Pub Date : 2025-07-15Epub Date: 2025-01-16DOI: 10.2323/jgam.2025.01.001
Yuzheng Wu, Shu Ishikawa, Ken-Ichi Yoshida
As the first step toward understanding how NADPH levels are regulated in Bacillus subtilis, we sought to obtain mutant strains with enhanced NADPH levels. Our previous study demonstrated that in a strain of B. subtilis expressing bacterial luciferase derived from Photorhabdus luminescens, artificially enhancing NADPH levels enhanced luciferase luminescence in the colonies. In this study, from a library of ethyl methanesulfonate-treated mutants, those with enhanced luciferase luminescence in colonies were isolated, and five isolates were further selected by luminescence in microplate culture. Finally, we measured intracellular NADPH levels of them and found that all the five strains had significantly enhanced NADPH levels compared to the parental strain. In addition, four strains significantly increased total NADP(H) levels. These results demonstrate the effectiveness of our strategy as a methodology for obtaining mutant strains useful for elucidating the mechanisms for regulation of NADPH levels in B. subtilis.
{"title":"Screening to isolate Bacillus subtilis mutants with enhanced NADPH levels.","authors":"Yuzheng Wu, Shu Ishikawa, Ken-Ichi Yoshida","doi":"10.2323/jgam.2025.01.001","DOIUrl":"10.2323/jgam.2025.01.001","url":null,"abstract":"<p><p>As the first step toward understanding how NADPH levels are regulated in Bacillus subtilis, we sought to obtain mutant strains with enhanced NADPH levels. Our previous study demonstrated that in a strain of B. subtilis expressing bacterial luciferase derived from Photorhabdus luminescens, artificially enhancing NADPH levels enhanced luciferase luminescence in the colonies. In this study, from a library of ethyl methanesulfonate-treated mutants, those with enhanced luciferase luminescence in colonies were isolated, and five isolates were further selected by luminescence in microplate culture. Finally, we measured intracellular NADPH levels of them and found that all the five strains had significantly enhanced NADPH levels compared to the parental strain. In addition, four strains significantly increased total NADP(H) levels. These results demonstrate the effectiveness of our strategy as a methodology for obtaining mutant strains useful for elucidating the mechanisms for regulation of NADPH levels in B. subtilis.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143006344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-15Epub Date: 2025-04-23DOI: 10.2323/jgam.2025.04.001
Shiho Oyama, Masatoshi Fujihara
Disc immuno-immobilization is a simple method for typing flagellar antigens from Salmonella enterica. In this study, we successfully adapted this method for Escherichia coli. All eleven strains tested were determined their antigens within 14 h from inoculation. This method improves the efficiency and speed, highlighting its usefulness in clinical laboratories.
{"title":"Identification of Escherichia coli flagellar antigen by disc immuno-immobilization.","authors":"Shiho Oyama, Masatoshi Fujihara","doi":"10.2323/jgam.2025.04.001","DOIUrl":"10.2323/jgam.2025.04.001","url":null,"abstract":"<p><p>Disc immuno-immobilization is a simple method for typing flagellar antigens from Salmonella enterica. In this study, we successfully adapted this method for Escherichia coli. All eleven strains tested were determined their antigens within 14 h from inoculation. This method improves the efficiency and speed, highlighting its usefulness in clinical laboratories.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143999619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-15Epub Date: 2025-02-18DOI: 10.2323/jgam.2025.02.001
Zhikai Zhang, Qian Lin
p-Anisaldehyde, a fragrance and flavour with important roles in food, cosmetics, and drug industries, is currently synthesized through chemical methods. Production of p-anisaldehyde by chemical oxidation of trans-anethole in industry gives rise to excessive by-products and adverse environmental impacts, whereas biological process would address such problems. Here, we presented a process of biotransformation of trans-anethole for production of p-anisaldehyde. The tao gene encoding for trans-anethole oxygenase (TAO) from Paraburkholderia sp. MR185 was fused with a solubilization tag GST and ProS2, respectively. GST did not exhibit solubility enhancement effect, whereas fusion with ProS2 significantly improved TAO's soluble expression in E. coli and the fusion protein ProS2-TAO-Sil3K accounted for more than 40% of total soluble proteins. ProS2-TAO-Sil3K was purified by simple silica affinity and its activity did not require addition of NADH, NADPH, and FAD. Metal ions Co2+, Zn2+, Ni2+, and Cu2+ displayed significant inhibition effect on TAO activity, and addition of Fe2+ improved enzyme activity by 32.6%. After induction, engineered E. coli cells were used as whole-cell biocatalyst for transformation of trans-anethole, and the final concentration of p-anisaldehyde reached 10.18 mM (1.38 g/L), with the volumetric productivity of 0.11 g/L/h and conversion rate of 67.9%. These results reveal that the biosynthesis of p-anisaldehyde has a great potential in practice.
对茴香醛是一种在食品、化妆品和药品工业中具有重要作用的香料和香精,目前主要通过化学方法合成。工业上通过化学氧化反式茴香醇生产对茴香醛会产生过多的副产物和不利的环境影响,而生物工艺可以解决这些问题。本文介绍了反式茴香醚生物转化生产对茴香醛的工艺。将Paraburkholderia sp. MR185中编码反式甲醚加氧酶(tao)的基因分别与一个增溶标记GST和ProS2融合。GST未表现出溶解度增强效应,而与ProS2融合显著提高了TAO在大肠杆菌中的可溶性表达,融合蛋白pro2 -TAO- sil3k占可溶性蛋白总数的40%以上。ProS2-TAO-Sil3K通过简单的二氧化硅亲和纯化,其活性不需要添加NADH、NADPH和FAD。金属离子Co2+、Zn2+、Ni2+和Cu2+对TAO活性有显著抑制作用,其中Fe2+的添加可使TAO活性提高32.6%。诱导后的工程大肠杆菌细胞作为全细胞生物催化剂转化反式茴香醇,最终对茴香醛浓度达到10.18 mM (1.38 g/L),体积产率为0.11 g/L/h,转化率为67.9%。这些结果表明,生物合成对茴香醛具有很大的应用潜力。
{"title":"Production of p-anisaldehyde via whole-cell transformation using recombinant E. coli expressing trans-anethole oxygenase.","authors":"Zhikai Zhang, Qian Lin","doi":"10.2323/jgam.2025.02.001","DOIUrl":"10.2323/jgam.2025.02.001","url":null,"abstract":"<p><p>p-Anisaldehyde, a fragrance and flavour with important roles in food, cosmetics, and drug industries, is currently synthesized through chemical methods. Production of p-anisaldehyde by chemical oxidation of trans-anethole in industry gives rise to excessive by-products and adverse environmental impacts, whereas biological process would address such problems. Here, we presented a process of biotransformation of trans-anethole for production of p-anisaldehyde. The tao gene encoding for trans-anethole oxygenase (TAO) from Paraburkholderia sp. MR185 was fused with a solubilization tag GST and ProS2, respectively. GST did not exhibit solubility enhancement effect, whereas fusion with ProS2 significantly improved TAO's soluble expression in E. coli and the fusion protein ProS2-TAO-Sil3K accounted for more than 40% of total soluble proteins. ProS2-TAO-Sil3K was purified by simple silica affinity and its activity did not require addition of NADH, NADPH, and FAD. Metal ions Co<sup>2+</sup>, Zn<sup>2+</sup>, Ni<sup>2+</sup>, and Cu<sup>2+</sup> displayed significant inhibition effect on TAO activity, and addition of Fe<sup>2+</sup> improved enzyme activity by 32.6%. After induction, engineered E. coli cells were used as whole-cell biocatalyst for transformation of trans-anethole, and the final concentration of p-anisaldehyde reached 10.18 mM (1.38 g/L), with the volumetric productivity of 0.11 g/L/h and conversion rate of 67.9%. These results reveal that the biosynthesis of p-anisaldehyde has a great potential in practice.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-13Epub Date: 2024-09-26DOI: 10.2323/jgam.2024.09.001
Fuka Iriyama, Hirokazu Iida, Kazuyoshi Kawahara
Aureispira marina is a marine bacterium with gliding motility isolated from the southern coastline of Thailand. It contained ceramide as a major cellular lipid composed of saturated or unsaturated branched chain 2-hydroxy-fatty acid and sphingosine. The structure of unsaturated 2-hydroxy-fatty acid was investigated in our previous study, but the geometric configuration of the double bond remained unclear. In the present study, 14-methyl-∆2-pentadecenol (∆2-iso-C16:1-ol) was prepared from D-2-hydroxy-15-methyl-∆3-hexadecenoic acid (D-2-OH-∆3-iso-C17:1) of the ceramide component, and analyzed by 1H and 13C NMR in comparison with ∆2-trans-hexadecenol (∆2-trans-n-C16:1-ol) derived from commercially available D-sphingosine. From the coupling constants of protons in the double bond and the chemical shift value of allylic carbon, the configuration of the double bond was determined as trans. Since the structure of 2-hydroxy-fatty acids was clarified, cellular fatty acids of A. marina and A. maritima, another species of the genus Aureispira, were reexamined, and the description on the cellular fatty acid composition of the genus Aureispira in the previous papers (Hosoya et al., 2006, Int. J. System. Evol. Microbiol., 56, 2931-2935; Hosoya et al., 2007, Int. J. System. Evol. Microbiol., 57, 1948-1951) lacking the description of 2-hydroxy-fatty acids was emended.
Aureispira marina 是一种从泰国南部海岸线分离出来的具有滑翔运动能力的海洋细菌。它所含的神经酰胺是一种主要的细胞脂质,由饱和或不饱和支链 2-羟基脂肪酸和鞘磷脂组成。我们之前的研究对不饱和 2-羟基脂肪酸的结构进行了研究,但双键的几何构型仍不清楚。在本研究中,14-甲基-∆2-十五烯醇(∆2-异-C16:1-醇)是由神经酰胺成分中的 D-2-羟基-15-甲基-∆3-十六烯酸(D-2-OH-∆3-异-C17:1),并通过 1H 和 13C NMR 与从市售 D-鞘氨醇中提取的Δ2-反式-十六烯醇(Δ2-反式-n-C16:1-醇)进行对比分析。根据双键中质子的耦合常数和烯丙基碳的化学位移值,确定双键的构型为反式。由于明确了 2-羟基脂肪酸的结构,我们重新研究了 A. marina 和 A. maritima(金鱼藻属的另一个物种)的细胞脂肪酸,并参考了之前论文中关于金鱼藻属细胞脂肪酸组成的描述(Hosoya 等人,2006 年,Int.J. System.Evol. Microbiol., 56, 2931-2935; Hosoya et al.系统。Evol.Microbiol.,57,1948-1951),缺少对 2-羟基脂肪酸的描述。
{"title":"Determination of double bond configuration of 2-hydroxy-fatty acids and emendation of cellular fatty acid composition of Aureispira marina and Aureispira maritima.","authors":"Fuka Iriyama, Hirokazu Iida, Kazuyoshi Kawahara","doi":"10.2323/jgam.2024.09.001","DOIUrl":"10.2323/jgam.2024.09.001","url":null,"abstract":"<p><p>Aureispira marina is a marine bacterium with gliding motility isolated from the southern coastline of Thailand. It contained ceramide as a major cellular lipid composed of saturated or unsaturated branched chain 2-hydroxy-fatty acid and sphingosine. The structure of unsaturated 2-hydroxy-fatty acid was investigated in our previous study, but the geometric configuration of the double bond remained unclear. In the present study, 14-methyl-∆<sup>2</sup>-pentadecenol (∆<sup>2</sup>-iso-C<sub>16:1</sub>-ol) was prepared from D-2-hydroxy-15-methyl-∆<sup>3</sup>-hexadecenoic acid (D-2-OH-∆<sup>3</sup>-iso-C<sub>17:1</sub>) of the ceramide component, and analyzed by <sup>1</sup>H and <sup>13</sup>C NMR in comparison with ∆<sup>2</sup>-trans-hexadecenol (∆<sup>2</sup>-trans-n-C<sub>16:1</sub>-ol) derived from commercially available D-sphingosine. From the coupling constants of protons in the double bond and the chemical shift value of allylic carbon, the configuration of the double bond was determined as trans. Since the structure of 2-hydroxy-fatty acids was clarified, cellular fatty acids of A. marina and A. maritima, another species of the genus Aureispira, were reexamined, and the description on the cellular fatty acid composition of the genus Aureispira in the previous papers (Hosoya et al., 2006, Int. J. System. Evol. Microbiol., 56, 2931-2935; Hosoya et al., 2007, Int. J. System. Evol. Microbiol., 57, 1948-1951) lacking the description of 2-hydroxy-fatty acids was emended.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142348068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Protein trafficking to vacuoles in plants and fungi, and to lysosomes in animals, is essential for the maintenance of cellular homeostasis. In Saccharomyces cerevisiae, the vacuolar protein sorting (VPS) pathway has been well studied by using vacuolar carboxypeptidase Y (CPY) as a model, and many VPS genes have been identified. By contrast, the vacuolar protein trafficking pathway in Schizosaccharomyces pombe remains poorly understood. In this study, we identified a novel VPS gene (SPBC1709.03) in S. pombe that is broadly conserved in fungi, but not in S. cerevisiae. Owing to its DUF3844 domain of unknown function, the gene was named vps3844. Disruption mutants of vps3844 had defects in both CPY sorting and incorporation of FM4-64 dye into the vacuolar membrane. Partial deletion analysis of the Vps3844 protein revealed that, within the DUF3844 domain, the region comprising amino acids 354 to 380 is important for protein trafficking to the vacuole. Our findings represent the first report of a VPS gene involved in vacuolar transport that is conserved in fungi, particularly S. pombe, but lacks representation in S. cerevisiae.
{"title":"A DUF3844 domain-containing protein is required for vacuolar protein sorting in Schizosaccharomyces pombe.","authors":"Tomoaki Inagawa, Kazuma Ohkubo, Masahiro Watanabe, Tomotake Morita, Yujiro Higuchi, Hiromi Maekawa, Kaoru Takegawa","doi":"10.2323/jgam.2024.10.001","DOIUrl":"10.2323/jgam.2024.10.001","url":null,"abstract":"<p><p>Protein trafficking to vacuoles in plants and fungi, and to lysosomes in animals, is essential for the maintenance of cellular homeostasis. In Saccharomyces cerevisiae, the vacuolar protein sorting (VPS) pathway has been well studied by using vacuolar carboxypeptidase Y (CPY) as a model, and many VPS genes have been identified. By contrast, the vacuolar protein trafficking pathway in Schizosaccharomyces pombe remains poorly understood. In this study, we identified a novel VPS gene (SPBC1709.03) in S. pombe that is broadly conserved in fungi, but not in S. cerevisiae. Owing to its DUF3844 domain of unknown function, the gene was named vps3844. Disruption mutants of vps3844 had defects in both CPY sorting and incorporation of FM4-64 dye into the vacuolar membrane. Partial deletion analysis of the Vps3844 protein revealed that, within the DUF3844 domain, the region comprising amino acids 354 to 380 is important for protein trafficking to the vacuole. Our findings represent the first report of a VPS gene involved in vacuolar transport that is conserved in fungi, particularly S. pombe, but lacks representation in S. cerevisiae.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-13Epub Date: 2024-10-25DOI: 10.2323/jgam.2024.09.002
Fauzi Akhbar Anugrah, I Nyoman Pugeg Aryantha, Rahmi Masita, Siti Zubaidah, Nur Izzati Mohd Noh
For centuries, quinoline alkaloids from the tree bark of Cinchona ledgeriana (C. ledgeriana) have been used in the treatment of malaria. However, unsustainable harvesting and poor growth conditions greatly limit its use as raw materials. Since plant endophytes are known to contribute to the physiology of the host and its metabolism for survival, this study showed the potential of endophytes isolated from C. ledgeriana roots in promoting the germination of Catharathus roseus (C. roseus) seedlings and the biosynthesis of quinoline alkaloid. In this present study, we found that the Enterobacteriaceae family comprised the majority of the bacterial community, with Klebsiella pneumoniae being the most abundant species at the C. ledgeriana roots. Characterization of culturable bacterial endophytes from the C. ledgeriana roots showed that all the isolates displayed plant growth-promoting factors and antifungal activities. Interestingly, chromatographic analyses led to the identification of the quinoline alkaloids producing Achromobacter xylosoxidans (A. xylosoxidans) A1. Moreover, the co-cultures of A. xylosoxidans A1, Cytobacillus solani (C. solani) A3, and Klebsiella aerogenes A6 increased the fresh and dry weight of the C. roseus seedlings. These results suggest that these bacterial endophytes may enhance quinine and quinidine production as well as the growth of the plant host.
几个世纪以来,金鸡纳树(Cinchona ledgeriana)树皮中的喹啉生物碱一直被用于治疗疟疾。然而,不可持续的采伐和恶劣的生长条件极大地限制了其作为原材料的使用。众所周知,植物内生菌有助于宿主的生理机能和新陈代谢,从而促进宿主的生存。本研究表明,从 C. ledgeriana 根部分离的内生菌具有促进 Catharathus roseus(C. roseus)幼苗发芽和喹啉生物碱生物合成的潜力。在本研究中,我们发现肠杆菌科细菌占细菌群落的大多数,其中肺炎克雷伯氏菌是 C. ledgeriana 根部最多的菌种。对 C. ledgeriana 根部可培养的细菌内生菌的特性分析表明,所有分离菌株都具有促进植物生长的因子和抗真菌活性。有趣的是,通过色谱分析确定了产生喹啉生物碱的木质氧化牛膝杆菌(A. xylosoxidans)A1。此外,A. xylosoxidans A1、Cytobacillus solani (C. solani) A3 和 Klebsiella aerogenes A6 的共培养增加了蔷薇幼苗的鲜重和干重。这些结果表明,这些细菌内生菌可提高奎宁和奎尼丁的产量,并促进植物宿主的生长。
{"title":"Isolation of Bacterial Endophytes Associated with Cinchona ledgeriana Moens. and Their Potential in Plant-growth Promotion, Antifungal and Quinoline Alkaloids Production.","authors":"Fauzi Akhbar Anugrah, I Nyoman Pugeg Aryantha, Rahmi Masita, Siti Zubaidah, Nur Izzati Mohd Noh","doi":"10.2323/jgam.2024.09.002","DOIUrl":"10.2323/jgam.2024.09.002","url":null,"abstract":"<p><p>For centuries, quinoline alkaloids from the tree bark of Cinchona ledgeriana (C. ledgeriana) have been used in the treatment of malaria. However, unsustainable harvesting and poor growth conditions greatly limit its use as raw materials. Since plant endophytes are known to contribute to the physiology of the host and its metabolism for survival, this study showed the potential of endophytes isolated from C. ledgeriana roots in promoting the germination of Catharathus roseus (C. roseus) seedlings and the biosynthesis of quinoline alkaloid. In this present study, we found that the Enterobacteriaceae family comprised the majority of the bacterial community, with Klebsiella pneumoniae being the most abundant species at the C. ledgeriana roots. Characterization of culturable bacterial endophytes from the C. ledgeriana roots showed that all the isolates displayed plant growth-promoting factors and antifungal activities. Interestingly, chromatographic analyses led to the identification of the quinoline alkaloids producing Achromobacter xylosoxidans (A. xylosoxidans) A1. Moreover, the co-cultures of A. xylosoxidans A1, Cytobacillus solani (C. solani) A3, and Klebsiella aerogenes A6 increased the fresh and dry weight of the C. roseus seedlings. These results suggest that these bacterial endophytes may enhance quinine and quinidine production as well as the growth of the plant host.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rapid sand filters (RSFs) are employed in a drinking water treatment to remove undesirable elements such as suspended solids and dissolved metal ions. At a closed uranium (U) mine site, two sets of tandemly linked paired RSF systems (RSF1-RSF2 and RSF1-RSF3) were utilized to remove iron and manganese from mine water. In this study, a 16S rRNA-based amplicon sequencing survey was conducted to investigate the core microbes within the RSF system treating the mine water. In RSF1, two operational taxonomic units (OTUs) related to methanotrophic bacteria, Methylobacter tundripaludum (relative abundance: 18.1%) and Methylovulum psychrotolerans (11.5%), were the most and second most dominant species, respectively, alongside iron-oxidizing bacteria. The presence of these OTUs in RSF1 can be attributed to the microbial community in the inlet mine water, as the three most abundant OTUs in the mine water also dominated RSF1. Conversely, in both RSF2 and RSF3, Nevskia sp., previously isolated from the Ytterby mine manganese oxide producing ecosystem, became dominant, although known manganese-oxidizing bacterial OTUs were not detected. In contrast, a unique OTU related to Rhodanobacter sp. was the third most abundant (8.0%) in RSF1, possibly due to selective pressure from the radionuclide-contaminated environment during RSF operation, as this genus is known to be abundant at nuclear legacy waste sites. Understanding the key bacterial taxa in RSF system for mine water treatment could enhance the effectiveness of RSF processes in treating mine water from closed U mines.
{"title":"Microbial community analysis of sand filters used to treat mine water from a closed uranium mine.","authors":"Hiroshi Habe, Tomohiro Inaba, Tomo Aoyagi, Hidenobu Aizawa, Yuya Sato, Tomoyuki Hori, Keiko Yamaji, Yoshiyuki Ohara, Kenjin Fukuyama, Takuro Nishimura","doi":"10.2323/jgam.2024.08.001","DOIUrl":"10.2323/jgam.2024.08.001","url":null,"abstract":"<p><p>Rapid sand filters (RSFs) are employed in a drinking water treatment to remove undesirable elements such as suspended solids and dissolved metal ions. At a closed uranium (U) mine site, two sets of tandemly linked paired RSF systems (RSF1-RSF2 and RSF1-RSF3) were utilized to remove iron and manganese from mine water. In this study, a 16S rRNA-based amplicon sequencing survey was conducted to investigate the core microbes within the RSF system treating the mine water. In RSF1, two operational taxonomic units (OTUs) related to methanotrophic bacteria, Methylobacter tundripaludum (relative abundance: 18.1%) and Methylovulum psychrotolerans (11.5%), were the most and second most dominant species, respectively, alongside iron-oxidizing bacteria. The presence of these OTUs in RSF1 can be attributed to the microbial community in the inlet mine water, as the three most abundant OTUs in the mine water also dominated RSF1. Conversely, in both RSF2 and RSF3, Nevskia sp., previously isolated from the Ytterby mine manganese oxide producing ecosystem, became dominant, although known manganese-oxidizing bacterial OTUs were not detected. In contrast, a unique OTU related to Rhodanobacter sp. was the third most abundant (8.0%) in RSF1, possibly due to selective pressure from the radionuclide-contaminated environment during RSF operation, as this genus is known to be abundant at nuclear legacy waste sites. Understanding the key bacterial taxa in RSF system for mine water treatment could enhance the effectiveness of RSF processes in treating mine water from closed U mines.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142289014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-13Epub Date: 2024-08-09DOI: 10.2323/jgam.2024.07.003
Ran Deng, Jing Li, Bo Yu Liu, Jie Du, JianGuo Lu, Qiang Li, QianRu Hou
Naphthalene is a persistent environmental pollutant for its potential teratogenic, carcinogenic and mutagenic effects. In this study, 10 strains of bacteria capable of degrading naphthalene were isolated from crude-oil contaminated soil. Among them, Pseudomonas plecoglossicida 2P exhibited prominent growth with 1000 mg/L naphthalene as the sole carbon source and degraded 94.15% of naphthalene in 36 h. Whole genome sequencing analysis showed that P. plecoglossicida 2P had a total of 22 genes related to naphthalene degradation, of which 8 genes were related to the salicylic acid pathway only, 5 genes were related to the phthalic acid pathway only, 8 genes were common in both the salicylic acid and phthalic acid pathways, and 1 gene was related to the gentisic acid pathway. P. plecoglossicida 2P was applied in a two-phase partition bioreactor (TPPB) to degrade naphthalene in wastewater. The optimal operating conditions of the reactor were obtained through response surface optimization: initial naphthalene concentration (C0) =1600 mg/L, bacterial liquid concentration (OD600) = 1.3, and polymer-to-wastewater mass ratio (PWR) = 2%. Under these conditions, the naphthalene degradation rate was 98.36% at 24 h. The degradation kinetics were fitted using the Haldane equation with a high coefficient of determination (R2=0.94). The present study laid foundations for naphthalene degradation mechanism of genus Pseudomonas and its potential application in TPPB.
{"title":"Isolation and identification of naphtalene-degrading bacteria and its application in a two-phase partitioning bioreactor.","authors":"Ran Deng, Jing Li, Bo Yu Liu, Jie Du, JianGuo Lu, Qiang Li, QianRu Hou","doi":"10.2323/jgam.2024.07.003","DOIUrl":"10.2323/jgam.2024.07.003","url":null,"abstract":"<p><p>Naphthalene is a persistent environmental pollutant for its potential teratogenic, carcinogenic and mutagenic effects. In this study, 10 strains of bacteria capable of degrading naphthalene were isolated from crude-oil contaminated soil. Among them, Pseudomonas plecoglossicida 2P exhibited prominent growth with 1000 mg/L naphthalene as the sole carbon source and degraded 94.15% of naphthalene in 36 h. Whole genome sequencing analysis showed that P. plecoglossicida 2P had a total of 22 genes related to naphthalene degradation, of which 8 genes were related to the salicylic acid pathway only, 5 genes were related to the phthalic acid pathway only, 8 genes were common in both the salicylic acid and phthalic acid pathways, and 1 gene was related to the gentisic acid pathway. P. plecoglossicida 2P was applied in a two-phase partition bioreactor (TPPB) to degrade naphthalene in wastewater. The optimal operating conditions of the reactor were obtained through response surface optimization: initial naphthalene concentration (C<sub>0</sub>) =1600 mg/L, bacterial liquid concentration (OD<sub>600</sub>) = 1.3, and polymer-to-wastewater mass ratio (PWR) = 2%. Under these conditions, the naphthalene degradation rate was 98.36% at 24 h. The degradation kinetics were fitted using the Haldane equation with a high coefficient of determination (R<sup>2</sup>=0.94). The present study laid foundations for naphthalene degradation mechanism of genus Pseudomonas and its potential application in TPPB.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-13Epub Date: 2024-07-31DOI: 10.2323/jgam.2024.07.002
Toshikazu Komoda, Mayu Abe, Yoshitaka Koseki
We have successfully isolated two novel compounds, 24R005A (1, C13H14O4) and 24R005B (2, C13H13ClO4), from Streptomyces sp. 24R005, using fish (anchovy) powder as a medium. In this study, we evaluated the use of fish (anchovy) powder as a fermentation material for producing bioactive compounds. Spectroscopic analyses revealed that the two compounds share a common skeletal structure. However, each compound contains unique branched side chains. Furthermore, compounds 1 and 2 exhibit moderate radical-scavenging activity for 1,1-diphenyl-2-picrylhydrazyl (DPPH), with ED50 values of 200 and 130 μM, respectively.
{"title":"24R005A and 24R005B: Novel radical scavengers of DPPH obtained from Streptomyces sp. cultured in a fish powder medium.","authors":"Toshikazu Komoda, Mayu Abe, Yoshitaka Koseki","doi":"10.2323/jgam.2024.07.002","DOIUrl":"10.2323/jgam.2024.07.002","url":null,"abstract":"<p><p>We have successfully isolated two novel compounds, 24R005A (1, C<sub>13</sub>H<sub>14</sub>O<sub>4</sub>) and 24R005B (2, C<sub>13</sub>H<sub>13</sub>ClO<sub>4</sub>), from Streptomyces sp. 24R005, using fish (anchovy) powder as a medium. In this study, we evaluated the use of fish (anchovy) powder as a fermentation material for producing bioactive compounds. Spectroscopic analyses revealed that the two compounds share a common skeletal structure. However, each compound contains unique branched side chains. Furthermore, compounds 1 and 2 exhibit moderate radical-scavenging activity for 1,1-diphenyl-2-picrylhydrazyl (DPPH), with ED<sub>50</sub> values of 200 and 130 μM, respectively.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06Epub Date: 2024-05-13DOI: 10.2323/jgam.2024.05.001
Yusuke Saito, Ibuki Jin, Miwa Yamada
Polyamide 4 (PA4) is expected to solve the issue of marine plastic pollution due to its excellent mechanical properties and biodegradability. In this study, to reveal the mechanism of PA4 biodegradation in the marine environment, we isolated 5 strains of PA4-degrading bacteria belonging to Aliiglaciecola, Dasania, and Pseudophaeobacter from a marine environment. The isolated 5 strains are novel PA4-degrading bacteria that are phylogenetically distinct from those isolated in previous studies. In addition, we compared the PA4-degrading activities and structures of the PA4-degrading enzymes secreted by the 5 strains and PA4-degrading strains isolated in our previous study. The PA4-degrading activity in the supernatant of the cultivation solutions differed among the strains. Native-PAGE and zymography using a polyacrylamide gel containing a PA4 emulsion demonstrated that PA4-degrading enzymes are classified into no less than three types of structures. These results suggested that marine PA4-degrading bacteria have multiple PA4-degrading enzymes. Our findings will contribute to a better understanding of the microbial degradation of PA4 in the marine environment.
{"title":"Marine bacteria have multiple polyamide 4-degrading enzymes.","authors":"Yusuke Saito, Ibuki Jin, Miwa Yamada","doi":"10.2323/jgam.2024.05.001","DOIUrl":"10.2323/jgam.2024.05.001","url":null,"abstract":"<p><p>Polyamide 4 (PA4) is expected to solve the issue of marine plastic pollution due to its excellent mechanical properties and biodegradability. In this study, to reveal the mechanism of PA4 biodegradation in the marine environment, we isolated 5 strains of PA4-degrading bacteria belonging to Aliiglaciecola, Dasania, and Pseudophaeobacter from a marine environment. The isolated 5 strains are novel PA4-degrading bacteria that are phylogenetically distinct from those isolated in previous studies. In addition, we compared the PA4-degrading activities and structures of the PA4-degrading enzymes secreted by the 5 strains and PA4-degrading strains isolated in our previous study. The PA4-degrading activity in the supernatant of the cultivation solutions differed among the strains. Native-PAGE and zymography using a polyacrylamide gel containing a PA4 emulsion demonstrated that PA4-degrading enzymes are classified into no less than three types of structures. These results suggested that marine PA4-degrading bacteria have multiple PA4-degrading enzymes. Our findings will contribute to a better understanding of the microbial degradation of PA4 in the marine environment.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140911066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}