigger pollen tube rupture? how is polyspermy prevented? and how does the sperm cell ultimately reach the egg? Successful male-female communication is essential for surmounting these challenges, with cysteine-rich peptides (CRPs) playing a pivotal role in this dialogue. In this review, we summarize the characteristics of four distinct classes of CRPs, systematically review recent progress in the role of CRPs in four crucial stages of pollination and fertilization, consider potential applications of this knowledge in crop breeding, and conclude by suggesting avenues for future research.
{"title":"The emerging role of cysteine-rich peptides in pollen-pistil interactions.","authors":"Jiao Xue, Qian Du, Fangfang Yang, Li-Yu Chen","doi":"10.1093/jxb/erae322","DOIUrl":"10.1093/jxb/erae322","url":null,"abstract":"<p><p>Unlike early land plants, flowering plants have evolved a pollen tube that transports a pair of non-motile sperm cells to the female gametophyte. This process, known as siphonogamy, was first observed in gymnosperms and later became prevalent in angiosperms. However, the precise molecular mechanisms underlying the male-female interactions remain enigmatic. From the landing of the pollen grain on the stigma to gamete fusion, the male part needs to pass various tests: how does the stigma distinguish between compatible and incompatible pollen? what mechanisms guide the pollen tube towards the ovule? what factors trigger pollen tube rupture? how is polyspermy prevented? and how does the sperm cell ultimately reach the egg? Successful male-female communication is essential for surmounting these challenges, with cysteine-rich peptides (CRPs) playing a pivotal role in this dialogue. In this review, we summarize the characteristics of four distinct classes of CRPs, systematically review recent progress in the role of CRPs in four crucial stages of pollination and fertilization, consider potential applications of this knowledge in crop breeding, and conclude by suggesting avenues for future research.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"6228-6243"},"PeriodicalIF":5.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141912917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anh H Ngo, Artik Elisa Angkawijaya, Yuki Nakamura, Kazue Kanehara
Non-specific phospholipase C (NPC) is an emerging family of lipolytic enzymes unique to plants and bacteria that play crucial roles in growth and stress responses. Among six copies of NPC isoforms found in Arabidopsis, the role of NPC3 remains elusive to date. Here, we show that NPC3 is a functional non-specific phospholipase C involved in tolerance to tunicamycin (TM)-induced endoplasmic reticulum (ER) stress through the synthesis of phosphocholine (PCho), a reaction product of NPC3. The npc3 mutant exhibited reduced sensitivity to TM treatment. Recombinant NPC3 possessed pronounced phospholipase C activity that hydrolyses phosphatidylcholine (PC). The hyposensitivity of npc3 to TM treatment was complemented by exogenous PCho, suggesting that NPC3-catalysed PCho production is involved in TM-induced ER stress tolerance. NPC3 was localized at the ER and was predominantly expressed in the roots, and it was further induced by TM-induced ER stress. Intriguingly, npc3 mutants showed a markedly reduced PCho content in shoots under ER stress. Our results indicate that ER stress induces NPC3 to produce PCho, which is involved in TM-induced ER stress tolerance.
{"title":"Non-specific phospholipase C3 is involved in endoplasmic reticulum stress tolerance in Arabidopsis.","authors":"Anh H Ngo, Artik Elisa Angkawijaya, Yuki Nakamura, Kazue Kanehara","doi":"10.1093/jxb/erae303","DOIUrl":"10.1093/jxb/erae303","url":null,"abstract":"<p><p>Non-specific phospholipase C (NPC) is an emerging family of lipolytic enzymes unique to plants and bacteria that play crucial roles in growth and stress responses. Among six copies of NPC isoforms found in Arabidopsis, the role of NPC3 remains elusive to date. Here, we show that NPC3 is a functional non-specific phospholipase C involved in tolerance to tunicamycin (TM)-induced endoplasmic reticulum (ER) stress through the synthesis of phosphocholine (PCho), a reaction product of NPC3. The npc3 mutant exhibited reduced sensitivity to TM treatment. Recombinant NPC3 possessed pronounced phospholipase C activity that hydrolyses phosphatidylcholine (PC). The hyposensitivity of npc3 to TM treatment was complemented by exogenous PCho, suggesting that NPC3-catalysed PCho production is involved in TM-induced ER stress tolerance. NPC3 was localized at the ER and was predominantly expressed in the roots, and it was further induced by TM-induced ER stress. Intriguingly, npc3 mutants showed a markedly reduced PCho content in shoots under ER stress. Our results indicate that ER stress induces NPC3 to produce PCho, which is involved in TM-induced ER stress tolerance.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"6489-6499"},"PeriodicalIF":5.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas Kadanthottu Kunjumon, Puja Puspa Ghosh, Laura M J Currie, Jaideep Mathur
Peri-nuclear clustering (PNC) of chloroplasts has largely been described in senescent and pathogen- or reactive oxygen species-stressed cells. Stromules, tubular plastid extensions, are also observed under similar conditions. Coincident observations of PNC and stromules associate the two phenomena in facilitating retrograde signaling between chloroplasts and the nucleus. However, PNC incidence in non-stressed cells under normal growth and developmental conditions, when stromules are usually not observed, remains unclear. Using transgenic Arabidopsis expressing different organelle-targeted fluorescent proteins, we show that PNC is a dynamic subcellular phenomenon that continues in the absence of light and is not dependent on stromule formation. PNC is facilitated by tandem plastid-endoplasmic reticulum (ER) dynamics created through membrane contact sites between the two organelles. While PNC increases upon ER membrane expansion, some plastids may remain in the peri-nuclear region due to their localization in ER-lined nuclear indentions. Moreover, some PNC plastids may sporadically extend stromules into ER-lined nuclear grooves. Our findings strongly indicate that PNC is not an exclusive response to stress caused by pathogens, high light, or exogenous H2O2 treatment, and does not require stromule formation. However, morphological and behavioral alterations in ER and concomitant changes in tandem, plastid-ER dynamics play a major role in facilitating the phenomenon.
{"title":"Proximity driven plastid-nucleus relationships are facilitated by tandem plastid-ER dynamics.","authors":"Thomas Kadanthottu Kunjumon, Puja Puspa Ghosh, Laura M J Currie, Jaideep Mathur","doi":"10.1093/jxb/erae313","DOIUrl":"10.1093/jxb/erae313","url":null,"abstract":"<p><p>Peri-nuclear clustering (PNC) of chloroplasts has largely been described in senescent and pathogen- or reactive oxygen species-stressed cells. Stromules, tubular plastid extensions, are also observed under similar conditions. Coincident observations of PNC and stromules associate the two phenomena in facilitating retrograde signaling between chloroplasts and the nucleus. However, PNC incidence in non-stressed cells under normal growth and developmental conditions, when stromules are usually not observed, remains unclear. Using transgenic Arabidopsis expressing different organelle-targeted fluorescent proteins, we show that PNC is a dynamic subcellular phenomenon that continues in the absence of light and is not dependent on stromule formation. PNC is facilitated by tandem plastid-endoplasmic reticulum (ER) dynamics created through membrane contact sites between the two organelles. While PNC increases upon ER membrane expansion, some plastids may remain in the peri-nuclear region due to their localization in ER-lined nuclear indentions. Moreover, some PNC plastids may sporadically extend stromules into ER-lined nuclear grooves. Our findings strongly indicate that PNC is not an exclusive response to stress caused by pathogens, high light, or exogenous H2O2 treatment, and does not require stromule formation. However, morphological and behavioral alterations in ER and concomitant changes in tandem, plastid-ER dynamics play a major role in facilitating the phenomenon.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"6275-6294"},"PeriodicalIF":5.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523032/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}