首页 > 最新文献

Journal of General and Applied Microbiology最新文献

英文 中文
Systematic promoter design for plasmid-encoded S-adenosylmethionine sensing systems. 质粒编码的 S-腺苷蛋氨酸传感系统的系统性启动子设计。
IF 0.8 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-20 Epub Date: 2024-01-29 DOI: 10.2323/jgam.2024.01.002
Taro Watanabe, Yuki Kimura, Daisuke Umeno

S-adenosylmethionine (SAM) is an important biomolecule that mainly acts as a methyl donor and plays many roles in a variety of biological functions. SAM is also required for the biosynthesis of valuable methylated compounds, but its supply is a bottleneck for these biosynthetic pathways. To overcome this bottleneck and to reconfigure SAM homeostasis, a high-throughput sensing system for changes in intracellular SAM availability is required. We constructed a plasmid that can detect the factors that can alter SAM availability using minimal components. It does so by placing a fluorescent protein under a promoter controlled by endogenous MetJ, a transcription factor that represses its own regulons upon binding with SAM. Next, to validate SAM-responsive behavior, we systematically reconstructed 10 synthetic promoters with different positions and with different number of metbox sites. We found that a position between the -35 box and the -10 box was the most effective for repression and that this setup was suitable for detecting the genetic or environmental factors that can deplete and recover the intracellular SAM availability. Overall, the response patterns of the synthetic MetJ-regulated promoters characterized in this study may be useful for the development of better SAM biosensing systems.

S- 腺苷蛋氨酸(SAM)是一种重要的生物大分子,主要用作甲基供体,在多种生物功能中发挥着多种作用。生物合成有价值的甲基化化合物也需要 SAM,但其供应是这些生物合成途径的一个瓶颈。为了克服这一瓶颈并重新配置 SAM 的平衡,需要一个高通量的感知系统来检测细胞内 SAM 供应的变化。我们构建了一种质粒,它能以最小的元件检测改变 SAM 可用性的因素。它通过将荧光蛋白置于内源 MetJ 控制的启动子之下来实现这一目的,MetJ 是一种转录因子,在与 SAM 结合后会抑制自身的调控子。接下来,为了验证 SAM 响应行为,我们系统地重建了 10 个具有不同位置和不同数量 Metbox 位点(MetJ 结合序列)的合成启动子。我们发现,介于-35方框和-10方框之间的位置是最有效的抑制位置,这种设置适合于检测可消耗和恢复细胞内SAM可用性的遗传或环境因素。总之,本研究中表征的合成 MetJ 调控启动子的响应模式可能有助于进一步开发 SAM 生物传感系统。
{"title":"Systematic promoter design for plasmid-encoded S-adenosylmethionine sensing systems.","authors":"Taro Watanabe, Yuki Kimura, Daisuke Umeno","doi":"10.2323/jgam.2024.01.002","DOIUrl":"10.2323/jgam.2024.01.002","url":null,"abstract":"<p><p>S-adenosylmethionine (SAM) is an important biomolecule that mainly acts as a methyl donor and plays many roles in a variety of biological functions. SAM is also required for the biosynthesis of valuable methylated compounds, but its supply is a bottleneck for these biosynthetic pathways. To overcome this bottleneck and to reconfigure SAM homeostasis, a high-throughput sensing system for changes in intracellular SAM availability is required. We constructed a plasmid that can detect the factors that can alter SAM availability using minimal components. It does so by placing a fluorescent protein under a promoter controlled by endogenous MetJ, a transcription factor that represses its own regulons upon binding with SAM. Next, to validate SAM-responsive behavior, we systematically reconstructed 10 synthetic promoters with different positions and with different number of metbox sites. We found that a position between the -35 box and the -10 box was the most effective for repression and that this setup was suitable for detecting the genetic or environmental factors that can deplete and recover the intracellular SAM availability. Overall, the response patterns of the synthetic MetJ-regulated promoters characterized in this study may be useful for the development of better SAM biosensing systems.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139570013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of the Csr global regulatory system mediated by small RNA decay in Aeromonas salmonicida. 鉴定沙门氏菌中由小 RNA 降解介导的 Csr 全局调控系统。
IF 0.8 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-20 Epub Date: 2024-01-18 DOI: 10.2323/jgam.2023.12.004
Olga Gladyshchuk, Masaki Yoshida, Koume Togashi, Hayuki Sugimoto, Kazushi Suzuki

We investigated the presence and functionality of the carbon storage regulator (Csr) system in Aeromonas salmonicida SWSY-1.411. CsrA, an RNA-binding protein, shared 89% amino acid sequence identity with Escherichia coli CsrA. CsrB/C sRNAs exhibited a typical stem-loop structure, with more GGA motifs, which bind CsrA, than E. coli. CsrD had limited sequence identity with E. coli CsrD; however, it contained the conserved GGDEF and EAL domains. Functional analysis in E. coli demonstrated that the Csr system of A. salmonicida influences glycogen biosynthesis, biofilm formation, motility, and stability of both CsrB and CsrC sRNAs. These findings suggest that in A. salmonicida, the Csr system affects phenotypes like its E. coli counterpart. In A. salmonicida, defects in csr homologs affected biofilm formation, motility, and chitinase production. However, glycogen accumulation and protease production were unaffected. The expression of flagellar-related genes and chitinase genes was suppressed in the csrA-deficient A. salmonicida. Northern blot analysis indicated the stabilization of CsrB and CsrC in the csrD-deficient A. salmonicida. Similar to that in E. coli, the Csr system in A. salmonicida comprises the RNA-binding protein CsrA, the sRNAs CsrB and CsrC, and the sRNA decay factor CsrD. This study underscores the conservation and functionality of the Csr system and raises questions about its regulatory targets and mechanisms in A. salmonicida.

我们研究了沙门氏菌 SWSY-1.411 中碳储存调节器(Csr)系统的存在和功能。CsrA是一种RNA结合蛋白,与大肠杆菌CsrA有89%的氨基酸序列相同性。CsrB/C sRNA 具有典型的茎环结构,与大肠杆菌相比,具有更多与 CsrA 结合的 GGA 基序。CsrD 与大肠杆菌 CsrD 的序列同一性有限;但是,它含有保守的 GGDEF 和 EAL 结构域。在大肠杆菌中进行的功能分析表明,沙门氏菌的 Csr 系统影响糖原生物合成、生物膜形成、运动以及 CsrB 和 CsrC sRNA 的稳定性。这些研究结果表明,在沙门氏菌中,Csr 系统对表型的影响与大肠杆菌类似。在沙门氏菌中,csr 同源物的缺陷会影响生物膜的形成、运动性和几丁质酶的产生。然而,糖原积累和蛋白酶的产生则不受影响。在 csrA 缺陷的鲑鱼中,鞭毛相关基因和几丁质酶基因的表达受到抑制。Northern 印迹分析表明,在 csrD 缺失的沙门氏菌中,CsrB 和 CsrC 稳定。与大肠杆菌中的Csr系统相似,沙门氏菌中的Csr系统包括RNA结合蛋白CsrA、sRNA CsrB和CsrC以及sRNA衰变因子CsrD。这项研究强调了 Csr 系统的保守性和功能性,并提出了有关沙门氏菌中 Csr 系统调控目标和机制的问题。
{"title":"Identification of the Csr global regulatory system mediated by small RNA decay in Aeromonas salmonicida.","authors":"Olga Gladyshchuk, Masaki Yoshida, Koume Togashi, Hayuki Sugimoto, Kazushi Suzuki","doi":"10.2323/jgam.2023.12.004","DOIUrl":"10.2323/jgam.2023.12.004","url":null,"abstract":"<p><p>We investigated the presence and functionality of the carbon storage regulator (Csr) system in Aeromonas salmonicida SWSY-1.411. CsrA, an RNA-binding protein, shared 89% amino acid sequence identity with Escherichia coli CsrA. CsrB/C sRNAs exhibited a typical stem-loop structure, with more GGA motifs, which bind CsrA, than E. coli. CsrD had limited sequence identity with E. coli CsrD; however, it contained the conserved GGDEF and EAL domains. Functional analysis in E. coli demonstrated that the Csr system of A. salmonicida influences glycogen biosynthesis, biofilm formation, motility, and stability of both CsrB and CsrC sRNAs. These findings suggest that in A. salmonicida, the Csr system affects phenotypes like its E. coli counterpart. In A. salmonicida, defects in csr homologs affected biofilm formation, motility, and chitinase production. However, glycogen accumulation and protease production were unaffected. The expression of flagellar-related genes and chitinase genes was suppressed in the csrA-deficient A. salmonicida. Northern blot analysis indicated the stabilization of CsrB and CsrC in the csrD-deficient A. salmonicida. Similar to that in E. coli, the Csr system in A. salmonicida comprises the RNA-binding protein CsrA, the sRNAs CsrB and CsrC, and the sRNA decay factor CsrD. This study underscores the conservation and functionality of the Csr system and raises questions about its regulatory targets and mechanisms in A. salmonicida.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139485641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodegradation of phthalic acid esters (PAEs) by Janthinobacterium sp. strain E1 under stress conditions. Janthinobacterium sp. 菌株 E1 在压力条件下对邻苯二甲酸酯 (PAE) 的生物降解。
IF 0.8 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-20 Epub Date: 2024-01-15 DOI: 10.2323/jgam.2023.12.002
Kailu Zhang, Hui Zhou, Juntao Ke, Hongli Feng, Cunlong Lu, Shaoxing Chen, Aimin Liu

Phthalates esters (PAEs) are a kind of polymeric material additives widely been added into plastics to improve products' flexibility. It can easily cause environmental pollution which are hazards to public health. In this study, we isolated an efficient PAEs degrading strain, Janthinobacterium sp. E1, and determined its degradation effect of di-2-ethylhexyl phthalate (DEHP) under stress conditions. Strain E1 showed an obvious advantage in pollutants degradation under various environmental stress conditions. Degradation halo clearly occurred around the colony of strain E1 on agar plate supplemented with triglyceride. Strain E1's esterase is a constitutively expressed intracellular enzyme. The esterase purified from strain E1 showed a higher catalytic effect on short-chain PAEs than long-chain PAEs. The input of DEHP, DBP (dibutyl phthalate) and DMP (dimethyl phthalate) into the tested soil did not change the species composition of soil prokaryotic community, but altered the dominant species in specific environmental conditions. And the community diversity and richness decreased to a certain extent. However, the diversity and richness of the microbial community were improved after the contaminated soil was treated with the strain E1. Our results also suggested that strain E1 exhibited a tremendous potential in environmental bioremediation in the real environment, which provides a new insight into the elimination of the pollutants contamination in the urban environment.

邻苯二甲酸酯(PAEs)是一种高分子材料添加剂,被广泛添加到塑料中以提高产品的柔韧性。它容易造成环境污染,危害公众健康。本研究分离了一种高效降解 PAEs 的菌株 Janthinobacterium sp. E1,并测定了其在胁迫条件下对邻苯二甲酸二-2-乙基己酯(DEHP)的降解效果。在各种环境胁迫条件下,菌株E1在污染物降解方面表现出明显的优势。在添加了甘油三酯的琼脂平板上,菌株 E1 的菌落周围出现了明显的降解光环。菌株 E1 的酯酶是一种组成型细胞内表达酶。从菌株 E1 中纯化的酯酶对短链 PAE 的催化作用高于长链 PAE。DEHP、DBP(邻苯二甲酸二丁酯)和 DMP(邻苯二甲酸二甲酯)进入测试土壤后,并未改变土壤原核生物群落的物种组成,但改变了特定环境条件下的优势物种。群落的多样性和丰富度在一定程度上有所下降。然而,用 E1 菌株处理污染土壤后,微生物群落的多样性和丰富度都有所提高。我们的研究结果还表明,菌株 E1 在现实环境中的环境生物修复中表现出了巨大的潜力,这为消除城市环境中的污染物污染提供了新的思路。
{"title":"Biodegradation of phthalic acid esters (PAEs) by Janthinobacterium sp. strain E1 under stress conditions.","authors":"Kailu Zhang, Hui Zhou, Juntao Ke, Hongli Feng, Cunlong Lu, Shaoxing Chen, Aimin Liu","doi":"10.2323/jgam.2023.12.002","DOIUrl":"10.2323/jgam.2023.12.002","url":null,"abstract":"<p><p>Phthalates esters (PAEs) are a kind of polymeric material additives widely been added into plastics to improve products' flexibility. It can easily cause environmental pollution which are hazards to public health. In this study, we isolated an efficient PAEs degrading strain, Janthinobacterium sp. E1, and determined its degradation effect of di-2-ethylhexyl phthalate (DEHP) under stress conditions. Strain E1 showed an obvious advantage in pollutants degradation under various environmental stress conditions. Degradation halo clearly occurred around the colony of strain E1 on agar plate supplemented with triglyceride. Strain E1's esterase is a constitutively expressed intracellular enzyme. The esterase purified from strain E1 showed a higher catalytic effect on short-chain PAEs than long-chain PAEs. The input of DEHP, DBP (dibutyl phthalate) and DMP (dimethyl phthalate) into the tested soil did not change the species composition of soil prokaryotic community, but altered the dominant species in specific environmental conditions. And the community diversity and richness decreased to a certain extent. However, the diversity and richness of the microbial community were improved after the contaminated soil was treated with the strain E1. Our results also suggested that strain E1 exhibited a tremendous potential in environmental bioremediation in the real environment, which provides a new insight into the elimination of the pollutants contamination in the urban environment.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139466704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zn solubilizing bacteria (ZSB) mitigate toxicity of silver and Titanium dioxide nanoparticles in Mung bean by increasing photosynthetic pigment content. 锌溶解菌(ZSB)通过增加光合色素含量来减轻纳米银和二氧化钛对绿豆的毒性。
IF 0.8 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-06-27 DOI: 10.2323/jgam.2024.05.005
Mahvash Haroon, Shams Tabrez Khan, Abdul Malik

Zn-deficiency, a global health challenge affects one-third of the world population. Zn-biofertilizer offer an efficient and cost-effective remedy. As Zn-biofertilizer can improve plant growth and grain's Zn-content ensuring improved dietary Zn-supply. This study sought to understand how silver and TiO2 nanoparticles in the rhizosphere affect the activity of Zn-solubilization bacteria (ZSB) and plant growth. Two ZSB strains Bacillus sp. D-7 and Pseudomonas sp. D-117 with excellent Zn-solubilization efficiency of 254 and 260%, respectively were isolated and characterized using polyphasic characterization including 16S rRNA gene sequencing to formulate an effective Zn-biofertilizer. The plant growth promoting activity of this biofertilizer in Mung bean was checked in the presence and absence of various doses of TiO2 and Ag-NPs and was compared with plant grown without biofertilizer. The change in rate of seed germination, vegetative growth (shoot and root length, fresh and dry weight), photosynthetic pigment and Zn-content was checked. Lower doses of nanomaterials (50 and 100 mg kg⁻¹ soil) slightly promoted the plant growth compared to control. While, higher doses (200 and 400 mg kg⁻¹ soil) inhibited the growth. A maximum decrease of shoot length, root length, fresh-weight, and dry-weight of 57.1, 53.9, 53.1, and 10.4% respectively was observed with 400 mg kg⁻¹ of Ag-NPs. However, in the presence of ZSB, the decrease at the same Ag-NP concentration was 41.6, 31.5, 27.4, and 6.6, respectively. These results strongly suggest that Zn-solubilizing bacteria improve resilience to nanoparticles toxicity and helps in Zn fortification in Mung bean even under nanomaterial stress.

缺锌是一项全球性的健康挑战,影响着全球三分之一的人口。锌生物肥料是一种高效、经济的补救措施。锌生物肥料可以改善植物生长和谷物的锌含量,确保改善膳食锌供应。本研究试图了解根圈中的银和二氧化钛纳米粒子如何影响锌溶解菌(ZSB)的活性和植物生长。通过多相表征(包括 16S rRNA 基因测序),分离并鉴定了两株 ZSB 菌株芽孢杆菌 D-7 和假单胞菌 D-117,它们对锌的溶解效率分别为 254% 和 260%。在有和没有不同剂量的 TiO2 和 Ag-NPs 的情况下,检测了这种生物肥料对绿豆植物生长的促进作用,并与没有使用生物肥料的植物进行了比较。检测了种子发芽率、无性生长(芽和根的长度、鲜重和干重)、光合色素和锌含量的变化。与对照组相比,较低剂量的纳米材料(50 和 100 毫克/千克-¹ 土壤)略微促进了植物的生长。而较高剂量(200 和 400 毫克/千克/¹土壤)则会抑制生长。在使用 400 毫克/千克的 Ag-NPs 时,观察到芽长、根长、鲜重和干重的最大降幅分别为 57.1%、53.9%、53.1% 和 10.4%。然而,在有 ZSB 存在的情况下,相同 Ag-NP 浓度下的降幅分别为 41.6%、31.5%、27.4% 和 6.6%。这些结果有力地表明,锌溶解菌提高了对纳米粒子毒性的抵抗力,即使在纳米材料压力下也有助于绿豆的锌强化。
{"title":"Zn solubilizing bacteria (ZSB) mitigate toxicity of silver and Titanium dioxide nanoparticles in Mung bean by increasing photosynthetic pigment content.","authors":"Mahvash Haroon, Shams Tabrez Khan, Abdul Malik","doi":"10.2323/jgam.2024.05.005","DOIUrl":"https://doi.org/10.2323/jgam.2024.05.005","url":null,"abstract":"<p><p>Zn-deficiency, a global health challenge affects one-third of the world population. Zn-biofertilizer offer an efficient and cost-effective remedy. As Zn-biofertilizer can improve plant growth and grain's Zn-content ensuring improved dietary Zn-supply. This study sought to understand how silver and TiO<sub>2</sub> nanoparticles in the rhizosphere affect the activity of Zn-solubilization bacteria (ZSB) and plant growth. Two ZSB strains Bacillus sp. D-7 and Pseudomonas sp. D-117 with excellent Zn-solubilization efficiency of 254 and 260%, respectively were isolated and characterized using polyphasic characterization including 16S rRNA gene sequencing to formulate an effective Zn-biofertilizer. The plant growth promoting activity of this biofertilizer in Mung bean was checked in the presence and absence of various doses of TiO<sub>2</sub> and Ag-NPs and was compared with plant grown without biofertilizer. The change in rate of seed germination, vegetative growth (shoot and root length, fresh and dry weight), photosynthetic pigment and Zn-content was checked. Lower doses of nanomaterials (50 and 100 mg kg⁻¹ soil) slightly promoted the plant growth compared to control. While, higher doses (200 and 400 mg kg⁻¹ soil) inhibited the growth. A maximum decrease of shoot length, root length, fresh-weight, and dry-weight of 57.1, 53.9, 53.1, and 10.4% respectively was observed with 400 mg kg⁻¹ of Ag-NPs. However, in the presence of ZSB, the decrease at the same Ag-NP concentration was 41.6, 31.5, 27.4, and 6.6, respectively. These results strongly suggest that Zn-solubilizing bacteria improve resilience to nanoparticles toxicity and helps in Zn fortification in Mung bean even under nanomaterial stress.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141457388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of conjugation-mediated versatile site-specific single-copy luciferase fusion system. 偶联介导的多功能位点特异性单拷贝萤光素酶融合系统的开发。
IF 1.2 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-05-02 Epub Date: 2023-11-07 DOI: 10.2323/jgam.2023.10.001
Akinori Kato

There are a number of reporter systems that are useful for gene expression analysis in bacteria. However, at least in Salmonella, a versatile and simple luciferase reporter system that can be integrated precisely behind a promoter or gene of interest on a chromosome is not currently available. The luciferase operon luxCDABE from Photorhabdus luminescens has several advantages, including brightness, wide linear range, absence in most bacteria, stability at high temperature, and no substrate addition required for the assay. Here, a conjugation-mediated site-specific single-copy luciferase fusion system is developed. A reporter plasmid containing the conditional replication origin R6Kgγ, FRT-luxCDABE, and KmR marker was designed to be incorporated into the FRT site behind the promoter or gene of interest on the chromosome in cells expressing FLP. However, when this reporter plasmid was electroporated directly into such a S. enterica strain, no colonies appeared, likely due to the low transformation efficiency of this relatively large plasmid DNA. Meanwhile, the same reporter plasmid was successfully introduced and launched as an insert of an FRT-containing conjugative transfer plasmid from a mating E. coli strain to the same recipient S. enterica strain, as well as Citrobacter koseri. RcsB-dependent inducible luminescence from the constructed wzc-luxCDABE strains was confirmed. This system is feasible for detecting very low levels of transcription, even in Gram-negative bacterial species that are relatively difficult to genetically manipulate.

有许多报告系统可用于细菌中的基因表达分析。然而,至少在沙门氏菌中,目前还没有一种可以精确整合在染色体上感兴趣的启动子或基因后面的通用且简单的萤光素酶报告系统。来自发光光弹菌的萤光素酶操纵子luxCDABE具有几个优点,包括亮度、宽线性范围、在大多数细菌中不存在、在高温下的稳定性以及测定不需要添加底物。在此,开发了一种偶联介导的位点特异性单拷贝萤光素酶融合系统。将含有条件复制来源R6Kgγ、FRT-luxCDABE和KmR标记的报告质粒设计为掺入表达FLP的细胞染色体上感兴趣的启动子或基因后面的FRT位点。然而,当将该报告质粒直接电穿孔到这样的肠炎沙门氏菌菌株中时,没有出现菌落,这可能是由于这种相对较大的质粒DNA的转化效率较低。同时,成功地将同一报告质粒作为含有FRT的偶联转移质粒的插入物从交配的大肠杆菌菌株引入并启动到同一受体肠炎沙门氏菌菌株以及科塞里柠檬酸杆菌。证实了来自构建的wzc-luxCDABE菌株的RcsB依赖性诱导发光。该系统对于检测非常低水平的转录是可行的,即使在相对难以遗传操作的革兰氏阴性细菌物种中也是如此。
{"title":"Development of conjugation-mediated versatile site-specific single-copy luciferase fusion system.","authors":"Akinori Kato","doi":"10.2323/jgam.2023.10.001","DOIUrl":"10.2323/jgam.2023.10.001","url":null,"abstract":"<p><p>There are a number of reporter systems that are useful for gene expression analysis in bacteria. However, at least in Salmonella, a versatile and simple luciferase reporter system that can be integrated precisely behind a promoter or gene of interest on a chromosome is not currently available. The luciferase operon luxCDABE from Photorhabdus luminescens has several advantages, including brightness, wide linear range, absence in most bacteria, stability at high temperature, and no substrate addition required for the assay. Here, a conjugation-mediated site-specific single-copy luciferase fusion system is developed. A reporter plasmid containing the conditional replication origin R6Kgγ, FRT-luxCDABE, and Km<sup>R</sup> marker was designed to be incorporated into the FRT site behind the promoter or gene of interest on the chromosome in cells expressing FLP. However, when this reporter plasmid was electroporated directly into such a S. enterica strain, no colonies appeared, likely due to the low transformation efficiency of this relatively large plasmid DNA. Meanwhile, the same reporter plasmid was successfully introduced and launched as an insert of an FRT-containing conjugative transfer plasmid from a mating E. coli strain to the same recipient S. enterica strain, as well as Citrobacter koseri. RcsB-dependent inducible luminescence from the constructed wzc-luxCDABE strains was confirmed. This system is feasible for detecting very low levels of transcription, even in Gram-negative bacterial species that are relatively difficult to genetically manipulate.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"318-326"},"PeriodicalIF":1.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71521730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterologous expression and characterization of an M4 family extracellular metalloprotease for detergent application. 用于洗涤剂应用的M4家族胞外金属蛋白酶的异源表达和表征。
IF 1.2 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-05-02 Epub Date: 2023-10-26 DOI: 10.2323/jgam.2023.09.002
Man Hao, Chaoshuo Shi, Weifeng Gong, Jia Liu, Xiangxin Meng, Fufeng Liu, Fuping Lu, Huitu Zhang

Proteolytic enzymes stand out as the most widely employed category utilized in manufacturing industry. A new protease was separated from Planococcus sp.11815 strain and named as nprS-15615 in this research. The gene of this protease has not been reported, and its enzymatic properties have been studied for the first time. To enhance enzyme production, the Planococcus sp. protease gene was expressed in Bacillus licheniformis 2709. The expression level of nprS-15615 was observed under the control of regulatory elements PaprE. nprS-15615 protease activity reached 1186.24±32.87 U/mL after 48 hours of cultivation in shake flasks which was nearly four times the output of the original bacteria (291.38±25.73U/mL). The optimum temperature and pH of the recombinant protease were 30 ℃ and 8.0, respectively.The enzyme exhibited the highest capacity for hydrolyzing casein and demonstrated resilience towards a NaCl concentration of 10.0% (wt/v). Furthermore, in the presence of 0.5% surfactants, the recombinant protease activity can maintain above 75%, and with the existence of 0.5% liquid detergents, there was basically no loss of enzyme activity which indicated that nprS-15615 had good compatibility with surfactants and liquid detergents. In addition, npS-15615 performed well in the washing experiment, and the washing effect at 20 ℃ can be significantly improved by adding crude enzyme solution in the washing process.

蛋白酶是制造业中应用最广泛的一类。本研究从Planococcus sp.11815菌株中分离得到一种新的蛋白酶,命名为nprS-15615。这种蛋白酶的基因尚未报道,其酶性质也首次得到研究。为了提高酶的产量,在地衣芽孢杆菌2709中表达了平球菌蛋白酶基因。在调节元件PaprE的控制下观察到npr-15615的表达水平。在摇瓶培养48小时后,npr-15615蛋白酶活性达到1186.24±32.87U/mL,几乎是原菌产量(291.38±25.73U/mL)的四倍。重组蛋白酶的最适温度和pH分别为30℃和8.0。该酶表现出最高的水解酪蛋白的能力,并对10.0%(wt/v)的NaCl浓度表现出弹性。此外,在0.5%的表面活性剂存在下,重组蛋白酶的活性可以保持在75%以上,在0.5%液体洗涤剂存在下,酶活性基本没有损失,这表明npr-15615与表面活性剂和液体洗涤剂具有良好的相容性。此外,npS-15615在洗涤实验中表现良好,在洗涤过程中加入粗酶溶液可以显著提高20℃的洗涤效果。
{"title":"Heterologous expression and characterization of an M4 family extracellular metalloprotease for detergent application.","authors":"Man Hao, Chaoshuo Shi, Weifeng Gong, Jia Liu, Xiangxin Meng, Fufeng Liu, Fuping Lu, Huitu Zhang","doi":"10.2323/jgam.2023.09.002","DOIUrl":"10.2323/jgam.2023.09.002","url":null,"abstract":"<p><p>Proteolytic enzymes stand out as the most widely employed category utilized in manufacturing industry. A new protease was separated from Planococcus sp.11815 strain and named as nprS-15615 in this research. The gene of this protease has not been reported, and its enzymatic properties have been studied for the first time. To enhance enzyme production, the Planococcus sp. protease gene was expressed in Bacillus licheniformis 2709. The expression level of nprS-15615 was observed under the control of regulatory elements P<sub>aprE</sub>. nprS-15615 protease activity reached 1186.24±32.87 U/mL after 48 hours of cultivation in shake flasks which was nearly four times the output of the original bacteria (291.38±25.73U/mL). The optimum temperature and pH of the recombinant protease were 30 ℃ and 8.0, respectively.The enzyme exhibited the highest capacity for hydrolyzing casein and demonstrated resilience towards a NaCl concentration of 10.0% (wt/v). Furthermore, in the presence of 0.5% surfactants, the recombinant protease activity can maintain above 75%, and with the existence of 0.5% liquid detergents, there was basically no loss of enzyme activity which indicated that nprS-15615 had good compatibility with surfactants and liquid detergents. In addition, npS-15615 performed well in the washing experiment, and the washing effect at 20 ℃ can be significantly improved by adding crude enzyme solution in the washing process.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"309-317"},"PeriodicalIF":1.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50161838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metarhizium robertsii COH1 functionally complements Schizosaccharomyces pombe Ecl family proteins. 罗伯特绿僵菌COH1在功能上与pombe裂殖酵母Ecl家族蛋白互补。
IF 1.2 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-05-02 Epub Date: 2023-10-06 DOI: 10.2323/jgam.2023.09.001
Hokuto Ohtsuka, Sawa Kawai, Yoko Otsubo, Takafumi Shimasaki, Akira Yamashita, Hirofumi Aiba

The fission yeast Schizosaccharomyces pombe ecl family genes respond to various starvation signals and induce appropriate intracellular responses, including the extension of chronological lifespan and induction of sexual differentiation. Herein, we propose that the colonization of hemocoel 1 (COH1) protein of Metarhizium robertsii, an insect-pathogenic fungus, is a functional homolog of S. pombe Ecl1 family proteins.

裂殖酵母裂殖酵母ecl家族基因对各种饥饿信号作出反应,并诱导适当的细胞内反应,包括延长按时间顺序排列的寿命和诱导性分化。在此,我们提出,昆虫病原真菌绿僵菌(Metarhizium robertsii)的血腔1(COH1)蛋白的定殖是绒球酵母Ecl1家族蛋白的功能同源物。
{"title":"Metarhizium robertsii COH1 functionally complements Schizosaccharomyces pombe Ecl family proteins.","authors":"Hokuto Ohtsuka, Sawa Kawai, Yoko Otsubo, Takafumi Shimasaki, Akira Yamashita, Hirofumi Aiba","doi":"10.2323/jgam.2023.09.001","DOIUrl":"10.2323/jgam.2023.09.001","url":null,"abstract":"<p><p>The fission yeast Schizosaccharomyces pombe ecl family genes respond to various starvation signals and induce appropriate intracellular responses, including the extension of chronological lifespan and induction of sexual differentiation. Herein, we propose that the colonization of hemocoel 1 (COH1) protein of Metarhizium robertsii, an insect-pathogenic fungus, is a functional homolog of S. pombe Ecl1 family proteins.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"335-338"},"PeriodicalIF":1.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41182753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Purification and characterization of moderately thermostable raw-starch digesting α-amylase from endophytic Streptomyces mobaraensis DB13 associated with Costus speciosus. 从内生链霉菌(Streptomyces mobaraensis DB13)中纯化和表征与木薯(Costus speciosus)相关的中等恒温生淀粉消化α-淀粉酶。
IF 1.2 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-05-02 Epub Date: 2023-08-25 DOI: 10.2323/jgam.2023.08.001
Dina Barman, Mamtaj S Dkhar

Endophytic actinobacteria are known to produce various enzymes with potential industrial applications. Alpha-amylase is an important class of industrial enzyme with a multi-dimensional utility. The present experiment was designed to characterize a moderately thermostable α-amylase producing endophytic Streptomyces mobaraensis DB13 isolated from Costus speciosus (J. Koenig) Sm. The enzyme was purified using 60% ammonium sulphate precipitation, dialysis, and Sephadex G-100 column chromatography. Based on 12% SDS-PAGE, the molecular weight of the purified α-amylase was estimated to be 55 kDa. The maximum α-amylase activity was achieved at pH 7.0, 50°C and it retained 80% of its activity at both pH 7.0 and 8.0 after incubation for 2 h. The α-mylase activity is strongly enhanced by Ca2+, Mg2+, and inhibited by Ba2+. The activity remains stable in the presence of Tween-80, SDS, PMSF, and Triton X-100; however, β-mercaptoethanol, EDTA, and H2O2 reduced the activity. The kinetic parameters Km and Vmax values for this α-amylase were calculated as 2.53 mM and 29.42 U/mL respectively. The α-amylase had the ability to digest various raw starches at a concentration of 10 mg/mL at pH 7.0, 50°C, where maize and rice are the preferred substrates. The digestion starts after 4 h of incubation, which reaches maximum after 48 h of incubation. These results suggest that S. mobaraensis DB13 is a potential source of moderately thermostable α-amylase enzyme, that effciently hydrolyzes raw starch. It suggesting that this α-amylase is a promising candidate to be use for industrial purposes.

众所周知,内生放线菌能产生各种具有潜在工业应用价值的酶。α-淀粉酶是一类重要的工业酶,具有多方面的用途。本实验旨在表征一种产生中度恒温α-淀粉酶的内生链霉菌(Streptomyces mobaraensis DB13)的特性,该链霉菌分离自Costus speciosus (J. Koenig) Sm.该酶通过 60% 硫酸铵沉淀、透析和 Sephadex G-100 柱层析进行纯化。根据 12% SDS-PAGE,纯化的 α 淀粉酶分子量估计为 55 kDa。α-淀粉酶的最大活性在 pH 7.0、50°C 条件下达到,在 pH 7.0 和 8.0 条件下培养 2 小时后,α-淀粉酶的活性仍保持 80%。在 Tween-80、SDS、PMSF 和 Triton X-100 的存在下,α-淀粉酶的活性保持稳定;但是,β-巯基乙醇、EDTA 和 H2O2 会降低α-淀粉酶的活性。经计算,该α-淀粉酶的动力学参数 Km 和 Vmax 值分别为 2.53 mM 和 29.42 U/mL。该α-淀粉酶在 pH 值为 7.0、温度为 50℃、浓度为 10 mg/mL 的条件下具有消化各种生淀粉的能力,其中玉米和大米是首选底物。培养 4 小时后开始消化,培养 48 小时后达到最大消化率。这些结果表明,S. mobaraensis DB13 是中度恒温α-淀粉酶的潜在来源,可有效水解生淀粉。这表明这种α-淀粉酶有望用于工业用途。
{"title":"Purification and characterization of moderately thermostable raw-starch digesting α-amylase from endophytic Streptomyces mobaraensis DB13 associated with Costus speciosus.","authors":"Dina Barman, Mamtaj S Dkhar","doi":"10.2323/jgam.2023.08.001","DOIUrl":"10.2323/jgam.2023.08.001","url":null,"abstract":"<p><p>Endophytic actinobacteria are known to produce various enzymes with potential industrial applications. Alpha-amylase is an important class of industrial enzyme with a multi-dimensional utility. The present experiment was designed to characterize a moderately thermostable α-amylase producing endophytic Streptomyces mobaraensis DB13 isolated from Costus speciosus (J. Koenig) Sm. The enzyme was purified using 60% ammonium sulphate precipitation, dialysis, and Sephadex G-100 column chromatography. Based on 12% SDS-PAGE, the molecular weight of the purified α-amylase was estimated to be 55 kDa. The maximum α-amylase activity was achieved at pH 7.0, 50°C and it retained 80% of its activity at both pH 7.0 and 8.0 after incubation for 2 h. The α-mylase activity is strongly enhanced by Ca<sup>2+</sup>, Mg<sup>2+</sup>, and inhibited by Ba<sup>2+</sup>. The activity remains stable in the presence of Tween-80, SDS, PMSF, and Triton X-100; however, β-mercaptoethanol, EDTA, and H<sub>2</sub>O<sub>2</sub> reduced the activity. The kinetic parameters K<sub>m</sub> and V<sub>max</sub> values for this α-amylase were calculated as 2.53 mM and 29.42 U/mL respectively. The α-amylase had the ability to digest various raw starches at a concentration of 10 mg/mL at pH 7.0, 50°C, where maize and rice are the preferred substrates. The digestion starts after 4 h of incubation, which reaches maximum after 48 h of incubation. These results suggest that S. mobaraensis DB13 is a potential source of moderately thermostable α-amylase enzyme, that effciently hydrolyzes raw starch. It suggesting that this α-amylase is a promising candidate to be use for industrial purposes.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"293-300"},"PeriodicalIF":1.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10074957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gallic acid fermentation by metabolically engineered Escherichia coli producing p-hydroxybenzoate hydroxylase from Hylemonella gracilis NS1. 代谢工程大肠杆菌产生来自 Hylemonella gracilis NS1 的对羟基苯甲酸羟化酶发酵没食子酸。
IF 1.2 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-05-02 Epub Date: 2023-08-30 DOI: 10.2323/jgam.2023.08.004
Nozomi Katsuki, Shunsuke Masuo, Noriyuki Nukui, Hajime Minakawa, Naoki Takaya

Plant-derived phenolic gallic acid (GA) is an important raw material for antioxidants and food additives. Efforts to ferment GA using microbial processes have aimed at minimizing production costs and environmental load using enzymes that hydroxylate p-hydroxybenzoate and protocatechuate (PCA). Here, we found a p-hydroxybenzoate hydroxylase (PobA) in the bacterium Hylemonella gracilis NS1 (HgPobA) with 1.5-fold more hydroxylation activity than that from Pseudomonas aeruginosa PAO1 and thus converted PCA to GA more efficiently. The PCA hydroxylation activity of HgPobA was improved by introducing the amino acid substitutions L207V/Y393F or T302A/Y393F. These mutants had 2.9- and 3.7-fold lower Kmapp for PCA than wild-type HgPobA. An Escherichia coli strain that reinforces shikimate pathway metabolism and produces HgPobA when cultured for 60 h generated 0.27 g L-1 of GA. This is the first report of fermenting glucose to generate GA using a natural enzyme from the PobA family. The E. coli strain harboring the HgPobA L207V/Y393F mutant increased GA production to 0.56 g L-1. During the early stages of culture, GA was fermented at a 10-fold higher rate by a strain producing either HgPobA L207V/Y393F or T302A/Y393F compared with wild-type HgPobA, which agreed with the high kcatapp/Kmapp PCA values of this mutant. We enhanced a PobA isozyme and its PCA hydroxylating function to efficiently and cost-effectively ferment GA.

植物提取的酚类没食子酸(GA)是抗氧化剂和食品添加剂的重要原料。利用微生物工艺发酵没食子酸的努力旨在使用对羟基苯甲酸和原儿茶酸(PCA)羟化酶最大限度地降低生产成本和环境负荷。在这里,我们发现 Hylemonella gracilis NS1(HgPobA)细菌中的对羟基苯甲酸羟化酶(PobA)的羟化活性是铜绿假单胞菌 PAO1 的 1.5 倍,因此能更有效地将 PCA 转化为 GA。通过引入氨基酸替换 L207V/Y393F 或 T302A/Y393F,HgPobA 的 PCA 羟基化活性得到了提高。与野生型 HgPobA 相比,这些突变体的 PCA Kmapp 分别低 2.9 倍和 3.7 倍。一株加强莽草酸途径代谢并产生 HgPobA 的大肠杆菌在培养 60 小时后产生了 0.27 g L-1 的 GA。这是首次报道利用 PobA 家族的天然酶发酵葡萄糖产生 GA。携带 HgPobA L207V/Y393F 突变体的大肠杆菌菌株的 GA 产量增至 0.56 g L-1。在培养初期,产生 HgPobA L207V/Y393F 或 T302A/Y393F 的菌株发酵 GA 的速率是野生型 HgPobA 的 10 倍,这与该突变体的高 kcatapp/Kmapp PCA 值一致。我们增强了 PobA 同工酶及其 PCA 羟基化功能,以高效、低成本地发酵 GA。
{"title":"Gallic acid fermentation by metabolically engineered Escherichia coli producing p-hydroxybenzoate hydroxylase from Hylemonella gracilis NS1.","authors":"Nozomi Katsuki, Shunsuke Masuo, Noriyuki Nukui, Hajime Minakawa, Naoki Takaya","doi":"10.2323/jgam.2023.08.004","DOIUrl":"10.2323/jgam.2023.08.004","url":null,"abstract":"<p><p>Plant-derived phenolic gallic acid (GA) is an important raw material for antioxidants and food additives. Efforts to ferment GA using microbial processes have aimed at minimizing production costs and environmental load using enzymes that hydroxylate p-hydroxybenzoate and protocatechuate (PCA). Here, we found a p-hydroxybenzoate hydroxylase (PobA) in the bacterium Hylemonella gracilis NS1 (HgPobA) with 1.5-fold more hydroxylation activity than that from Pseudomonas aeruginosa PAO1 and thus converted PCA to GA more efficiently. The PCA hydroxylation activity of HgPobA was improved by introducing the amino acid substitutions L207V/Y393F or T302A/Y393F. These mutants had 2.9- and 3.7-fold lower K<sub>m</sub><sup>app</sup> for PCA than wild-type HgPobA. An Escherichia coli strain that reinforces shikimate pathway metabolism and produces HgPobA when cultured for 60 h generated 0.27 g L<sup>-1</sup> of GA. This is the first report of fermenting glucose to generate GA using a natural enzyme from the PobA family. The E. coli strain harboring the HgPobA L207V/Y393F mutant increased GA production to 0.56 g L<sup>-1</sup>. During the early stages of culture, GA was fermented at a 10-fold higher rate by a strain producing either HgPobA L207V/Y393F or T302A/Y393F compared with wild-type HgPobA, which agreed with the high k<sub>cat</sub><sup>app</sup>/K<sub>m</sub><sup>app</sup> PCA values of this mutant. We enhanced a PobA isozyme and its PCA hydroxylating function to efficiently and cost-effectively ferment GA.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"301-308"},"PeriodicalIF":1.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10120794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition and biocontrol potential of Ochrobactrum pseudogrignonense NC1 against four Phytophthora species. 伪绿僵杆菌NC1对4种疫霉的抑制作用及其生物防治潜力。
IF 1.2 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-05-02 Epub Date: 2023-11-21 DOI: 10.2323/jgam.2023.11.001
Jinming Liu, Shiyu Zhang, Haikun Ma, Jun Huang, Meichun Xiang, Xingzhong Liu

Phytophthora species are highly destructive soilborne oomycetes pathogens that spread through infested soil and water. Ochrobactrum pseudogrignonense NC1 has been shown to inhibit plant parasitic nematodes via volatile organic compounds (VOCs). In this study, we investigated the inhibitory effect of O. pseudogrignonense NC1 against four Phytophthora species on agar plates and in vivo bioassay. We found that NC1 significantly inhibited the mycelial growth and zoospore production of all four species of Phytophthora in a dose-dependent manner. The half maximal inhibitory concentration (IC50) values for inhibition of mycelial growth (or zoospore production) were 26% (14.8%), 18.9% (14.2%), 20.3% (8.3%) and 46.9% (4%) for Phytophthora capsici Leonian, Phytophthora infestans, Phytophthora parasitica var. nicotiana and Phytophthora sojae, respectively. The biocontrol efficiency of NC1 was 46.3% in pepper seedlings against P. capsici, almost 100% in potato tubers against P. infestans, 60% in tomato leave against P. parasitica and 100% in soybean leave against P. sojae, respectively. Our findings suggest that O. pseudogrignonense NC1 has great potential as a biocontrol agent for managing Phytophthora diseases.

疫霉是一种极具破坏性的土传卵菌病原体,通过受感染的土壤和水传播。Ochrobactrum pseudogrignonense NC1通过挥发性有机化合物(VOCs)抑制植物寄生线虫。在本研究中,我们研究了O. pseudogrignonense NC1对4种疫霉菌的抑菌作用,并进行了体内生物测定。我们发现,NC1显著抑制所有四种疫霉菌丝生长和游动孢子产生,并呈剂量依赖性。对辣椒疫霉、鼠疫疫霉、烟草疫霉和大豆疫霉菌丝生长(或虫孢子产生)的半数最大抑制浓度(IC50)值分别为26%(14.8%)、18.9%(14.2%)、20.3%(8.3%)和46.9%(4%)。NC1对辣椒幼苗、马铃薯块茎、番茄叶片和大豆叶片的防虫效果分别为46.3%、100%、60%和100%。我们的研究结果表明,伪grignonense NC1作为防治疫霉病的生物防治剂具有很大的潜力。
{"title":"Inhibition and biocontrol potential of Ochrobactrum pseudogrignonense NC1 against four Phytophthora species.","authors":"Jinming Liu, Shiyu Zhang, Haikun Ma, Jun Huang, Meichun Xiang, Xingzhong Liu","doi":"10.2323/jgam.2023.11.001","DOIUrl":"10.2323/jgam.2023.11.001","url":null,"abstract":"<p><p>Phytophthora species are highly destructive soilborne oomycetes pathogens that spread through infested soil and water. Ochrobactrum pseudogrignonense NC1 has been shown to inhibit plant parasitic nematodes via volatile organic compounds (VOCs). In this study, we investigated the inhibitory effect of O. pseudogrignonense NC1 against four Phytophthora species on agar plates and in vivo bioassay. We found that NC1 significantly inhibited the mycelial growth and zoospore production of all four species of Phytophthora in a dose-dependent manner. The half maximal inhibitory concentration (IC<sub>50</sub>) values for inhibition of mycelial growth (or zoospore production) were 26% (14.8%), 18.9% (14.2%), 20.3% (8.3%) and 46.9% (4%) for Phytophthora capsici Leonian, Phytophthora infestans, Phytophthora parasitica var. nicotiana and Phytophthora sojae, respectively. The biocontrol efficiency of NC1 was 46.3% in pepper seedlings against P. capsici, almost 100% in potato tubers against P. infestans, 60% in tomato leave against P. parasitica and 100% in soybean leave against P. sojae, respectively. Our findings suggest that O. pseudogrignonense NC1 has great potential as a biocontrol agent for managing Phytophthora diseases.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"327-334"},"PeriodicalIF":1.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138291158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of General and Applied Microbiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1