首页 > 最新文献

Journal of Experimental Botany最新文献

英文 中文
Metalloid transporters in plants: bridging the gap in molecular structure and physiological exaptation. 植物中的类金属转运体:弥合分子结构与生理适应之间的差距。
IF 5.6 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-03-13 DOI: 10.1093/jxb/erae261
Yogesh Sharma, Andrew M Hemmings, Rupesh Deshmukh, Ashwani Pareek

The rhizosphere contains both essential nutrients and potentially harmful substances for plant growth. Plants, as sessile organisms, must efficiently absorb the necessary nutrients while actively avoiding the uptake of toxic compounds. Metalloids, elements that exhibit properties of both metals and non-metals, can have different effects on plant growth, from being essential and beneficial to being toxic. This toxicity arises due to either the dosage of exposure or the specific elemental type. To utilize or detoxify these elements, plants have developed various transporters regulating their uptake and distribution in plants. Genomic sequence analysis suggests that such transporter families exist throughout the plant kingdom, from chlorophytes to higher plants. These transporters form defined families with related transport preferences. The isoforms within these families have evolved with specialized functions regulated by defined selectivity. Hence, understanding the chemistry of transporters to atomic detail is important to achieve the desired genetic modifications for crop improvement. We outline various adaptations in plant transport systems to deal with metalloids, including their uptake, distribution, detoxification, and homeostasis in plant tissues. Structural parallels are drawn to other nutrient transporter systems to support emerging themes of functional diversity of active sites of transporters, elucidating plant adaptations to utilize and extrude metalloid concentrations. Considering the observed physiological importance of metalloids, this review highlights the shared and disparate features in metalloid transport systems and their corresponding nutrient transporters.

根瘤层中既有植物生长所必需的营养物质,也有潜在的有害物质。植物作为无柄生物,必须有效地吸收必要的养分,同时积极避免吸收有毒化合物。类金属元素既具有金属的特性,也具有非金属的特性,它们对植物的生长有不同的影响,既有必要的、有益的,也有有毒的。金属元素对植物的毒性取决于接触的剂量或特定的元素类型。为了利用这些元素或对其进行解毒,植物开发了各种转运体来调节它们在植物体内的吸收和分布。可以说,基因组序列分析表明,从叶绿体到高等植物,整个植物王国都存在这种转运体家族。这些转运体组成了具有相关转运偏好的明确家族。这些家族中的异构体在进化过程中通过明确的选择性实现了专门的功能。因此,了解转运体的化学原子细节对于实现作物改良所需的基因修饰非常重要。在此,我们概述了植物转运系统应对金属的各种适应性,包括金属在植物组织中的吸收、分布、解毒和平衡。结构上与其他养分转运系统相似,以支持转运体活性位点功能多样性的新主题,阐明植物利用和排出金属类物质浓度的适应性。考虑到所观察到的类金属的生理重要性,本综述旨在强调类金属转运系统及其相应营养物质转运体的共同特征和不同特征。
{"title":"Metalloid transporters in plants: bridging the gap in molecular structure and physiological exaptation.","authors":"Yogesh Sharma, Andrew M Hemmings, Rupesh Deshmukh, Ashwani Pareek","doi":"10.1093/jxb/erae261","DOIUrl":"10.1093/jxb/erae261","url":null,"abstract":"<p><p>The rhizosphere contains both essential nutrients and potentially harmful substances for plant growth. Plants, as sessile organisms, must efficiently absorb the necessary nutrients while actively avoiding the uptake of toxic compounds. Metalloids, elements that exhibit properties of both metals and non-metals, can have different effects on plant growth, from being essential and beneficial to being toxic. This toxicity arises due to either the dosage of exposure or the specific elemental type. To utilize or detoxify these elements, plants have developed various transporters regulating their uptake and distribution in plants. Genomic sequence analysis suggests that such transporter families exist throughout the plant kingdom, from chlorophytes to higher plants. These transporters form defined families with related transport preferences. The isoforms within these families have evolved with specialized functions regulated by defined selectivity. Hence, understanding the chemistry of transporters to atomic detail is important to achieve the desired genetic modifications for crop improvement. We outline various adaptations in plant transport systems to deal with metalloids, including their uptake, distribution, detoxification, and homeostasis in plant tissues. Structural parallels are drawn to other nutrient transporter systems to support emerging themes of functional diversity of active sites of transporters, elucidating plant adaptations to utilize and extrude metalloid concentrations. Considering the observed physiological importance of metalloids, this review highlights the shared and disparate features in metalloid transport systems and their corresponding nutrient transporters.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"1370-1389"},"PeriodicalIF":5.6,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving crop nutrient status: discovery, innovation, and translation.
IF 5.6 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-03-13 DOI: 10.1093/jxb/eraf003
Robert D Hancock, Raul Huertas, Derek Stewart, Christine H Foyer
{"title":"Improving crop nutrient status: discovery, innovation, and translation.","authors":"Robert D Hancock, Raul Huertas, Derek Stewart, Christine H Foyer","doi":"10.1093/jxb/eraf003","DOIUrl":"https://doi.org/10.1093/jxb/eraf003","url":null,"abstract":"","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":"76 5","pages":"1353-1356"},"PeriodicalIF":5.6,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143624865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat stress in plants: sensing, signalling, and ferroptosis. 植物的热胁迫:感应、信号传递和铁变态。
IF 5.6 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-03-13 DOI: 10.1093/jxb/erae296
Ayelén Mariana Distéfano, Victoria Bauer, Milagros Cascallares, Gabriel Alejandro López, Diego Fernando Fiol, Eduardo Zabaleta, Gabriela Carolina Pagnussat

In the current context of global warming, high temperature events are becoming more frequent and intense in many places around the world. In this context, understanding how plants sense and respond to heat is essential to develop new tools to prevent plant damage and address global food security, as high temperature events are threatening agricultural sustainability. This review summarizes and integrates our current understanding underlying the cellular, physiological, biochemical, and molecular regulatory pathways triggered in plants under moderately high and extremely high temperature conditions. Given that extremely high temperatures can also trigger ferroptosis, the study of this cell death mechanism constitutes a strategic approach to understand how plants might overcome otherwise lethal temperature events.

在当前全球变暖的背景下,全球许多地方的高温事件正变得越来越频繁和剧烈。在这种情况下,了解植物如何感知和应对高温对开发新工具以防止植物受损和解决全球粮食安全问题至关重要,因为高温事件正威胁着农业的可持续发展。本综述总结并整合了我们目前对植物在中度高温和极端高温条件下触发的细胞、生理、生化和分子调控途径的基本认识。鉴于极高的温度也会引发铁突变,研究这种细胞死亡机制是了解植物如何克服致命温度事件的一种战略方法。
{"title":"Heat stress in plants: sensing, signalling, and ferroptosis.","authors":"Ayelén Mariana Distéfano, Victoria Bauer, Milagros Cascallares, Gabriel Alejandro López, Diego Fernando Fiol, Eduardo Zabaleta, Gabriela Carolina Pagnussat","doi":"10.1093/jxb/erae296","DOIUrl":"10.1093/jxb/erae296","url":null,"abstract":"<p><p>In the current context of global warming, high temperature events are becoming more frequent and intense in many places around the world. In this context, understanding how plants sense and respond to heat is essential to develop new tools to prevent plant damage and address global food security, as high temperature events are threatening agricultural sustainability. This review summarizes and integrates our current understanding underlying the cellular, physiological, biochemical, and molecular regulatory pathways triggered in plants under moderately high and extremely high temperature conditions. Given that extremely high temperatures can also trigger ferroptosis, the study of this cell death mechanism constitutes a strategic approach to understand how plants might overcome otherwise lethal temperature events.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"1357-1369"},"PeriodicalIF":5.6,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Grain lysine enrichment and improved stress tolerance in rice through protein engineering. 通过蛋白质工程富集谷粒赖氨酸并提高水稻的抗逆性。
IF 5.6 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-03-13 DOI: 10.1093/jxb/erae414
Ray Singh Rathore, Manjari Mishra, Ashwani Pareek, Sneh Lata Singla-Pareek

Amino acids are a major source of nourishment for people living in regions where rice is a staple food. However, rice grain is deficient in essential amino acids including lysine. The activity of the enzyme dihydrodipicolinate synthase (DHDPS) is crucial for lysine production in higher plants, but it is tightly regulated through feedback inhibition by its end product, lysine, leading to limited activity in the grain and resulting in low lysine accumulation. We identified lysine binding sites in the DHDPS enzyme and introduced key mutations to make DHDPS lysine feedback insensitive. Using in vivo analysis and functional complementation assays, we confirmed that protein engineering of the DHDPS renders it insensitive to lysine. Expression of mutated DHDPS resulted in 29% higher lysine and 15% higher protein accumulation in rice grains than in the wild type. Importantly, the lysine content in transgenic grains was maintained in cooked rice. The transgenic plants also exhibited enhanced stress tolerance along with higher antioxidant levels, improved photosynthesis, and higher grain yield compared to wild-type plants. We have shown that protein engineering of DHDPS in rice can lead to accumulation of lysine in grains and impart abiotic stress tolerance. This approach could improve health in regions with nutrient deficiencies and environmental stressors that challenge food production and human health.

氨基酸是以大米为主食地区居民的主要营养来源。然而,稻谷缺乏赖氨酸等必需氨基酸。在高等植物中,二氢二羟基酸合成酶(DHDPS)的活性对赖氨酸的产生至关重要,但它受到其最终产物赖氨酸的反馈抑制而受到高度调控,导致其在谷物中的活性有限,并造成赖氨酸的低积累。我们确定了 DHDPS 酶中的赖氨酸结合位点,并引入关键突变使其对赖氨酸反馈不敏感。通过体内分析和功能互补试验,我们证实了 DHDPS 蛋白工程学使其对赖氨酸不敏感。与野生型相比,表达突变的 DHDPS 可使水稻谷粒中的赖氨酸含量高出 29%,蛋白质积累量高出 15%。重要的是,转基因谷物中的赖氨酸含量在煮熟的大米中得以保持。此外,与野生型植物相比,转基因植物表现出更强的抗逆性、更好的抗氧化水平、更高的光合作用和更高的谷物产量。我们首次在水稻中证明,DHDPS 蛋白工程可导致谷物中赖氨酸的积累,并增强非生物胁迫耐受性。这种方法可以改善营养缺乏和环境压力地区的健康状况,对粮食生产和人类健康构成挑战。
{"title":"Grain lysine enrichment and improved stress tolerance in rice through protein engineering.","authors":"Ray Singh Rathore, Manjari Mishra, Ashwani Pareek, Sneh Lata Singla-Pareek","doi":"10.1093/jxb/erae414","DOIUrl":"10.1093/jxb/erae414","url":null,"abstract":"<p><p>Amino acids are a major source of nourishment for people living in regions where rice is a staple food. However, rice grain is deficient in essential amino acids including lysine. The activity of the enzyme dihydrodipicolinate synthase (DHDPS) is crucial for lysine production in higher plants, but it is tightly regulated through feedback inhibition by its end product, lysine, leading to limited activity in the grain and resulting in low lysine accumulation. We identified lysine binding sites in the DHDPS enzyme and introduced key mutations to make DHDPS lysine feedback insensitive. Using in vivo analysis and functional complementation assays, we confirmed that protein engineering of the DHDPS renders it insensitive to lysine. Expression of mutated DHDPS resulted in 29% higher lysine and 15% higher protein accumulation in rice grains than in the wild type. Importantly, the lysine content in transgenic grains was maintained in cooked rice. The transgenic plants also exhibited enhanced stress tolerance along with higher antioxidant levels, improved photosynthesis, and higher grain yield compared to wild-type plants. We have shown that protein engineering of DHDPS in rice can lead to accumulation of lysine in grains and impart abiotic stress tolerance. This approach could improve health in regions with nutrient deficiencies and environmental stressors that challenge food production and human health.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"1408-1426"},"PeriodicalIF":5.6,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adjustments of plant primary metabolism in the face of climate change. 面对气候变化,植物初级新陈代谢的调整。
IF 5.6 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-03-12 DOI: 10.1093/jxb/eraf116
Mustafa Bulut, Esra Karakas, Alisdair R Fernie

Plant metabolism is profoundly affected by various abiotic stresses. Consequently, plants must reconfigure their metabolic networks to sustain homeostasis while synthesizing compounds that mitigate stress. This aspect, with the current intensified climate impact results in more frequent abiotic stresses on a global scale. Advances in metabolomics and systems biology in the last decades have enabled both a comprehensive overview and a detailed analysis of key components involved in the plant metabolic response to abiotic stresses. This review addresses metabolic responses to altered atmospheric CO2 and O3, water deficit, temperature extremes, light intensity fluctuations including the importance of UV-B, ionic imbalance, and oxidative stress predicted to be caused by climate change, long-term shifts in temperatures and weather patterns. It also assesses both the commonalities and specificities of metabolic responses to diverse abiotic stresses, drawing on data from the literature. Classical stress-related metabolites such as proline, and polyamines are revisited, with an emphasis on the critical role of branched-chain amino acid metabolism under stress conditions. Finally, where possible, mechanistic insights into the regulation of metabolic processes and further outlook on combinatory stresses are discussed.

{"title":"Adjustments of plant primary metabolism in the face of climate change.","authors":"Mustafa Bulut, Esra Karakas, Alisdair R Fernie","doi":"10.1093/jxb/eraf116","DOIUrl":"https://doi.org/10.1093/jxb/eraf116","url":null,"abstract":"<p><p>Plant metabolism is profoundly affected by various abiotic stresses. Consequently, plants must reconfigure their metabolic networks to sustain homeostasis while synthesizing compounds that mitigate stress. This aspect, with the current intensified climate impact results in more frequent abiotic stresses on a global scale. Advances in metabolomics and systems biology in the last decades have enabled both a comprehensive overview and a detailed analysis of key components involved in the plant metabolic response to abiotic stresses. This review addresses metabolic responses to altered atmospheric CO2 and O3, water deficit, temperature extremes, light intensity fluctuations including the importance of UV-B, ionic imbalance, and oxidative stress predicted to be caused by climate change, long-term shifts in temperatures and weather patterns. It also assesses both the commonalities and specificities of metabolic responses to diverse abiotic stresses, drawing on data from the literature. Classical stress-related metabolites such as proline, and polyamines are revisited, with an emphasis on the critical role of branched-chain amino acid metabolism under stress conditions. Finally, where possible, mechanistic insights into the regulation of metabolic processes and further outlook on combinatory stresses are discussed.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural Coloration and Epicuticular Wax Properties of the Distinctive Glaucous Leaves of Encephalartos horridus. 角叉菜独特釉叶的结构颜色和表皮蜡特性。
IF 5.6 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-03-12 DOI: 10.1093/jxb/eraf115
Takashi Nobusawa, Takashi Okamoto, Michiharu Nakano, Makoto Kusaba

The leaves of the cycad Encephalartos horridus exhibit a conspicuous glaucous appearance, attributed to the presence of epicuticular wax. However, the molecular and optical bases of this coloration have not been scientifically explained. In this study, we conducted a detailed analysis of the epicuticular wax composition, combined with RNA-Seq and de novo transcriptome assembly, to uncover the molecular mechanisms underlying this phenomenon. Additionally, Monte Carlo multi-layer (MCML) simulations were performed to model light interactions and explore the structural coloration generated by the epicuticular wax crystals. The wax was found to be predominantly composed of nonacosan-10-ol, forming tubular crystals that enhance reflectance in the long-wavelength UV to blue light range. However, the microstructure alone is not sufficient to produce the glaucous appearance; it arises from the interplay between the wax crystals and the underlying dark tissues rich in chlorophyll. These findings provide insights into the evolutionary adaptations of cycads to UV exposure and contribute to a broader understanding of plant surface lipid biosynthesis and structural coloration, with potential applications in biomimetic material design.

{"title":"Structural Coloration and Epicuticular Wax Properties of the Distinctive Glaucous Leaves of Encephalartos horridus.","authors":"Takashi Nobusawa, Takashi Okamoto, Michiharu Nakano, Makoto Kusaba","doi":"10.1093/jxb/eraf115","DOIUrl":"https://doi.org/10.1093/jxb/eraf115","url":null,"abstract":"<p><p>The leaves of the cycad Encephalartos horridus exhibit a conspicuous glaucous appearance, attributed to the presence of epicuticular wax. However, the molecular and optical bases of this coloration have not been scientifically explained. In this study, we conducted a detailed analysis of the epicuticular wax composition, combined with RNA-Seq and de novo transcriptome assembly, to uncover the molecular mechanisms underlying this phenomenon. Additionally, Monte Carlo multi-layer (MCML) simulations were performed to model light interactions and explore the structural coloration generated by the epicuticular wax crystals. The wax was found to be predominantly composed of nonacosan-10-ol, forming tubular crystals that enhance reflectance in the long-wavelength UV to blue light range. However, the microstructure alone is not sufficient to produce the glaucous appearance; it arises from the interplay between the wax crystals and the underlying dark tissues rich in chlorophyll. These findings provide insights into the evolutionary adaptations of cycads to UV exposure and contribute to a broader understanding of plant surface lipid biosynthesis and structural coloration, with potential applications in biomimetic material design.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mycorrhizae and grapevines: the known unknowns of their interaction for wine growers´ challenges. 菌根与葡萄树:已知未知的相互作用给葡萄种植者带来的挑战。
IF 5.6 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-03-11 DOI: 10.1093/jxb/eraf081
Maider Velaz, Luis Gonzaga Santesteban, Nazareth Torres

Arbuscular mycorrhizal fungi (AMF) play an important role in grapevine production systems. However, little is known about how this relationship is achieved in the nursery and how soil management might modify it and its derived benefits. Here, we review the current knowledge on the establishment of grapevine-AMF relationships from the nursery to the field, the main factors that affect the effectiveness of the symbiosis, the potential role of AMF as biostimulants in grapevine production systems, and the future perspectives of their use in the current context of climate change. The process of establishing mycorrhizal symbiosis is complex, and the molecular dialogue between the plant roots and the fungus is still not yet fully understood. During vine plant production, rooting occurs in nurseries, where spontaneous symbiosis can be generated. The effectiveness of mycorrhizal symbiosis appears to depend not only on the identity of the fungus but also the diversity of the vine material and soil management. Finally, the use of AMF as biostimulants might be an effective strategy to face the new climatic scenario, but further research dealing with the application of AMF inocula and the protection of native cohorts should be conducted.

{"title":"Mycorrhizae and grapevines: the known unknowns of their interaction for wine growers´ challenges.","authors":"Maider Velaz, Luis Gonzaga Santesteban, Nazareth Torres","doi":"10.1093/jxb/eraf081","DOIUrl":"https://doi.org/10.1093/jxb/eraf081","url":null,"abstract":"<p><p>Arbuscular mycorrhizal fungi (AMF) play an important role in grapevine production systems. However, little is known about how this relationship is achieved in the nursery and how soil management might modify it and its derived benefits. Here, we review the current knowledge on the establishment of grapevine-AMF relationships from the nursery to the field, the main factors that affect the effectiveness of the symbiosis, the potential role of AMF as biostimulants in grapevine production systems, and the future perspectives of their use in the current context of climate change. The process of establishing mycorrhizal symbiosis is complex, and the molecular dialogue between the plant roots and the fungus is still not yet fully understood. During vine plant production, rooting occurs in nurseries, where spontaneous symbiosis can be generated. The effectiveness of mycorrhizal symbiosis appears to depend not only on the identity of the fungus but also the diversity of the vine material and soil management. Finally, the use of AMF as biostimulants might be an effective strategy to face the new climatic scenario, but further research dealing with the application of AMF inocula and the protection of native cohorts should be conducted.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Function of Cytochrome P450 CYP72A1182 in Metabolic Herbicide Resistance Evolution in Amaranthus palmeri Populations.
IF 5.6 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-03-11 DOI: 10.1093/jxb/eraf114
Carlos Alberto Gonsiorkiewicz Rigon, Anita Küpper, Crystal Sparks, Jacob Montgomery, Falco Peter, Simon Schepp, Alejandro Perez-Jones, Patrick J Tranel, Roland Beffa, Franck E Dayan, Todd A Gaines

Evolution of metabolic herbicide resistance is a major issue for weed management. Few genes and regulatory mechanisms have been identified, particularly in dicotyledonous weed species. We identified putative causal genes and regulatory mechanism for tembotrione-resistance in Amaranthus palmeri. Cytochrome P450 candidate genes were identified through RNA-seq analysis. We validated their functions using heterologous expression in S. cerevisae. Promoters of the candidate P450 genes were analyzed. We performed QTL mapping to identify genomic regions associated with resistance. CYP72A1182 metabolized tembotrione in heterologous system. This gene had increased expression in other A. palmeri populations resistant to multiple herbicides, including tembotrione. Resistant plants exhibited polymorphisms in the promoter of CYP72A1182. We identified QTLs linked to herbicide resistance, including one on chromosome 4 approximately 3 Mb away from CYP72A1182. CYP72A1182 is likely involved in tembotrione resistance in A. palmeri. Increased expression of this gene could be due to cis-regulation in the promoter, as well as trans-regulation from transcription factors. Further studies are in progress to test this hypothesis. The elucidation of regulatory genes is crucial for developing innovative weed management approaches and target-based novel herbicide molecules.

{"title":"Function of Cytochrome P450 CYP72A1182 in Metabolic Herbicide Resistance Evolution in Amaranthus palmeri Populations.","authors":"Carlos Alberto Gonsiorkiewicz Rigon, Anita Küpper, Crystal Sparks, Jacob Montgomery, Falco Peter, Simon Schepp, Alejandro Perez-Jones, Patrick J Tranel, Roland Beffa, Franck E Dayan, Todd A Gaines","doi":"10.1093/jxb/eraf114","DOIUrl":"https://doi.org/10.1093/jxb/eraf114","url":null,"abstract":"<p><p>Evolution of metabolic herbicide resistance is a major issue for weed management. Few genes and regulatory mechanisms have been identified, particularly in dicotyledonous weed species. We identified putative causal genes and regulatory mechanism for tembotrione-resistance in Amaranthus palmeri. Cytochrome P450 candidate genes were identified through RNA-seq analysis. We validated their functions using heterologous expression in S. cerevisae. Promoters of the candidate P450 genes were analyzed. We performed QTL mapping to identify genomic regions associated with resistance. CYP72A1182 metabolized tembotrione in heterologous system. This gene had increased expression in other A. palmeri populations resistant to multiple herbicides, including tembotrione. Resistant plants exhibited polymorphisms in the promoter of CYP72A1182. We identified QTLs linked to herbicide resistance, including one on chromosome 4 approximately 3 Mb away from CYP72A1182. CYP72A1182 is likely involved in tembotrione resistance in A. palmeri. Increased expression of this gene could be due to cis-regulation in the promoter, as well as trans-regulation from transcription factors. Further studies are in progress to test this hypothesis. The elucidation of regulatory genes is crucial for developing innovative weed management approaches and target-based novel herbicide molecules.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overcoming physiological trade-offs between flowering time and crop yield - strategies for a changing climate.
IF 5.6 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-03-11 DOI: 10.1093/jxb/eraf110
Astrid Wingler, Soualihou Soualiou

Early flowering of annual plants can lead to resource limitation owing to reduced uptake of nitrogen during the reproductive phase and declining foliar photosynthesis as a result of monocarpic senescence. Low availability of accumulated resources can therefore result in a trade-off between early flowering and reproductive fitness. However, green inflorescence organs (such as siliques, pods, bracts or awns) can make considerable contributions to photosynthetic carbon gain, and in some cases provide more carbon to seed formation than the leaves. Inflorescence photosynthesis may thereby overcome the flowering time trade-off. In addition to providing photosynthates, inflorescence organs can contribute to seed nitrogen through senescence-dependent nitrogen recycling. In annual crops, breeding has resulted in increased carbon allocation to the grain and higher harvest index, but in some cases, this had led to reduced grain protein content. We discuss different breeding targets to address carbon and nitrogen limitation, dependent on the climatic environment. For environments that are prone to drought, we propose a combination of early flowering with enhanced inflorescence photosynthesis, or, alternatively, delayed senescence (stay-green) associated with improved water balance. For optimized yield and grain protein content under favourable conditions, enhanced sink strength and extended nitrogen uptake are suggested as breeding targets.

{"title":"Overcoming physiological trade-offs between flowering time and crop yield - strategies for a changing climate.","authors":"Astrid Wingler, Soualihou Soualiou","doi":"10.1093/jxb/eraf110","DOIUrl":"https://doi.org/10.1093/jxb/eraf110","url":null,"abstract":"<p><p>Early flowering of annual plants can lead to resource limitation owing to reduced uptake of nitrogen during the reproductive phase and declining foliar photosynthesis as a result of monocarpic senescence. Low availability of accumulated resources can therefore result in a trade-off between early flowering and reproductive fitness. However, green inflorescence organs (such as siliques, pods, bracts or awns) can make considerable contributions to photosynthetic carbon gain, and in some cases provide more carbon to seed formation than the leaves. Inflorescence photosynthesis may thereby overcome the flowering time trade-off. In addition to providing photosynthates, inflorescence organs can contribute to seed nitrogen through senescence-dependent nitrogen recycling. In annual crops, breeding has resulted in increased carbon allocation to the grain and higher harvest index, but in some cases, this had led to reduced grain protein content. We discuss different breeding targets to address carbon and nitrogen limitation, dependent on the climatic environment. For environments that are prone to drought, we propose a combination of early flowering with enhanced inflorescence photosynthesis, or, alternatively, delayed senescence (stay-green) associated with improved water balance. For optimized yield and grain protein content under favourable conditions, enhanced sink strength and extended nitrogen uptake are suggested as breeding targets.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iron, cold iron, is the master of them all: iron crosstalk with zinc, copper, phosphorus and nitrogen homeostasis. 铁,冰冷的铁,是它们的主宰:铁与锌、铜、磷和氮的平衡相互影响。
IF 5.6 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-03-10 DOI: 10.1093/jxb/eraf106
Andriele Wairich, Yugo Lima-Melo, Paloma Koprovski Menguer, Francieli Ortolan, Felipe Klein Ricachenevsky

The ionome is defined as the inorganic composition of an organism. In plants, the ionome has been shown to be integrated, as the concentration of elements affects one another, with complex regulatory mechanisms to keep nutrients, trace and toxic elements balanced. Iron (Fe) is an essential micronutrient that is necessary for photosynthesis, mitochondrial respiration, and redox metabolism, and has its concentrations in plant tissues finely regulated to avoid deficiency and excess stresses. It has been known that varying concentrations of Fe affect other components of the ionome, while variation in other elements's concentration also perturb iron homeostasis. Recently, molecular mechanisms that regulate the crosstalk of Fe homeostasis with that of zinc (Zn), copper (Cu), phosphorus (P) and nitrogen (N) have been uncovered. Here we review these regulatory circuits, demonstrating that the ionome should be balanced and that micronutrients are important for nutrient use efficiency and to avoid nutrient deficiency as well as excess. We focused mainly on model plant Arabidopsis thaliana and rice, for which mechanistic models have been proposed. Our review will help to integrate models to understand how plants balance the ionome.

{"title":"Iron, cold iron, is the master of them all: iron crosstalk with zinc, copper, phosphorus and nitrogen homeostasis.","authors":"Andriele Wairich, Yugo Lima-Melo, Paloma Koprovski Menguer, Francieli Ortolan, Felipe Klein Ricachenevsky","doi":"10.1093/jxb/eraf106","DOIUrl":"https://doi.org/10.1093/jxb/eraf106","url":null,"abstract":"<p><p>The ionome is defined as the inorganic composition of an organism. In plants, the ionome has been shown to be integrated, as the concentration of elements affects one another, with complex regulatory mechanisms to keep nutrients, trace and toxic elements balanced. Iron (Fe) is an essential micronutrient that is necessary for photosynthesis, mitochondrial respiration, and redox metabolism, and has its concentrations in plant tissues finely regulated to avoid deficiency and excess stresses. It has been known that varying concentrations of Fe affect other components of the ionome, while variation in other elements's concentration also perturb iron homeostasis. Recently, molecular mechanisms that regulate the crosstalk of Fe homeostasis with that of zinc (Zn), copper (Cu), phosphorus (P) and nitrogen (N) have been uncovered. Here we review these regulatory circuits, demonstrating that the ionome should be balanced and that micronutrients are important for nutrient use efficiency and to avoid nutrient deficiency as well as excess. We focused mainly on model plant Arabidopsis thaliana and rice, for which mechanistic models have been proposed. Our review will help to integrate models to understand how plants balance the ionome.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143585907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Experimental Botany
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1