首页 > 最新文献

Journal of General and Applied Microbiology最新文献

英文 中文
Development of conjugation-mediated versatile site-specific single-copy luciferase fusion system. 偶联介导的多功能位点特异性单拷贝萤光素酶融合系统的开发。
IF 1.2 4区 生物学 Q2 Medicine Pub Date : 2024-05-02 Epub Date: 2023-11-07 DOI: 10.2323/jgam.2023.10.001
Akinori Kato

There are a number of reporter systems that are useful for gene expression analysis in bacteria. However, at least in Salmonella, a versatile and simple luciferase reporter system that can be integrated precisely behind a promoter or gene of interest on a chromosome is not currently available. The luciferase operon luxCDABE from Photorhabdus luminescens has several advantages, including brightness, wide linear range, absence in most bacteria, stability at high temperature, and no substrate addition required for the assay. Here, a conjugation-mediated site-specific single-copy luciferase fusion system is developed. A reporter plasmid containing the conditional replication origin R6Kgγ, FRT-luxCDABE, and KmR marker was designed to be incorporated into the FRT site behind the promoter or gene of interest on the chromosome in cells expressing FLP. However, when this reporter plasmid was electroporated directly into such a S. enterica strain, no colonies appeared, likely due to the low transformation efficiency of this relatively large plasmid DNA. Meanwhile, the same reporter plasmid was successfully introduced and launched as an insert of an FRT-containing conjugative transfer plasmid from a mating E. coli strain to the same recipient S. enterica strain, as well as Citrobacter koseri. RcsB-dependent inducible luminescence from the constructed wzc-luxCDABE strains was confirmed. This system is feasible for detecting very low levels of transcription, even in Gram-negative bacterial species that are relatively difficult to genetically manipulate.

有许多报告系统可用于细菌中的基因表达分析。然而,至少在沙门氏菌中,目前还没有一种可以精确整合在染色体上感兴趣的启动子或基因后面的通用且简单的萤光素酶报告系统。来自发光光弹菌的萤光素酶操纵子luxCDABE具有几个优点,包括亮度、宽线性范围、在大多数细菌中不存在、在高温下的稳定性以及测定不需要添加底物。在此,开发了一种偶联介导的位点特异性单拷贝萤光素酶融合系统。将含有条件复制来源R6Kgγ、FRT-luxCDABE和KmR标记的报告质粒设计为掺入表达FLP的细胞染色体上感兴趣的启动子或基因后面的FRT位点。然而,当将该报告质粒直接电穿孔到这样的肠炎沙门氏菌菌株中时,没有出现菌落,这可能是由于这种相对较大的质粒DNA的转化效率较低。同时,成功地将同一报告质粒作为含有FRT的偶联转移质粒的插入物从交配的大肠杆菌菌株引入并启动到同一受体肠炎沙门氏菌菌株以及科塞里柠檬酸杆菌。证实了来自构建的wzc-luxCDABE菌株的RcsB依赖性诱导发光。该系统对于检测非常低水平的转录是可行的,即使在相对难以遗传操作的革兰氏阴性细菌物种中也是如此。
{"title":"Development of conjugation-mediated versatile site-specific single-copy luciferase fusion system.","authors":"Akinori Kato","doi":"10.2323/jgam.2023.10.001","DOIUrl":"10.2323/jgam.2023.10.001","url":null,"abstract":"<p><p>There are a number of reporter systems that are useful for gene expression analysis in bacteria. However, at least in Salmonella, a versatile and simple luciferase reporter system that can be integrated precisely behind a promoter or gene of interest on a chromosome is not currently available. The luciferase operon luxCDABE from Photorhabdus luminescens has several advantages, including brightness, wide linear range, absence in most bacteria, stability at high temperature, and no substrate addition required for the assay. Here, a conjugation-mediated site-specific single-copy luciferase fusion system is developed. A reporter plasmid containing the conditional replication origin R6Kgγ, FRT-luxCDABE, and Km<sup>R</sup> marker was designed to be incorporated into the FRT site behind the promoter or gene of interest on the chromosome in cells expressing FLP. However, when this reporter plasmid was electroporated directly into such a S. enterica strain, no colonies appeared, likely due to the low transformation efficiency of this relatively large plasmid DNA. Meanwhile, the same reporter plasmid was successfully introduced and launched as an insert of an FRT-containing conjugative transfer plasmid from a mating E. coli strain to the same recipient S. enterica strain, as well as Citrobacter koseri. RcsB-dependent inducible luminescence from the constructed wzc-luxCDABE strains was confirmed. This system is feasible for detecting very low levels of transcription, even in Gram-negative bacterial species that are relatively difficult to genetically manipulate.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71521730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterologous expression and characterization of an M4 family extracellular metalloprotease for detergent application. 用于洗涤剂应用的M4家族胞外金属蛋白酶的异源表达和表征。
IF 1.2 4区 生物学 Q2 Medicine Pub Date : 2024-05-02 Epub Date: 2023-10-26 DOI: 10.2323/jgam.2023.09.002
Man Hao, Chaoshuo Shi, Weifeng Gong, Jia Liu, Xiangxin Meng, Fufeng Liu, Fuping Lu, Huitu Zhang

Proteolytic enzymes stand out as the most widely employed category utilized in manufacturing industry. A new protease was separated from Planococcus sp.11815 strain and named as nprS-15615 in this research. The gene of this protease has not been reported, and its enzymatic properties have been studied for the first time. To enhance enzyme production, the Planococcus sp. protease gene was expressed in Bacillus licheniformis 2709. The expression level of nprS-15615 was observed under the control of regulatory elements PaprE. nprS-15615 protease activity reached 1186.24±32.87 U/mL after 48 hours of cultivation in shake flasks which was nearly four times the output of the original bacteria (291.38±25.73U/mL). The optimum temperature and pH of the recombinant protease were 30 ℃ and 8.0, respectively.The enzyme exhibited the highest capacity for hydrolyzing casein and demonstrated resilience towards a NaCl concentration of 10.0% (wt/v). Furthermore, in the presence of 0.5% surfactants, the recombinant protease activity can maintain above 75%, and with the existence of 0.5% liquid detergents, there was basically no loss of enzyme activity which indicated that nprS-15615 had good compatibility with surfactants and liquid detergents. In addition, npS-15615 performed well in the washing experiment, and the washing effect at 20 ℃ can be significantly improved by adding crude enzyme solution in the washing process.

蛋白酶是制造业中应用最广泛的一类。本研究从Planococcus sp.11815菌株中分离得到一种新的蛋白酶,命名为nprS-15615。这种蛋白酶的基因尚未报道,其酶性质也首次得到研究。为了提高酶的产量,在地衣芽孢杆菌2709中表达了平球菌蛋白酶基因。在调节元件PaprE的控制下观察到npr-15615的表达水平。在摇瓶培养48小时后,npr-15615蛋白酶活性达到1186.24±32.87U/mL,几乎是原菌产量(291.38±25.73U/mL)的四倍。重组蛋白酶的最适温度和pH分别为30℃和8.0。该酶表现出最高的水解酪蛋白的能力,并对10.0%(wt/v)的NaCl浓度表现出弹性。此外,在0.5%的表面活性剂存在下,重组蛋白酶的活性可以保持在75%以上,在0.5%液体洗涤剂存在下,酶活性基本没有损失,这表明npr-15615与表面活性剂和液体洗涤剂具有良好的相容性。此外,npS-15615在洗涤实验中表现良好,在洗涤过程中加入粗酶溶液可以显著提高20℃的洗涤效果。
{"title":"Heterologous expression and characterization of an M4 family extracellular metalloprotease for detergent application.","authors":"Man Hao, Chaoshuo Shi, Weifeng Gong, Jia Liu, Xiangxin Meng, Fufeng Liu, Fuping Lu, Huitu Zhang","doi":"10.2323/jgam.2023.09.002","DOIUrl":"10.2323/jgam.2023.09.002","url":null,"abstract":"<p><p>Proteolytic enzymes stand out as the most widely employed category utilized in manufacturing industry. A new protease was separated from Planococcus sp.11815 strain and named as nprS-15615 in this research. The gene of this protease has not been reported, and its enzymatic properties have been studied for the first time. To enhance enzyme production, the Planococcus sp. protease gene was expressed in Bacillus licheniformis 2709. The expression level of nprS-15615 was observed under the control of regulatory elements P<sub>aprE</sub>. nprS-15615 protease activity reached 1186.24±32.87 U/mL after 48 hours of cultivation in shake flasks which was nearly four times the output of the original bacteria (291.38±25.73U/mL). The optimum temperature and pH of the recombinant protease were 30 ℃ and 8.0, respectively.The enzyme exhibited the highest capacity for hydrolyzing casein and demonstrated resilience towards a NaCl concentration of 10.0% (wt/v). Furthermore, in the presence of 0.5% surfactants, the recombinant protease activity can maintain above 75%, and with the existence of 0.5% liquid detergents, there was basically no loss of enzyme activity which indicated that nprS-15615 had good compatibility with surfactants and liquid detergents. In addition, npS-15615 performed well in the washing experiment, and the washing effect at 20 ℃ can be significantly improved by adding crude enzyme solution in the washing process.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50161838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metarhizium robertsii COH1 functionally complements Schizosaccharomyces pombe Ecl family proteins. 罗伯特绿僵菌COH1在功能上与pombe裂殖酵母Ecl家族蛋白互补。
IF 1.2 4区 生物学 Q2 Medicine Pub Date : 2024-05-02 Epub Date: 2023-10-06 DOI: 10.2323/jgam.2023.09.001
Hokuto Ohtsuka, Sawa Kawai, Yoko Otsubo, Takafumi Shimasaki, Akira Yamashita, Hirofumi Aiba

The fission yeast Schizosaccharomyces pombe ecl family genes respond to various starvation signals and induce appropriate intracellular responses, including the extension of chronological lifespan and induction of sexual differentiation. Herein, we propose that the colonization of hemocoel 1 (COH1) protein of Metarhizium robertsii, an insect-pathogenic fungus, is a functional homolog of S. pombe Ecl1 family proteins.

裂殖酵母裂殖酵母ecl家族基因对各种饥饿信号作出反应,并诱导适当的细胞内反应,包括延长按时间顺序排列的寿命和诱导性分化。在此,我们提出,昆虫病原真菌绿僵菌(Metarhizium robertsii)的血腔1(COH1)蛋白的定殖是绒球酵母Ecl1家族蛋白的功能同源物。
{"title":"Metarhizium robertsii COH1 functionally complements Schizosaccharomyces pombe Ecl family proteins.","authors":"Hokuto Ohtsuka, Sawa Kawai, Yoko Otsubo, Takafumi Shimasaki, Akira Yamashita, Hirofumi Aiba","doi":"10.2323/jgam.2023.09.001","DOIUrl":"10.2323/jgam.2023.09.001","url":null,"abstract":"<p><p>The fission yeast Schizosaccharomyces pombe ecl family genes respond to various starvation signals and induce appropriate intracellular responses, including the extension of chronological lifespan and induction of sexual differentiation. Herein, we propose that the colonization of hemocoel 1 (COH1) protein of Metarhizium robertsii, an insect-pathogenic fungus, is a functional homolog of S. pombe Ecl1 family proteins.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41182753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Purification and characterization of moderately thermostable raw-starch digesting α-amylase from endophytic Streptomyces mobaraensis DB13 associated with Costus speciosus. 从内生链霉菌(Streptomyces mobaraensis DB13)中纯化和表征与木薯(Costus speciosus)相关的中等恒温生淀粉消化α-淀粉酶。
IF 1.2 4区 生物学 Q2 Medicine Pub Date : 2024-05-02 Epub Date: 2023-08-25 DOI: 10.2323/jgam.2023.08.001
Dina Barman, Mamtaj S Dkhar

Endophytic actinobacteria are known to produce various enzymes with potential industrial applications. Alpha-amylase is an important class of industrial enzyme with a multi-dimensional utility. The present experiment was designed to characterize a moderately thermostable α-amylase producing endophytic Streptomyces mobaraensis DB13 isolated from Costus speciosus (J. Koenig) Sm. The enzyme was purified using 60% ammonium sulphate precipitation, dialysis, and Sephadex G-100 column chromatography. Based on 12% SDS-PAGE, the molecular weight of the purified α-amylase was estimated to be 55 kDa. The maximum α-amylase activity was achieved at pH 7.0, 50°C and it retained 80% of its activity at both pH 7.0 and 8.0 after incubation for 2 h. The α-mylase activity is strongly enhanced by Ca2+, Mg2+, and inhibited by Ba2+. The activity remains stable in the presence of Tween-80, SDS, PMSF, and Triton X-100; however, β-mercaptoethanol, EDTA, and H2O2 reduced the activity. The kinetic parameters Km and Vmax values for this α-amylase were calculated as 2.53 mM and 29.42 U/mL respectively. The α-amylase had the ability to digest various raw starches at a concentration of 10 mg/mL at pH 7.0, 50°C, where maize and rice are the preferred substrates. The digestion starts after 4 h of incubation, which reaches maximum after 48 h of incubation. These results suggest that S. mobaraensis DB13 is a potential source of moderately thermostable α-amylase enzyme, that effciently hydrolyzes raw starch. It suggesting that this α-amylase is a promising candidate to be use for industrial purposes.

众所周知,内生放线菌能产生各种具有潜在工业应用价值的酶。α-淀粉酶是一类重要的工业酶,具有多方面的用途。本实验旨在表征一种产生中度恒温α-淀粉酶的内生链霉菌(Streptomyces mobaraensis DB13)的特性,该链霉菌分离自Costus speciosus (J. Koenig) Sm.该酶通过 60% 硫酸铵沉淀、透析和 Sephadex G-100 柱层析进行纯化。根据 12% SDS-PAGE,纯化的 α 淀粉酶分子量估计为 55 kDa。α-淀粉酶的最大活性在 pH 7.0、50°C 条件下达到,在 pH 7.0 和 8.0 条件下培养 2 小时后,α-淀粉酶的活性仍保持 80%。在 Tween-80、SDS、PMSF 和 Triton X-100 的存在下,α-淀粉酶的活性保持稳定;但是,β-巯基乙醇、EDTA 和 H2O2 会降低α-淀粉酶的活性。经计算,该α-淀粉酶的动力学参数 Km 和 Vmax 值分别为 2.53 mM 和 29.42 U/mL。该α-淀粉酶在 pH 值为 7.0、温度为 50℃、浓度为 10 mg/mL 的条件下具有消化各种生淀粉的能力,其中玉米和大米是首选底物。培养 4 小时后开始消化,培养 48 小时后达到最大消化率。这些结果表明,S. mobaraensis DB13 是中度恒温α-淀粉酶的潜在来源,可有效水解生淀粉。这表明这种α-淀粉酶有望用于工业用途。
{"title":"Purification and characterization of moderately thermostable raw-starch digesting α-amylase from endophytic Streptomyces mobaraensis DB13 associated with Costus speciosus.","authors":"Dina Barman, Mamtaj S Dkhar","doi":"10.2323/jgam.2023.08.001","DOIUrl":"10.2323/jgam.2023.08.001","url":null,"abstract":"<p><p>Endophytic actinobacteria are known to produce various enzymes with potential industrial applications. Alpha-amylase is an important class of industrial enzyme with a multi-dimensional utility. The present experiment was designed to characterize a moderately thermostable α-amylase producing endophytic Streptomyces mobaraensis DB13 isolated from Costus speciosus (J. Koenig) Sm. The enzyme was purified using 60% ammonium sulphate precipitation, dialysis, and Sephadex G-100 column chromatography. Based on 12% SDS-PAGE, the molecular weight of the purified α-amylase was estimated to be 55 kDa. The maximum α-amylase activity was achieved at pH 7.0, 50°C and it retained 80% of its activity at both pH 7.0 and 8.0 after incubation for 2 h. The α-mylase activity is strongly enhanced by Ca<sup>2+</sup>, Mg<sup>2+</sup>, and inhibited by Ba<sup>2+</sup>. The activity remains stable in the presence of Tween-80, SDS, PMSF, and Triton X-100; however, β-mercaptoethanol, EDTA, and H<sub>2</sub>O<sub>2</sub> reduced the activity. The kinetic parameters K<sub>m</sub> and V<sub>max</sub> values for this α-amylase were calculated as 2.53 mM and 29.42 U/mL respectively. The α-amylase had the ability to digest various raw starches at a concentration of 10 mg/mL at pH 7.0, 50°C, where maize and rice are the preferred substrates. The digestion starts after 4 h of incubation, which reaches maximum after 48 h of incubation. These results suggest that S. mobaraensis DB13 is a potential source of moderately thermostable α-amylase enzyme, that effciently hydrolyzes raw starch. It suggesting that this α-amylase is a promising candidate to be use for industrial purposes.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10074957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition and biocontrol potential of Ochrobactrum pseudogrignonense NC1 against four Phytophthora species. 伪绿僵杆菌NC1对4种疫霉的抑制作用及其生物防治潜力。
IF 1.2 4区 生物学 Q2 Medicine Pub Date : 2024-05-02 Epub Date: 2023-11-21 DOI: 10.2323/jgam.2023.11.001
Jinming Liu, Shiyu Zhang, Haikun Ma, Jun Huang, Meichun Xiang, Xingzhong Liu

Phytophthora species are highly destructive soilborne oomycetes pathogens that spread through infested soil and water. Ochrobactrum pseudogrignonense NC1 has been shown to inhibit plant parasitic nematodes via volatile organic compounds (VOCs). In this study, we investigated the inhibitory effect of O. pseudogrignonense NC1 against four Phytophthora species on agar plates and in vivo bioassay. We found that NC1 significantly inhibited the mycelial growth and zoospore production of all four species of Phytophthora in a dose-dependent manner. The half maximal inhibitory concentration (IC50) values for inhibition of mycelial growth (or zoospore production) were 26% (14.8%), 18.9% (14.2%), 20.3% (8.3%) and 46.9% (4%) for Phytophthora capsici Leonian, Phytophthora infestans, Phytophthora parasitica var. nicotiana and Phytophthora sojae, respectively. The biocontrol efficiency of NC1 was 46.3% in pepper seedlings against P. capsici, almost 100% in potato tubers against P. infestans, 60% in tomato leave against P. parasitica and 100% in soybean leave against P. sojae, respectively. Our findings suggest that O. pseudogrignonense NC1 has great potential as a biocontrol agent for managing Phytophthora diseases.

疫霉是一种极具破坏性的土传卵菌病原体,通过受感染的土壤和水传播。Ochrobactrum pseudogrignonense NC1通过挥发性有机化合物(VOCs)抑制植物寄生线虫。在本研究中,我们研究了O. pseudogrignonense NC1对4种疫霉菌的抑菌作用,并进行了体内生物测定。我们发现,NC1显著抑制所有四种疫霉菌丝生长和游动孢子产生,并呈剂量依赖性。对辣椒疫霉、鼠疫疫霉、烟草疫霉和大豆疫霉菌丝生长(或虫孢子产生)的半数最大抑制浓度(IC50)值分别为26%(14.8%)、18.9%(14.2%)、20.3%(8.3%)和46.9%(4%)。NC1对辣椒幼苗、马铃薯块茎、番茄叶片和大豆叶片的防虫效果分别为46.3%、100%、60%和100%。我们的研究结果表明,伪grignonense NC1作为防治疫霉病的生物防治剂具有很大的潜力。
{"title":"Inhibition and biocontrol potential of Ochrobactrum pseudogrignonense NC1 against four Phytophthora species.","authors":"Jinming Liu, Shiyu Zhang, Haikun Ma, Jun Huang, Meichun Xiang, Xingzhong Liu","doi":"10.2323/jgam.2023.11.001","DOIUrl":"10.2323/jgam.2023.11.001","url":null,"abstract":"<p><p>Phytophthora species are highly destructive soilborne oomycetes pathogens that spread through infested soil and water. Ochrobactrum pseudogrignonense NC1 has been shown to inhibit plant parasitic nematodes via volatile organic compounds (VOCs). In this study, we investigated the inhibitory effect of O. pseudogrignonense NC1 against four Phytophthora species on agar plates and in vivo bioassay. We found that NC1 significantly inhibited the mycelial growth and zoospore production of all four species of Phytophthora in a dose-dependent manner. The half maximal inhibitory concentration (IC<sub>50</sub>) values for inhibition of mycelial growth (or zoospore production) were 26% (14.8%), 18.9% (14.2%), 20.3% (8.3%) and 46.9% (4%) for Phytophthora capsici Leonian, Phytophthora infestans, Phytophthora parasitica var. nicotiana and Phytophthora sojae, respectively. The biocontrol efficiency of NC1 was 46.3% in pepper seedlings against P. capsici, almost 100% in potato tubers against P. infestans, 60% in tomato leave against P. parasitica and 100% in soybean leave against P. sojae, respectively. Our findings suggest that O. pseudogrignonense NC1 has great potential as a biocontrol agent for managing Phytophthora diseases.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138291158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gallic acid fermentation by metabolically engineered Escherichia coli producing p-hydroxybenzoate hydroxylase from Hylemonella gracilis NS1. 代谢工程大肠杆菌产生来自 Hylemonella gracilis NS1 的对羟基苯甲酸羟化酶发酵没食子酸。
IF 1.2 4区 生物学 Q2 Medicine Pub Date : 2024-05-02 Epub Date: 2023-08-30 DOI: 10.2323/jgam.2023.08.004
Nozomi Katsuki, Shunsuke Masuo, Noriyuki Nukui, Hajime Minakawa, Naoki Takaya

Plant-derived phenolic gallic acid (GA) is an important raw material for antioxidants and food additives. Efforts to ferment GA using microbial processes have aimed at minimizing production costs and environmental load using enzymes that hydroxylate p-hydroxybenzoate and protocatechuate (PCA). Here, we found a p-hydroxybenzoate hydroxylase (PobA) in the bacterium Hylemonella gracilis NS1 (HgPobA) with 1.5-fold more hydroxylation activity than that from Pseudomonas aeruginosa PAO1 and thus converted PCA to GA more efficiently. The PCA hydroxylation activity of HgPobA was improved by introducing the amino acid substitutions L207V/Y393F or T302A/Y393F. These mutants had 2.9- and 3.7-fold lower Kmapp for PCA than wild-type HgPobA. An Escherichia coli strain that reinforces shikimate pathway metabolism and produces HgPobA when cultured for 60 h generated 0.27 g L-1 of GA. This is the first report of fermenting glucose to generate GA using a natural enzyme from the PobA family. The E. coli strain harboring the HgPobA L207V/Y393F mutant increased GA production to 0.56 g L-1. During the early stages of culture, GA was fermented at a 10-fold higher rate by a strain producing either HgPobA L207V/Y393F or T302A/Y393F compared with wild-type HgPobA, which agreed with the high kcatapp/Kmapp PCA values of this mutant. We enhanced a PobA isozyme and its PCA hydroxylating function to efficiently and cost-effectively ferment GA.

植物提取的酚类没食子酸(GA)是抗氧化剂和食品添加剂的重要原料。利用微生物工艺发酵没食子酸的努力旨在使用对羟基苯甲酸和原儿茶酸(PCA)羟化酶最大限度地降低生产成本和环境负荷。在这里,我们发现 Hylemonella gracilis NS1(HgPobA)细菌中的对羟基苯甲酸羟化酶(PobA)的羟化活性是铜绿假单胞菌 PAO1 的 1.5 倍,因此能更有效地将 PCA 转化为 GA。通过引入氨基酸替换 L207V/Y393F 或 T302A/Y393F,HgPobA 的 PCA 羟基化活性得到了提高。与野生型 HgPobA 相比,这些突变体的 PCA Kmapp 分别低 2.9 倍和 3.7 倍。一株加强莽草酸途径代谢并产生 HgPobA 的大肠杆菌在培养 60 小时后产生了 0.27 g L-1 的 GA。这是首次报道利用 PobA 家族的天然酶发酵葡萄糖产生 GA。携带 HgPobA L207V/Y393F 突变体的大肠杆菌菌株的 GA 产量增至 0.56 g L-1。在培养初期,产生 HgPobA L207V/Y393F 或 T302A/Y393F 的菌株发酵 GA 的速率是野生型 HgPobA 的 10 倍,这与该突变体的高 kcatapp/Kmapp PCA 值一致。我们增强了 PobA 同工酶及其 PCA 羟基化功能,以高效、低成本地发酵 GA。
{"title":"Gallic acid fermentation by metabolically engineered Escherichia coli producing p-hydroxybenzoate hydroxylase from Hylemonella gracilis NS1.","authors":"Nozomi Katsuki, Shunsuke Masuo, Noriyuki Nukui, Hajime Minakawa, Naoki Takaya","doi":"10.2323/jgam.2023.08.004","DOIUrl":"10.2323/jgam.2023.08.004","url":null,"abstract":"<p><p>Plant-derived phenolic gallic acid (GA) is an important raw material for antioxidants and food additives. Efforts to ferment GA using microbial processes have aimed at minimizing production costs and environmental load using enzymes that hydroxylate p-hydroxybenzoate and protocatechuate (PCA). Here, we found a p-hydroxybenzoate hydroxylase (PobA) in the bacterium Hylemonella gracilis NS1 (HgPobA) with 1.5-fold more hydroxylation activity than that from Pseudomonas aeruginosa PAO1 and thus converted PCA to GA more efficiently. The PCA hydroxylation activity of HgPobA was improved by introducing the amino acid substitutions L207V/Y393F or T302A/Y393F. These mutants had 2.9- and 3.7-fold lower K<sub>m</sub><sup>app</sup> for PCA than wild-type HgPobA. An Escherichia coli strain that reinforces shikimate pathway metabolism and produces HgPobA when cultured for 60 h generated 0.27 g L<sup>-1</sup> of GA. This is the first report of fermenting glucose to generate GA using a natural enzyme from the PobA family. The E. coli strain harboring the HgPobA L207V/Y393F mutant increased GA production to 0.56 g L<sup>-1</sup>. During the early stages of culture, GA was fermented at a 10-fold higher rate by a strain producing either HgPobA L207V/Y393F or T302A/Y393F compared with wild-type HgPobA, which agreed with the high k<sub>cat</sub><sup>app</sup>/K<sub>m</sub><sup>app</sup> PCA values of this mutant. We enhanced a PobA isozyme and its PCA hydroxylating function to efficiently and cost-effectively ferment GA.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10120794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geographical variation of bacterial and ciliophoran communities in tidal flats in a continental archipelago. 大陆群岛潮滩细菌和纤毛虫群落的地理差异。
IF 1.2 4区 生物学 Q2 Medicine Pub Date : 2024-03-07 Epub Date: 2023-07-19 DOI: 10.2323/jgam.2023.07.002
Yasutake Kawamoto, Jotaro Urabe

In tidal flats, which are located at the transition zone between terrestrial and marine ecosystems, environmental factors such as temperature, sediment particle size, and tidal range exhibit geographic variation. Accordingly, the composition and structure of the microbial communities in the tidal flats are likely to vary in geographically different habitats. To clarify these differences with environmental factors causing them, we analyzed microbial communities consisting of bacteria and ciliates in sediments collected from nine tidal flats in geographical diverse region from Hokkaido to Kagoshima, Japan. The results confirmed that the community structures of bacteria and ciliophora in tidal flat sediments differed at the geographical scale of the Japanese archipelago. However, the variation could not be explained by the physical distance between the tidal flats nor by the differences in the trophic conditions among the tidal flats. Instead, the OTU richness of both the bacterial and ciliophoran communities was significantly related to the tidal range. The results also showed that bacteria and ciliophora tended to form similar communities among the tidal flats with similar median particle sizes. Furthermore, ciliophoran communities were similar among the tidal flats with similar bacterial communities. The results suggest that bacteria and ciliophora interact each other through trophic relationships or physical and chemical processes in the sediment habitats.

滩涂位于陆地和海洋生态系统的过渡地带,温度、沉积物颗粒大小和潮汐范围等环境因素呈现出地域差异。因此,滩涂微生物群落的组成和结构在不同的地理栖息地也可能有所不同。为了澄清造成这些差异的环境因素,我们分析了从日本北海道到鹿儿岛不同地理区域的 9 个滩涂采集的沉积物中由细菌和纤毛虫组成的微生物群落。结果证实,在日本列岛的地理范围内,潮滩沉积物中细菌和纤毛虫的群落结构存在差异。然而,潮滩之间的物理距离和潮滩之间的营养条件差异无法解释这种差异。相反,细菌和纤毛虫群落的 OTU 丰富度与潮汐范围有显著关系。研究结果还表明,在中位粒径相似的潮滩上,细菌和纤毛虫群落的形成趋于相似。此外,在细菌群落相似的潮滩中,纤毛虫群落也相似。结果表明,细菌和纤毛虫通过营养关系或沉积物生境中的物理和化学过程相互影响。
{"title":"Geographical variation of bacterial and ciliophoran communities in tidal flats in a continental archipelago.","authors":"Yasutake Kawamoto, Jotaro Urabe","doi":"10.2323/jgam.2023.07.002","DOIUrl":"10.2323/jgam.2023.07.002","url":null,"abstract":"<p><p>In tidal flats, which are located at the transition zone between terrestrial and marine ecosystems, environmental factors such as temperature, sediment particle size, and tidal range exhibit geographic variation. Accordingly, the composition and structure of the microbial communities in the tidal flats are likely to vary in geographically different habitats. To clarify these differences with environmental factors causing them, we analyzed microbial communities consisting of bacteria and ciliates in sediments collected from nine tidal flats in geographical diverse region from Hokkaido to Kagoshima, Japan. The results confirmed that the community structures of bacteria and ciliophora in tidal flat sediments differed at the geographical scale of the Japanese archipelago. However, the variation could not be explained by the physical distance between the tidal flats nor by the differences in the trophic conditions among the tidal flats. Instead, the OTU richness of both the bacterial and ciliophoran communities was significantly related to the tidal range. The results also showed that bacteria and ciliophora tended to form similar communities among the tidal flats with similar median particle sizes. Furthermore, ciliophoran communities were similar among the tidal flats with similar bacterial communities. The results suggest that bacteria and ciliophora interact each other through trophic relationships or physical and chemical processes in the sediment habitats.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9837699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and characterization of lignin depolymerization enzymes in Bacillus subtilis strain S11Y isolated from a tropical environment in Malaysia. 从马来西亚热带环境中分离出的枯草芽孢杆菌 S11Y 菌株中木质素解聚酶的鉴定和特征描述。
IF 1.2 4区 生物学 Q2 Medicine Pub Date : 2024-03-07 Epub Date: 2023-08-22 DOI: 10.2323/jgam.2023.08.003
Fatimah Azizah Riyadi, Nadia Farhana Azman, Fazrena Nadia Md Akhir, Nor'azizi Othman, Hirofumi Hara

Biological pretreatment using microbial enzymes appears to be the most promising pre-treatment technology for the breakdown of recalcitrant lignin structure. This research focuses on the identification and characterization of lignin-depolymerizing enzymes in Bacillus subtilis strain S11Y, previously isolated from palm oil wastes in Malaysia. The draft genome sequences of this highly lignin-depolymerizing strain revealed that the genome lacked any of the well-known dye-decolorizing peroxidase or catalase-peroxidase that are commonly reported to be involved in lignin depolymerization by bacteria, indicating that strain S11Y has distinct sets of potential lignin depolymerization genes. The oxidative stress-related enzymes Cu/Zn type-superoxide dismutase (Sod2) and a heme-containing monofunctional catalase (Kat2) were identified in the genome sequences that are of interest. Their lignin-depolymerizing ability were evaluated by treating Alkali lignin (AL) with each enzyme and their degradation ability were evaluated using gel-permeation chromatography (GPC), ultrahigh-pressure liquid chromatography-mass spectrometry (UHPLC/MS), and gas chromatography-mass spectrometry (GC/MS), which successfully proved lignin depolymerizing ability. Successful evaluation of lignin depolymerizing enzymes can be applicable for lignin pretreatment process in green energy production and generation of valuable chemicals in bio-refinery.

使用微生物酶进行生物预处理似乎是最有希望分解难处理木质素结构的预处理技术。这项研究的重点是鉴定和表征枯草芽孢杆菌 S11Y 菌株中的木质素解聚酶,该菌株以前曾从马来西亚的棕榈油废物中分离出来。对这一高度木质素解聚菌株的基因组序列草案进行的研究发现,该菌株的基因组中缺乏任何一种众所周知的染料脱色过氧化物酶或过氧化氢酶,而这些酶通常被报道参与细菌的木质素解聚过程,这表明 S11Y 菌株具有独特的潜在木质素解聚基因集。在基因组序列中发现了与氧化应激有关的铜/锌型超氧化物歧化酶(Sod2)和含血红素的单功能过氧化氢酶(Kat2)。利用凝胶渗透色谱法(GPC)、超高压液相色谱-质谱法(UHPLC/MS)和气相色谱-质谱法(GC/MS)评估了每种酶处理碱木素(AL)的木质素解聚能力,并成功证明了它们的木质素解聚能力。木质素解聚酶的成功评价可用于木质素预处理工艺,在绿色能源生产和生物炼制中生成有价值的化学品。
{"title":"Identification and characterization of lignin depolymerization enzymes in Bacillus subtilis strain S11Y isolated from a tropical environment in Malaysia.","authors":"Fatimah Azizah Riyadi, Nadia Farhana Azman, Fazrena Nadia Md Akhir, Nor'azizi Othman, Hirofumi Hara","doi":"10.2323/jgam.2023.08.003","DOIUrl":"10.2323/jgam.2023.08.003","url":null,"abstract":"<p><p>Biological pretreatment using microbial enzymes appears to be the most promising pre-treatment technology for the breakdown of recalcitrant lignin structure. This research focuses on the identification and characterization of lignin-depolymerizing enzymes in Bacillus subtilis strain S11Y, previously isolated from palm oil wastes in Malaysia. The draft genome sequences of this highly lignin-depolymerizing strain revealed that the genome lacked any of the well-known dye-decolorizing peroxidase or catalase-peroxidase that are commonly reported to be involved in lignin depolymerization by bacteria, indicating that strain S11Y has distinct sets of potential lignin depolymerization genes. The oxidative stress-related enzymes Cu/Zn type-superoxide dismutase (Sod2) and a heme-containing monofunctional catalase (Kat2) were identified in the genome sequences that are of interest. Their lignin-depolymerizing ability were evaluated by treating Alkali lignin (AL) with each enzyme and their degradation ability were evaluated using gel-permeation chromatography (GPC), ultrahigh-pressure liquid chromatography-mass spectrometry (UHPLC/MS), and gas chromatography-mass spectrometry (GC/MS), which successfully proved lignin depolymerizing ability. Successful evaluation of lignin depolymerizing enzymes can be applicable for lignin pretreatment process in green energy production and generation of valuable chemicals in bio-refinery.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10049769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of the Rhodobacter sphaeroides strain overproducing 5-aminolevulinic acid by insertion of endogenous promoter. 通过插入内源启动子构建过量生产 5-氨基乙酰丙酸的 Sphaeroides 罗杆菌菌株。
IF 1.2 4区 生物学 Q2 Medicine Pub Date : 2024-03-07 Epub Date: 2023-07-24 DOI: 10.2323/jgam.2023.07.004
Takuma Kojima, Shinji Masuda

5-Aminolevulinic acid (ALA) is a precursor of heme and a natural amino acid synthesized in the cells of most living organisms. Currently, ALA is used as an ingredient in pharmaceuticals, supplements, cosmetics, feed, fertilizers, and other products. ALA is mainly produced by industrial fermentation by the photosynthetic bacterium Rhodobacter sphaeroides. In this study, we tried to improve the ALA productivity by R. sphaeroides using a genetic strategy to highly express ALA synthase (ALAS) genes. We inserted a constitutive promoter (PrrnB or Prsp_7571) upstream of genes encoding ALAS (hemA and/or hemT) to construct strains that constitutively express ALAS. The highest transcript levels of hemA were observed in the strain where PrrnB was inserted into the hemA promoter region and were 3.5-fold higher than those in the wild-type. The highest transcript levels of hemT were observed in the strain where PrrnB was inserted into the hemT promoter region and were 46-fold higher than those in the wild-type. The maximum ALAS activity was observed in crude cell extracts of the strain where PrrnB was inserted into the hemT promoter region under optimized growth conditions that was 2.7-fold higher than that in the wild type. This strain showed 12-fold accumulation of ALA compared to the wild-type. Thus, we improved ALA productivity without using exogenous DNA sequences. In the future, further improvement in ALA productivity may be expected by applying this approach to current industrial ALA-producing bacteria.

5-Aminolevulinic acid(ALA)是血红素的前体,也是一种在大多数生物体细胞中合成的天然氨基酸。目前,ALA 被用作药品、保健品、化妆品、饲料、肥料和其他产品的成分。ALA 主要由光合细菌 Rhodobacter sphaeroides 通过工业发酵生产。在本研究中,我们尝试使用高表达 ALA 合成酶(ALAS)基因的遗传策略来提高水合根瘤菌的 ALA 生产率。我们在编码 ALAS(hemA 和/或 hemT)的基因上游插入了一个组成型启动子(PrrnB 或 Prsp_7571),以构建能组成型表达 ALAS 的菌株。在将 PrrnB 插入 hemA 启动子区域的菌株中观察到了最高的 hemA 转录水平,是野生型的 3.5 倍。在将 PrrnB 插入 hemT 启动子区域的菌株中,观察到 hemT 的转录水平最高,是野生型的 46 倍。在优化生长条件下,将 PrrnB 插入 hemT 启动子区域的菌株的粗细胞提取物中观察到的 ALAS 活性最高,是野生型的 2.7 倍。该菌株的 ALA 积累是野生型的 12 倍。因此,我们在不使用外源 DNA 序列的情况下提高了 ALA 的产量。未来,将这种方法应用于目前的工业 ALA 生产菌,有望进一步提高 ALA 的生产率。
{"title":"Construction of the Rhodobacter sphaeroides strain overproducing 5-aminolevulinic acid by insertion of endogenous promoter.","authors":"Takuma Kojima, Shinji Masuda","doi":"10.2323/jgam.2023.07.004","DOIUrl":"10.2323/jgam.2023.07.004","url":null,"abstract":"<p><p>5-Aminolevulinic acid (ALA) is a precursor of heme and a natural amino acid synthesized in the cells of most living organisms. Currently, ALA is used as an ingredient in pharmaceuticals, supplements, cosmetics, feed, fertilizers, and other products. ALA is mainly produced by industrial fermentation by the photosynthetic bacterium Rhodobacter sphaeroides. In this study, we tried to improve the ALA productivity by R. sphaeroides using a genetic strategy to highly express ALA synthase (ALAS) genes. We inserted a constitutive promoter (P<sub>rrnB</sub> or P<sub>rsp_7571</sub>) upstream of genes encoding ALAS (hemA and/or hemT) to construct strains that constitutively express ALAS. The highest transcript levels of hemA were observed in the strain where P<sub>rrnB</sub> was inserted into the hemA promoter region and were 3.5-fold higher than those in the wild-type. The highest transcript levels of hemT were observed in the strain where P<sub>rrnB</sub> was inserted into the hemT promoter region and were 46-fold higher than those in the wild-type. The maximum ALAS activity was observed in crude cell extracts of the strain where P<sub>rrnB</sub> was inserted into the hemT promoter region under optimized growth conditions that was 2.7-fold higher than that in the wild type. This strain showed 12-fold accumulation of ALA compared to the wild-type. Thus, we improved ALA productivity without using exogenous DNA sequences. In the future, further improvement in ALA productivity may be expected by applying this approach to current industrial ALA-producing bacteria.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9860264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of bacterial phosphite dehydrogenase confers phosphite availability in a unicellular red alga Cyanidioschyzon merolae. 细菌亚磷酸脱氢酶的表达使单细胞红藻 Cyanidioschyzon merolae 获得亚磷酸。
IF 1.2 4区 生物学 Q2 Medicine Pub Date : 2024-03-07 Epub Date: 2023-08-17 DOI: 10.2323/jgam.2023.08.002
Ikki Kobayashi, Sousuke Imamura, Ryuichi Hirota, Akio Kuroda, Kan Tanaka

 Microalgae are promising cell factories for producing value-added products. Large-scale microalgal cultivation suffers from invasion by contaminating microorganisms. Since most contaminating organisms cannot utilize phosphite as a unique phosphorus source, phosphite-utilizing ability may provide a growth advantage against contaminating organisms and solve this problem. Studies showed that microorganisms, typically unable to metabolize phosphite, can utilize phosphite by expressing exogenous phosphite dehydrogenase. Here, we constructed Cyanidioschyzon merolae strains introduced with the phosphite dehydrogenase gene, ptxD, from Ralstonia sp. 4506. The ptxD-introduced strains grew in a phosphite-dependent manner, with the phosphite-related growth rate almost matching that with phosphate as sole phosphorus source.

微藻是生产高附加值产品的前景广阔的细胞工厂。大规模微藻栽培会受到污染微生物的侵袭。由于大多数污染微生物不能利用亚磷酸作为一种独特的磷源,因此利用亚磷酸的能力可为微生物提供生长优势,从而解决这一问题。研究表明,通常不能代谢亚磷酸的微生物可以通过表达外源亚磷酸脱氢酶来利用亚磷酸。在此,我们构建了引入 Ralstonia sp. 4506 中亚磷酸脱氢酶基因 ptxD 的 Merolae 青虫菌株。导入ptxD的菌株以亚磷酸依赖的方式生长,与亚磷酸相关的生长速率几乎与以磷酸盐为唯一磷源的生长速率一致。
{"title":"Expression of bacterial phosphite dehydrogenase confers phosphite availability in a unicellular red alga Cyanidioschyzon merolae.","authors":"Ikki Kobayashi, Sousuke Imamura, Ryuichi Hirota, Akio Kuroda, Kan Tanaka","doi":"10.2323/jgam.2023.08.002","DOIUrl":"10.2323/jgam.2023.08.002","url":null,"abstract":"<p><p> Microalgae are promising cell factories for producing value-added products. Large-scale microalgal cultivation suffers from invasion by contaminating microorganisms. Since most contaminating organisms cannot utilize phosphite as a unique phosphorus source, phosphite-utilizing ability may provide a growth advantage against contaminating organisms and solve this problem. Studies showed that microorganisms, typically unable to metabolize phosphite, can utilize phosphite by expressing exogenous phosphite dehydrogenase. Here, we constructed Cyanidioschyzon merolae strains introduced with the phosphite dehydrogenase gene, ptxD, from Ralstonia sp. 4506. The ptxD-introduced strains grew in a phosphite-dependent manner, with the phosphite-related growth rate almost matching that with phosphate as sole phosphorus source.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10367828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of General and Applied Microbiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1