Romina Sellaro, Maxime Durand, Pedro J Aphalo, Jorge J Casal
In the field, plants face constantly changing light conditions caused by both atmospheric effects and neighbouring vegetation. This interplay creates a complex, fluctuating light environment within plant canopies. Shade-intolerant species rely on light cues from competitors to trigger shade avoidance responses, ensuring access to light for photosynthesis. While research often uses controlled growth chambers with steady light to study shade avoidance responses, the influence of light fluctuations in real-world settings remains unclear. This review examines the dynamic light environments found in woodlands, grasslands, and crops. We explore how plants respond to some fluctuations but not others, analyse the potential reasons for these differences, and discuss the possible molecular mechanisms regulating this sensitivity. We propose that studying shade avoidance responses under fluctuating light conditions offers a valuable tool to explore the intricate regulatory network behind them.
{"title":"Making the most of canopy light: shade avoidance under a fluctuating spectrum and irradiance.","authors":"Romina Sellaro, Maxime Durand, Pedro J Aphalo, Jorge J Casal","doi":"10.1093/jxb/erae334","DOIUrl":"10.1093/jxb/erae334","url":null,"abstract":"<p><p>In the field, plants face constantly changing light conditions caused by both atmospheric effects and neighbouring vegetation. This interplay creates a complex, fluctuating light environment within plant canopies. Shade-intolerant species rely on light cues from competitors to trigger shade avoidance responses, ensuring access to light for photosynthesis. While research often uses controlled growth chambers with steady light to study shade avoidance responses, the influence of light fluctuations in real-world settings remains unclear. This review examines the dynamic light environments found in woodlands, grasslands, and crops. We explore how plants respond to some fluctuations but not others, analyse the potential reasons for these differences, and discuss the possible molecular mechanisms regulating this sensitivity. We propose that studying shade avoidance responses under fluctuating light conditions offers a valuable tool to explore the intricate regulatory network behind them.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"712-729"},"PeriodicalIF":5.6,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11805590/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pierre Gautrat, Sanne E A Matton, Lisa Oskam, Siddhant S Shetty, Kyra J van der Velde, Ronald Pierik
Plants growing in dense vegetation need to flexibly position their photosynthetic organs to ensure optimal light capture in a competitive environment. They do so through a suite of developmental responses referred to as the shade avoidance syndrome. Below ground, root development is also adjusted in response to above-ground neighbour proximity. Canopies are dynamic and complex environments with heterogeneous light cues in the far-red, red, blue, and UV spectrum, which can be perceived by photoreceptors in spatially separated plant tissues. Molecular regulation of plant architecture adjustment via PHYTOCHROME-INTERACTING FACTOR transcription factors and growth-related hormones such as auxin, gibberellic acid, brassinosteroids, and abscisic acid were historically studied without much attention to spatial or tissue-specific context. Recent developments and technologies have, however, sparked strong interest in spatially explicit understanding of shade avoidance regulation. Other environmental factors such as temperature and nutrient availability interact with the molecular shade avoidance regulation network, often depending on the spatial location of the signals, and the responding organs. Here, we review recent advances in how plants respond to heterogeneous light cues and integrate these with other environmental signals.
{"title":"Lights, location, action: shade avoidance signalling over spatial scales.","authors":"Pierre Gautrat, Sanne E A Matton, Lisa Oskam, Siddhant S Shetty, Kyra J van der Velde, Ronald Pierik","doi":"10.1093/jxb/erae217","DOIUrl":"10.1093/jxb/erae217","url":null,"abstract":"<p><p>Plants growing in dense vegetation need to flexibly position their photosynthetic organs to ensure optimal light capture in a competitive environment. They do so through a suite of developmental responses referred to as the shade avoidance syndrome. Below ground, root development is also adjusted in response to above-ground neighbour proximity. Canopies are dynamic and complex environments with heterogeneous light cues in the far-red, red, blue, and UV spectrum, which can be perceived by photoreceptors in spatially separated plant tissues. Molecular regulation of plant architecture adjustment via PHYTOCHROME-INTERACTING FACTOR transcription factors and growth-related hormones such as auxin, gibberellic acid, brassinosteroids, and abscisic acid were historically studied without much attention to spatial or tissue-specific context. Recent developments and technologies have, however, sparked strong interest in spatially explicit understanding of shade avoidance regulation. Other environmental factors such as temperature and nutrient availability interact with the molecular shade avoidance regulation network, often depending on the spatial location of the signals, and the responding organs. Here, we review recent advances in how plants respond to heterogeneous light cues and integrate these with other environmental signals.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"695-711"},"PeriodicalIF":5.6,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11805592/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141064313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Hyperspectral imaging for chloroplast movement detection.","authors":"","doi":"10.1093/jxb/eraf043","DOIUrl":"https://doi.org/10.1093/jxb/eraf043","url":null,"abstract":"","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143370834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seed germination as a developmental process has been extensively studied using the model plant Arabidopsis thaliana. Its seed biology is generally well understood, from the regulation of seed maturation and dormancy to germination and the post-germinative transition. These events require, and are the result of, extensive transcriptional reprogramming which importantly are mediated by essential epigenetic mechanisms such as DNA methylation, different histone variants and modifications, as well as by non-coding regulatory RNAs. Studying these mechanisms therefore is essential for understanding the regulation of gene expression during germination. In this review we summarize our current knowledge of these mechanisms in the context of Arabidopsis thaliana seed biology and discuss aspects requiring further study.
{"title":"Non-coding and epigenetic mechanisms in the regulation of seed germination in Arabidopsis thaliana.","authors":"Benjamin Jm Tremblay, Julia I Qüesta","doi":"10.1093/jxb/eraf051","DOIUrl":"https://doi.org/10.1093/jxb/eraf051","url":null,"abstract":"<p><p>Seed germination as a developmental process has been extensively studied using the model plant Arabidopsis thaliana. Its seed biology is generally well understood, from the regulation of seed maturation and dormancy to germination and the post-germinative transition. These events require, and are the result of, extensive transcriptional reprogramming which importantly are mediated by essential epigenetic mechanisms such as DNA methylation, different histone variants and modifications, as well as by non-coding regulatory RNAs. Studying these mechanisms therefore is essential for understanding the regulation of gene expression during germination. In this review we summarize our current knowledge of these mechanisms in the context of Arabidopsis thaliana seed biology and discuss aspects requiring further study.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143365063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alena Patnaik, Priyanka Mishra, Anish Dash, Madhusmita Panigrahy, Kishore C S Panigrahi
GIGANTEA (GI) is a multifaceted plant-specific protein that originated in a streptophyte ancestor. The current known functions of GI include circadian clock control, light signalling, flowering time regulation, stomata response, chloroplast biogenesis, accumulation of anthocyanin, chlorophyll, and starch, phytohormone signalling, senescence, and response to drought, salt, and oxidative stress. Six decades since its discovery, no functional domains have been defined, and its mechanism of action is still not well characterized. In this review, we explore the functional evolution of GI to distinguish between ancestral and more recently acquired roles. GI integrated itself into various existing signalling pathways of the circadian clock, blue light, photoperiod, and osmotic and oxidative stress response. It also evolved parallelly to acquire new functions for chloroplast accumulation, red light signalling, and anthocyanin production. In this review, we have encapsulated the known mechanisms of various biological functions of GI, and cast light on the evolution of GI in the plant lineage.
GIGANTEA 是一种多方面的植物特异性蛋白质,起源于链格植物的祖先。目前已知的 GI 功能包括昼夜节律控制、光信号、花期调节、气孔反应、叶绿体生物发生、花青素、叶绿素和淀粉的积累、植物激素信号、衰老以及对干旱、盐和氧化应激的反应。自其被发现以来的六十年间,尚未确定其功能域,其作用机制也仍未得到很好的描述。在这篇综述中,我们探讨了 GI 的功能演变,以区分其祖先的作用和最近获得的作用。GI 将自身整合到昼夜节律、蓝光、光周期以及渗透和氧化应激反应的各种现有信号通路中。同时,它还在进化过程中获得了叶绿体积累、红光信号和花青素生产等新功能。在这篇综述中,我们概括了 GI 各种生物功能的已知机制。此外,本手稿还将揭示 GI 在植物品系中的进化过程。
{"title":"Evolution of light-dependent functions of GIGANTEA.","authors":"Alena Patnaik, Priyanka Mishra, Anish Dash, Madhusmita Panigrahy, Kishore C S Panigrahi","doi":"10.1093/jxb/erae441","DOIUrl":"10.1093/jxb/erae441","url":null,"abstract":"<p><p>GIGANTEA (GI) is a multifaceted plant-specific protein that originated in a streptophyte ancestor. The current known functions of GI include circadian clock control, light signalling, flowering time regulation, stomata response, chloroplast biogenesis, accumulation of anthocyanin, chlorophyll, and starch, phytohormone signalling, senescence, and response to drought, salt, and oxidative stress. Six decades since its discovery, no functional domains have been defined, and its mechanism of action is still not well characterized. In this review, we explore the functional evolution of GI to distinguish between ancestral and more recently acquired roles. GI integrated itself into various existing signalling pathways of the circadian clock, blue light, photoperiod, and osmotic and oxidative stress response. It also evolved parallelly to acquire new functions for chloroplast accumulation, red light signalling, and anthocyanin production. In this review, we have encapsulated the known mechanisms of various biological functions of GI, and cast light on the evolution of GI in the plant lineage.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"819-835"},"PeriodicalIF":5.6,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lekshmy Sathee, Suriyaprakash R, Dipankar Barman, Sandeep B Adavi, Shailendra K Jha, Viswanathan Chinnusamy
Plants have developed complex mechanisms to perceive, transduce, and respond to environmental signals, such as light, which are essential for acquiring and allocating resources, including nitrogen (N). This review delves into the complex interaction between light signals and N metabolism, emphasizing light-mediated regulation of N uptake and assimilation. Firstly, we examine the details of light-mediated regulation of N uptake and assimilation, focusing on the light-responsive activity of nitrate reductase (NR) and nitrate transporters. Secondly, we discuss the influence of light on N-dependent developmental plasticity, elucidating how N availability regulates crucial developmental transitions such as flowering time, shoot branching, and root growth, as well as how light modulates these processes. Additionally, we consider the molecular interaction between light and N signalling, focusing on photoreceptors and transcription factors such as HY5, which are necessary for N uptake and assimilation under varying light conditions. A recent understanding of the nitrate signalling and perception of low N is also highlighted. The in silico transcriptome analysis suggests a reprogramming of N signalling genes by shade, and identifies NLP7, bZIP1, CPK30, CBL1, LBD37, LBD38, and HRS1 as crucial molecular regulators integrating light-regulated N metabolism.
植物已经形成了感知、传递和响应光等环境信号的复杂机制,这些信号对于获取和分配包括氮(N)在内的资源至关重要。本综述深入探讨了光信号与氮代谢之间复杂的相互作用,重点是光介导的氮吸收和同化调控。首先,我们讨论了光介导的氮吸收和同化调控的细节,重点是硝酸还原酶(NR)和硝酸盐转运体的光响应活性。其次,我们讨论了光对氮依赖的发育可塑性的影响,阐明了氮的可用性如何调控关键的发育转换,如开花时间、芽分枝和根系生长,以及光如何调节这些过程。此外,我们还讨论了光和氮(N)信号之间的分子相互作用,重点关注光感受器和转录因子(如 HY5),它们在不同光照条件下对氮的吸收和同化是必需的。此外,还重点介绍了最近对硝酸盐信号和低氮感知的理解。内部转录组分析表明,N 信号基因会因遮光而重新编程,并确定 NLP7、bZIP1、CPK30、CBL1、LBD37、LBD38 和 HRS1 为整合光调 N 代谢的关键分子调控因子。
{"title":"Nitrogen at the crossroads of light: integration of light signalling and plant nitrogen metabolism.","authors":"Lekshmy Sathee, Suriyaprakash R, Dipankar Barman, Sandeep B Adavi, Shailendra K Jha, Viswanathan Chinnusamy","doi":"10.1093/jxb/erae437","DOIUrl":"10.1093/jxb/erae437","url":null,"abstract":"<p><p>Plants have developed complex mechanisms to perceive, transduce, and respond to environmental signals, such as light, which are essential for acquiring and allocating resources, including nitrogen (N). This review delves into the complex interaction between light signals and N metabolism, emphasizing light-mediated regulation of N uptake and assimilation. Firstly, we examine the details of light-mediated regulation of N uptake and assimilation, focusing on the light-responsive activity of nitrate reductase (NR) and nitrate transporters. Secondly, we discuss the influence of light on N-dependent developmental plasticity, elucidating how N availability regulates crucial developmental transitions such as flowering time, shoot branching, and root growth, as well as how light modulates these processes. Additionally, we consider the molecular interaction between light and N signalling, focusing on photoreceptors and transcription factors such as HY5, which are necessary for N uptake and assimilation under varying light conditions. A recent understanding of the nitrate signalling and perception of low N is also highlighted. The in silico transcriptome analysis suggests a reprogramming of N signalling genes by shade, and identifies NLP7, bZIP1, CPK30, CBL1, LBD37, LBD38, and HRS1 as crucial molecular regulators integrating light-regulated N metabolism.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"803-818"},"PeriodicalIF":5.6,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sourav Datta, Madhusmita Panigrahy, Kishore C S Panigrahi
{"title":"Advances in plant photobiology: let's light it up once again.","authors":"Sourav Datta, Madhusmita Panigrahy, Kishore C S Panigrahi","doi":"10.1093/jxb/eraf001","DOIUrl":"https://doi.org/10.1093/jxb/eraf001","url":null,"abstract":"","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":"76 3","pages":"641-645"},"PeriodicalIF":5.6,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143370835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gouranga Upadhyaya, Vishmita Sethi, Annayasa Modak, Sreeramaiah N Gangappa
The ARABIDOPSIS LIGHT-DEPENDENT SHORT HYPOCOTYLS 1 and rice G1/LIGHT-DEPENDENT SHORT HYPOCOTYLS (ALOG/LSH) group proteins are highly conserved across plant lineages from moss to higher flowering plants, suggesting their crucial role in the evolution and adaptation of land plants. The role of ALOG/LSH proteins is highly conserved in various developmental responses, such as vegetative and reproductive developmental programs. Their role in meristem identity, cotyledon development, seedling photomorphogenesis, and leaf and shoot development has been relatively well established. Moreover, several key pieces of evidence suggest their role in inflorescence architecture and flower development, including male and female reproductive organs and flower colouration. Recent research has started to explore their role in stress response. Functionally, ALOG/LSH proteins have been demonstrated to act as transcriptional regulators and are considered a newly emerging class of transcription factors in plants that regulate diverse developmental and physiological processes. This review aims to stimulate discussion about their role in plant development and as transcription factors. It also seeks to further unravel the underlying molecular mechanism by which they regulate growth and development throughout the plant lineage.
{"title":"ALOG/LSHs: a novel class of transcription factors that regulate plant growth and development.","authors":"Gouranga Upadhyaya, Vishmita Sethi, Annayasa Modak, Sreeramaiah N Gangappa","doi":"10.1093/jxb/erae409","DOIUrl":"10.1093/jxb/erae409","url":null,"abstract":"<p><p>The ARABIDOPSIS LIGHT-DEPENDENT SHORT HYPOCOTYLS 1 and rice G1/LIGHT-DEPENDENT SHORT HYPOCOTYLS (ALOG/LSH) group proteins are highly conserved across plant lineages from moss to higher flowering plants, suggesting their crucial role in the evolution and adaptation of land plants. The role of ALOG/LSH proteins is highly conserved in various developmental responses, such as vegetative and reproductive developmental programs. Their role in meristem identity, cotyledon development, seedling photomorphogenesis, and leaf and shoot development has been relatively well established. Moreover, several key pieces of evidence suggest their role in inflorescence architecture and flower development, including male and female reproductive organs and flower colouration. Recent research has started to explore their role in stress response. Functionally, ALOG/LSH proteins have been demonstrated to act as transcriptional regulators and are considered a newly emerging class of transcription factors in plants that regulate diverse developmental and physiological processes. This review aims to stimulate discussion about their role in plant development and as transcription factors. It also seeks to further unravel the underlying molecular mechanism by which they regulate growth and development throughout the plant lineage.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"836-850"},"PeriodicalIF":5.6,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Light serves as a pivotal environmental cue regulating various aspects of plant growth and development, including seed germination, seedling de-etiolation, and shade avoidance. Within this regulatory framework, the basic helix-loop-helix transcription factors known as phytochrome-interacting factors (PIFs) play an essential role in orchestrating responses to light stimuli. Phytochromes, acting as red/far-red light receptors, initiate a cascade of events leading to the degradation of PIFs (except PIF7), thereby triggering transcriptional reprogramming to facilitate photomorphogenesis. Recent research has unveiled multiple post-translational modifications that regulate the abundance and/or activity of PIFs, including phosphorylation, dephosphorylation, ubiquitination, deubiquitination, and SUMOylation. Moreover, intriguing findings indicate that PIFs can influence chromatin modifications. These include modulation of histone 3 lysine 9 acetylation (H3K9ac), as well as occupancy of histone variants such as H2A.Z (associated with gene repression) and H3.3 (associated with gene activation), thereby intricately regulating downstream gene expression in response to environmental cues. This review summarizes recent advances in understanding the role of PIFs in regulating various signaling pathways, with a major focus on photomorphogenesis.
{"title":"Shining light on plant growth: recent insights into phytochrome-interacting factors.","authors":"Xingbo Cai, Enamul Huq","doi":"10.1093/jxb/erae276","DOIUrl":"10.1093/jxb/erae276","url":null,"abstract":"<p><p>Light serves as a pivotal environmental cue regulating various aspects of plant growth and development, including seed germination, seedling de-etiolation, and shade avoidance. Within this regulatory framework, the basic helix-loop-helix transcription factors known as phytochrome-interacting factors (PIFs) play an essential role in orchestrating responses to light stimuli. Phytochromes, acting as red/far-red light receptors, initiate a cascade of events leading to the degradation of PIFs (except PIF7), thereby triggering transcriptional reprogramming to facilitate photomorphogenesis. Recent research has unveiled multiple post-translational modifications that regulate the abundance and/or activity of PIFs, including phosphorylation, dephosphorylation, ubiquitination, deubiquitination, and SUMOylation. Moreover, intriguing findings indicate that PIFs can influence chromatin modifications. These include modulation of histone 3 lysine 9 acetylation (H3K9ac), as well as occupancy of histone variants such as H2A.Z (associated with gene repression) and H3.3 (associated with gene activation), thereby intricately regulating downstream gene expression in response to environmental cues. This review summarizes recent advances in understanding the role of PIFs in regulating various signaling pathways, with a major focus on photomorphogenesis.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"646-663"},"PeriodicalIF":5.6,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141321017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Photoperiodic responses shape plant fitness to the changing environment and are important regulators of growth, development, and productivity. Photoperiod sensing is one of the most important cues to track seasonal variations. It is also a major cue for reproductive success. The photoperiodic information conveyed through the combined action of photoreceptors and the circadian clock orchestrates an output response in plants. Multiple responses such as hypocotyl elongation, induction of dormancy, and flowering are photoperiodically regulated in seed plants (eg. angiosperms). Flowering plants such as Arabidopsis or rice have served as important model systems to understand the molecular players involved in photoperiodic signalling. However, photoperiodic responses in non-angiosperm plants have not been investigated and documented in detail. Genomic and transcriptomic studies have provided evidence on the conserved and distinct molecular mechanisms across the plant kingdom. In this review, we have attempted to compile and compare photoperiodic responses in the plant kingdom with a special focus on non-angiosperms.
{"title":"Photoperiodic control of growth and reproduction in non-flowering plants.","authors":"Durga Prasad Biswal, Kishore Chandra Sekhar Panigrahi","doi":"10.1093/jxb/erae471","DOIUrl":"10.1093/jxb/erae471","url":null,"abstract":"<p><p>Photoperiodic responses shape plant fitness to the changing environment and are important regulators of growth, development, and productivity. Photoperiod sensing is one of the most important cues to track seasonal variations. It is also a major cue for reproductive success. The photoperiodic information conveyed through the combined action of photoreceptors and the circadian clock orchestrates an output response in plants. Multiple responses such as hypocotyl elongation, induction of dormancy, and flowering are photoperiodically regulated in seed plants (eg. angiosperms). Flowering plants such as Arabidopsis or rice have served as important model systems to understand the molecular players involved in photoperiodic signalling. However, photoperiodic responses in non-angiosperm plants have not been investigated and documented in detail. Genomic and transcriptomic studies have provided evidence on the conserved and distinct molecular mechanisms across the plant kingdom. In this review, we have attempted to compile and compare photoperiodic responses in the plant kingdom with a special focus on non-angiosperms.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"851-872"},"PeriodicalIF":5.6,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142687237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}