首页 > 最新文献

Journal of General and Applied Microbiology最新文献

英文 中文
Isolation and characterization of Zygosaccharomyces sp. yeast strains from miso. 味噌中Zygosaccharomyces sp.酵母菌的分离与鉴定。
IF 1.2 4区 生物学 Q2 Medicine Pub Date : 2023-03-06 DOI: 10.2323/jgam.2022.07.002
Tomoko Fujiwara, Atsuko Matsura, Momoka Fukuda, Katsuaki Kuroki, Tomoo Ogata

There is currently great interest in the salt-tolerant yeast strains used to produce miso and soy sauce. Since the isolation of Zygosaccharomyces sp. strain from Japanese miso more than 60 years, several hybrid strains have been identified in fermented foods. Studies have shown that the active mating-type locus of the original Zygosaccharomyces sp. yeast strain is located between the T-subgenome sequence and the P-subgenome sequence. In this study, 32 salt-tolerant Zygosaccharomyces sp. yeast strains were isolated from five miso factories in Hiroshima Prefecture, Japan. Analysis by flow cytometry revealed that 27 strains were diploid and five strains were haploid. PCR analysis indicated that the 27 diploid strains had the same chromosomal structure of the active mating-type (MAT) locus as the original yeast strain isolated from miso 60 years ago. In addition, the 27 diploid strains were allodiploid, namely, natural hybrids of Z. rouxii and a related species, while the five haploid strains were all Z. rouxii. We found that cells of yeast strains isolated from miso changed morphologically when co-cultured with a yeast strain of opposite mating-type under nitrogen starvation conditions. The DNA sequence of the active mating-type locus and the results of cell morphology changes by co-culture were consistent with the mating type of each strain shown in the mating experiments. These findings will be useful for the future production of miso and soy sauce.

目前,人们对用于生产味噌和酱油的耐盐酵母菌株非常感兴趣。自从从日本味噌中分离到Zygosaccharomyces sp.菌株以来,已经在发酵食品中发现了几种杂交菌株。研究表明,原始Zygosaccharomyces sp.酵母菌株的活跃交配型位点位于t -亚基因组序列和p -亚基因组序列之间。本研究从日本广岛县的5家味噌工厂分离得到32株耐盐酵母酵母。流式细胞术分析显示,27株为二倍体,5株为单倍体。PCR分析表明,27株二倍体菌株具有与60年前从miso中分离的酵母株相同的活性交配型(MAT)位点的染色体结构。另外,27株二倍体菌株为异源二倍体,即rouxii与亲缘种的自然杂种,而5株单倍体菌株均为rouxii。我们发现,从miso分离的酵母菌株与相反交配型的酵母菌株在氮饥饿条件下共培养时,细胞形态发生了变化。活性交合型位点的DNA序列和共培养后细胞形态变化的结果与交合实验中各品系的交合型一致。这些发现将对未来味噌和酱油的生产有所帮助。
{"title":"Isolation and characterization of Zygosaccharomyces sp. yeast strains from miso.","authors":"Tomoko Fujiwara,&nbsp;Atsuko Matsura,&nbsp;Momoka Fukuda,&nbsp;Katsuaki Kuroki,&nbsp;Tomoo Ogata","doi":"10.2323/jgam.2022.07.002","DOIUrl":"https://doi.org/10.2323/jgam.2022.07.002","url":null,"abstract":"<p><p>There is currently great interest in the salt-tolerant yeast strains used to produce miso and soy sauce. Since the isolation of Zygosaccharomyces sp. strain from Japanese miso more than 60 years, several hybrid strains have been identified in fermented foods. Studies have shown that the active mating-type locus of the original Zygosaccharomyces sp. yeast strain is located between the T-subgenome sequence and the P-subgenome sequence. In this study, 32 salt-tolerant Zygosaccharomyces sp. yeast strains were isolated from five miso factories in Hiroshima Prefecture, Japan. Analysis by flow cytometry revealed that 27 strains were diploid and five strains were haploid. PCR analysis indicated that the 27 diploid strains had the same chromosomal structure of the active mating-type (MAT) locus as the original yeast strain isolated from miso 60 years ago. In addition, the 27 diploid strains were allodiploid, namely, natural hybrids of Z. rouxii and a related species, while the five haploid strains were all Z. rouxii. We found that cells of yeast strains isolated from miso changed morphologically when co-cultured with a yeast strain of opposite mating-type under nitrogen starvation conditions. The DNA sequence of the active mating-type locus and the results of cell morphology changes by co-culture were consistent with the mating type of each strain shown in the mating experiments. These findings will be useful for the future production of miso and soy sauce.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10852723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial degradation of low-density polyethylene by Neopestalotiopsis phangngaensis. 新拟盘多毛孢对低密度聚乙烯的微生物降解。
IF 1.2 4区 生物学 Q2 Medicine Pub Date : 2023-03-06 DOI: 10.2323/jgam.2022.07.001
Sarunpron Khruengsai, Teerapong Sripahco, Patcharee Pripdeevech

Low-density polyethylene (LDPE) has been commercially used and accumulated as plastic solid waste. LDPE has also been found to be a non-degradable waste for decades and found as a pollution source in the environment. In this study, 65 fungi were screened for their biodegradation of LDPE. The fungi Neopestalotiopsis phangngaensis, Alternaria burnsii, Alternaria pseudoeichhorniae, and Arthrinium sacchari showed significant potential in LDPE biodegradation. These fungi were individually cultured with an LDPE sheet as a carbon source for 90 days. A maximum weight loss of the LDPE sheet was detected by the fungus N. phangngaensis (54.34%). This fungus also revealed the highest reduction rate of tensile strength of the LDPE sheet (0.33 MPa). The morphological surface of LDPE culturing with N. phangngaensis was crack, pit, and rough analyzed by scanning electron microscopy. The biodegradation of the LDPE sheet by N. phangngaensis was also confirmed by the Sturm test and analysis of enzymatic activities. The Sturm test showed the highest decomposition of the LDPE sheet by N. phangngaensis into CO2 with 2.14 g/L after incubation. Enzymatic activities of laccase, manganese peroxidase, and lignin peroxidase enzymes were found by N. phangngaensis during the LDPE degradation. The volatile organic compounds in culture supernatant of N. phangngaensis were also investigated. The major compounds were 3Z-diethyl acetal hexenal, 2E,4E-decadienol, and 2Z-diethyl acetal hexenal. This study reveals the utilization of the fungus N. phangngaensis as the carbon source at a considerable biodegradation rate without any prior treatment. Therefore, the fungus N. phangngaensis may be applied as an alternative degrader for LDPE degradation in the environment.

低密度聚乙烯(LDPE)已作为塑料固体废物进行了商业利用和积累。几十年来,LDPE也被发现是一种不可降解的废物,并被发现是环境的污染源。本研究筛选了65种真菌对LDPE的生物降解能力。真菌Neopestalotiopsis phangngaensis、Alternaria burnsii、Alternaria pseudoeichhorniae和Arthrinium sacchari在LDPE的生物降解中表现出显著的潜力。这些真菌以LDPE片作为碳源单独培养90天。其中,phangngaensis对LDPE板材的减重最大(54.34%)。该菌对LDPE板材抗拉强度的降低率最高(0.33 MPa)。扫描电镜分析了攀云杉培养LDPE的形貌表面有裂纹、凹坑和粗糙。Sturm试验和酶活性分析也证实了N. phangngaensis对LDPE片的生物降解作用。Sturm试验表明,培养后,N. phangngaensis将LDPE板材分解为CO2的效率最高,为2.14 g/L。在LDPE降解过程中发现了漆酶、锰过氧化物酶和木质素过氧化物酶的活性。研究了攀钢菌培养上清液中挥发性有机物的含量。主要化合物为3z -二乙基缩醛己烯醛、2E、4e -十二烯醇和2z -二乙基缩醛己烯醛。本研究揭示了利用真菌N. phangngaensis作为碳源,无需任何预处理,具有相当高的生物降解率。因此,真菌N. phangngaensis可以作为环境中LDPE降解的替代降解剂。
{"title":"Microbial degradation of low-density polyethylene by Neopestalotiopsis phangngaensis.","authors":"Sarunpron Khruengsai,&nbsp;Teerapong Sripahco,&nbsp;Patcharee Pripdeevech","doi":"10.2323/jgam.2022.07.001","DOIUrl":"https://doi.org/10.2323/jgam.2022.07.001","url":null,"abstract":"<p><p>Low-density polyethylene (LDPE) has been commercially used and accumulated as plastic solid waste. LDPE has also been found to be a non-degradable waste for decades and found as a pollution source in the environment. In this study, 65 fungi were screened for their biodegradation of LDPE. The fungi Neopestalotiopsis phangngaensis, Alternaria burnsii, Alternaria pseudoeichhorniae, and Arthrinium sacchari showed significant potential in LDPE biodegradation. These fungi were individually cultured with an LDPE sheet as a carbon source for 90 days. A maximum weight loss of the LDPE sheet was detected by the fungus N. phangngaensis (54.34%). This fungus also revealed the highest reduction rate of tensile strength of the LDPE sheet (0.33 MPa). The morphological surface of LDPE culturing with N. phangngaensis was crack, pit, and rough analyzed by scanning electron microscopy. The biodegradation of the LDPE sheet by N. phangngaensis was also confirmed by the Sturm test and analysis of enzymatic activities. The Sturm test showed the highest decomposition of the LDPE sheet by N. phangngaensis into CO<sub>2</sub> with 2.14 g/L after incubation. Enzymatic activities of laccase, manganese peroxidase, and lignin peroxidase enzymes were found by N. phangngaensis during the LDPE degradation. The volatile organic compounds in culture supernatant of N. phangngaensis were also investigated. The major compounds were 3Z-diethyl acetal hexenal, 2E,4E-decadienol, and 2Z-diethyl acetal hexenal. This study reveals the utilization of the fungus N. phangngaensis as the carbon source at a considerable biodegradation rate without any prior treatment. Therefore, the fungus N. phangngaensis may be applied as an alternative degrader for LDPE degradation in the environment.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9399216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
16S rRNA gene sequencing reveals an altered composition of gut microbiota in children with Mycoplasma pneumoniae pneumonia treated with azithromycin. 16S rRNA基因测序揭示了阿奇霉素治疗肺炎支原体肺炎患儿肠道菌群组成的改变。
IF 1.2 4区 生物学 Q2 Medicine Pub Date : 2023-03-06 DOI: 10.2323/jgam.2022.05.004
Qiong Deng, Zhu Wang, Pengmei Wu, Hui Liang, Haixia Wu, Lirong Zhang, Jing Ying

Mycoplasma pneumoniae is one of the most important pathogens causing community acquired pneumonia in children, and the pathogenic mechanism of M. pneumoniae infection is complex. Azithromycin is an effective agent for treating the acquired lower respiratory tract infection and urogenital tract infection with slight adverse reactions. This study aimed to compare the intestinal microflora before (PP1) and after azithromycin intervention (PP2) in children with pneumonia caused by M. pneumoniae, combined with body fluid biochemical analysis to determine the intestinal flora affecting the progress of the disease. Fifteen children diagnosed with M. pneumoniae pneumonia were recruited. The fecal samples and clinical biochemical data were collected. 16S rRNA gene amplicon sequencing and bioinformatics analysis were conducted by the Beijing Genomics Institute. The operational taxonomic unit abundance analysis showed significant differences between the two groups. The species richness analysis showed differences in class, family, genus, order, species, and phylum. The abundance of Haemophilus, Pasteurellales, and Pasteurellaceae was found to be significantly higher in the PP1 group. The Pearson correlation analysis showed that the microbes strongly correlated with the clinical features. 16S rRNA gene sequencing data revealed altered composition of gut microbiota in children with M. pneumoniae pneumonia treated with azithromycin. The altered expression of microbes correlated with clinical features, which might help diagnose and treat the disease.

肺炎支原体是引起儿童社区获得性肺炎的重要病原体之一,肺炎支原体感染的致病机制复杂。阿奇霉素是治疗获得性下呼吸道感染和泌尿生殖道感染的有效药物,不良反应轻微。本研究旨在比较肺炎支原体肺炎患儿阿奇霉素干预前(PP1)与干预后(PP2)肠道菌群的变化,结合体液生化分析,确定影响病情进展的肠道菌群。招募了15名诊断为肺炎支原体肺炎的儿童。收集粪便标本及临床生化指标。16S rRNA基因扩增子测序和生物信息学分析由北京基因组研究所完成。操作分类单位丰度分析显示两组间存在显著差异。物种丰富度分析显示在纲、科、属、目、种和门上存在差异。发现PP1组中嗜血杆菌、巴氏杆菌和巴氏杆菌的丰度显著较高。Pearson相关分析显示,微生物与临床特征有很强的相关性。16S rRNA基因测序数据显示,阿奇霉素治疗后肺炎支原体肺炎患儿肠道菌群组成发生改变。微生物表达的改变与临床特征相关,这可能有助于诊断和治疗疾病。
{"title":"16S rRNA gene sequencing reveals an altered composition of gut microbiota in children with Mycoplasma pneumoniae pneumonia treated with azithromycin.","authors":"Qiong Deng,&nbsp;Zhu Wang,&nbsp;Pengmei Wu,&nbsp;Hui Liang,&nbsp;Haixia Wu,&nbsp;Lirong Zhang,&nbsp;Jing Ying","doi":"10.2323/jgam.2022.05.004","DOIUrl":"https://doi.org/10.2323/jgam.2022.05.004","url":null,"abstract":"<p><p>Mycoplasma pneumoniae is one of the most important pathogens causing community acquired pneumonia in children, and the pathogenic mechanism of M. pneumoniae infection is complex. Azithromycin is an effective agent for treating the acquired lower respiratory tract infection and urogenital tract infection with slight adverse reactions. This study aimed to compare the intestinal microflora before (PP1) and after azithromycin intervention (PP2) in children with pneumonia caused by M. pneumoniae, combined with body fluid biochemical analysis to determine the intestinal flora affecting the progress of the disease. Fifteen children diagnosed with M. pneumoniae pneumonia were recruited. The fecal samples and clinical biochemical data were collected. 16S rRNA gene amplicon sequencing and bioinformatics analysis were conducted by the Beijing Genomics Institute. The operational taxonomic unit abundance analysis showed significant differences between the two groups. The species richness analysis showed differences in class, family, genus, order, species, and phylum. The abundance of Haemophilus, Pasteurellales, and Pasteurellaceae was found to be significantly higher in the PP1 group. The Pearson correlation analysis showed that the microbes strongly correlated with the clinical features. 16S rRNA gene sequencing data revealed altered composition of gut microbiota in children with M. pneumoniae pneumonia treated with azithromycin. The altered expression of microbes correlated with clinical features, which might help diagnose and treat the disease.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9398757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Purification and characterization of lignin peroxidase from white-rot fungi Pleurotus pulmonarius CPG6 and its application in decolorization of synthetic textile dyes. 白腐菌Pleurotus pulmonarius CPG6中木质素过氧化物酶的纯化、表征及其在纺织合成染料脱色中的应用。
IF 1.2 4区 生物学 Q2 Medicine Pub Date : 2023-03-06 DOI: 10.2323/jgam.2022.05.005
Vu Dinh Giap, Hoang Thanh Duc, Pham Thi Mai Huong, Do Thi Hanh, Do Huu Nghi, Vu Dinh Duy, Dang Thu Quynh

From the biotechnological point of view, enzymes are powerful tools that help sustain a clean environment in several ways. The enzymatic biodegradation of synthetic dyes is a promising goal since it reduces pollution caused by textile dyeing factory wastewater. Lignin peroxidase (EC 1.11.1.14, LiP) has high redox potential; thus, it is great for application in various industrial fields (e.g., paper- waste treatment and textile dyeing wastewater treatment). In the present study, a LiP from an isolated strain Pleurotus pulmonarius CPG6 (PpuLiP) was successfully purified with a specific activity of 6.59 U mg -1. The enzyme was purified by using three-step column chromatography procedures including DEAE, Sephadex G-75, and HiTrapTM Q FF columns with 17.8-fold purity. The enzyme with a molecular weight of 40 kDa exhibited enhanced pH stability in the acidic range. The activity retention was over 75% at a pH of 3.0 for more than 6 hours. Purified PpuLiP was able to oxidize a variety of substrates including veratryl alcohol, 2,4-DCP, n propanol, and guaiacol. The effect of metal ions on PpuLiP activity was analyzed. The study will provide a ground to decolorize dyes from various groups of PpuLiP. Purified PpuLiP could decolorize 35% Acid blue 25 (AB25), 50% Acid red 129 (AB129), 72% Acid blue 62 (NY3), 85% Acid blue 113 (AB113), 55% Remazol Brilliant blue R (RBBR), and 100% Reactive red 120 (RR120) for 12 hours. Most of the dyes were decolorized, but the heat-denatured enzyme used as negative control obviously did not decolorize the tested dyes. These results indicate that the PpuLiP has potential application in enzyme-based decolorization of synthetic dyes. Keywords: Decolorization; lignin peroxidase; Pleurotus pulmonarius; textile dyes.

从生物技术的角度来看,酶是一种强大的工具,可以从几个方面帮助维持清洁的环境。酶法生物降解合成染料是一个很有前途的研究方向,因为它可以减少纺织印染厂废水的污染。木质素过氧化物酶(EC 1.11.1.14, LiP)具有较高的氧化还原电位;因此,在各种工业领域(如造纸废水处理和纺织印染废水处理)都有很大的应用前景。本研究成功地从肺侧耳菌CPG6 (pplip)分离株中纯化了一个LiP,其比活性为6.59 U mg -1。采用DEAE、Sephadex G-75和HiTrapTM Q FF三步柱层析纯化酶,纯度为17.8倍。分子量为40 kDa的酶在酸性范围内表现出更高的pH稳定性。在pH为3.0的条件下保持6小时以上,活性保持率达75%以上。纯化后的pplip能够氧化多种底物,包括戊醇和2,4-二氯苯酚,正丙醇和愈创木酚。分析了金属离子对pplip活性的影响。该研究将为脱色各种pplip染料提供基础。纯化后的ppullip可脱色35%酸蓝25 (AB25)、50%酸红129 (AB129)、72%酸蓝62 (NY3)、85%酸蓝113 (AB113)、55%雷马唑亮蓝R (RBBR)和100%活性红120 (RR120) 12小时。大多数染料脱色,但热变性酶作为阴性对照,明显不能脱色。这些结果表明,pplip在合成染料的酶基脱色中具有潜在的应用前景。关键词:脱色;木质素过氧化物酶;侧耳属pulmonarius;纺织染料。
{"title":"Purification and characterization of lignin peroxidase from white-rot fungi Pleurotus pulmonarius CPG6 and its application in decolorization of synthetic textile dyes.","authors":"Vu Dinh Giap,&nbsp;Hoang Thanh Duc,&nbsp;Pham Thi Mai Huong,&nbsp;Do Thi Hanh,&nbsp;Do Huu Nghi,&nbsp;Vu Dinh Duy,&nbsp;Dang Thu Quynh","doi":"10.2323/jgam.2022.05.005","DOIUrl":"https://doi.org/10.2323/jgam.2022.05.005","url":null,"abstract":"<p><p>From the biotechnological point of view, enzymes are powerful tools that help sustain a clean environment in several ways. The enzymatic biodegradation of synthetic dyes is a promising goal since it reduces pollution caused by textile dyeing factory wastewater. Lignin peroxidase (EC 1.11.1.14, LiP) has high redox potential; thus, it is great for application in various industrial fields (e.g., paper- waste treatment and textile dyeing wastewater treatment). In the present study, a LiP from an isolated strain Pleurotus pulmonarius CPG6 (PpuLiP) was successfully purified with a specific activity of 6.59 U mg <sup>-1</sup>. The enzyme was purified by using three-step column chromatography procedures including DEAE, Sephadex G-75, and HiTrap<sup>TM</sup> Q FF columns with 17.8-fold purity. The enzyme with a molecular weight of 40 kDa exhibited enhanced pH stability in the acidic range. The activity retention was over 75% at a pH of 3.0 for more than 6 hours. Purified PpuLiP was able to oxidize a variety of substrates including veratryl alcohol, 2,4-DCP, n propanol, and guaiacol. The effect of metal ions on PpuLiP activity was analyzed. The study will provide a ground to decolorize dyes from various groups of PpuLiP. Purified PpuLiP could decolorize 35% Acid blue 25 (AB25), 50% Acid red 129 (AB129), 72% Acid blue 62 (NY3), 85% Acid blue 113 (AB113), 55% Remazol Brilliant blue R (RBBR), and 100% Reactive red 120 (RR120) for 12 hours. Most of the dyes were decolorized, but the heat-denatured enzyme used as negative control obviously did not decolorize the tested dyes. These results indicate that the PpuLiP has potential application in enzyme-based decolorization of synthetic dyes. Keywords: Decolorization; lignin peroxidase; Pleurotus pulmonarius; textile dyes.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10852251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Characterization of hexose transporter genes in the views of the chronological life span and glucose uptake in fission yeast. 裂变酵母中己糖转运基因在时间寿命和葡萄糖摄取方面的特征。
IF 1.2 4区 生物学 Q2 Medicine Pub Date : 2023-03-06 DOI: 10.2323/jgam.2022.05.006
Teppei Maruyama, Kanako Hayashi, Kotaro Matsui, Yasukichi Maekawa, Takafumi Shimasaki, Hokuto Ohtsuka, Saitoh Shigeaki, Hirofumi Aiba

Fission yeast, Schizosaccharomyces pombe, possesses eight hexose transporters, Ght1~8. In order to clarify the role of each hexose transporter on glucose uptake, a glucose uptake assay system was established and the actual glucose uptake activity of each hexose transporter-deletion mutant was measured. Under normal growth condition containing 2% glucose, ∆ght5 and ∆ght2 mutants showed large and small decrease in glucose uptake activity, respectively. On the other hand, the other deletion mutants did not show any decrease in glucose uptake activity indicating that, in the presence of Ght5 and Ght2, the other hexose transporters do not play a significant role in glucose uptake. To understand the relevance between glucose uptake and lifespan regulation, we measured the chronological lifespan of each hexose transporter deletion mutant, and found that only ∆ght5 mutant showed a significant lifespan extension. Based on these results we showed that Ght5 is mainly involved in the glucose uptake in Schizosaccharomyces pombe, and suggested that the ∆ght5 mutant has prolonged lifespan due to physiological changes similar to calorie restriction.

分裂酵母(Schizosaccharomyces pombe)具有8个己糖转运体Ght1~8。为了明确每种己糖转运体在葡萄糖摄取中的作用,我们建立了葡萄糖摄取测定系统,并测量了每种己糖转运体缺失突变体的实际葡萄糖摄取活性。在含2%葡萄糖的正常生长条件下,∆ght5和∆ght2突变体的葡萄糖摄取活性分别出现较大和较小的下降。另一方面,其他缺失突变体没有表现出葡萄糖摄取活性的下降,这表明,在Ght5和Ght2存在的情况下,其他己糖转运体在葡萄糖摄取中没有显著作用。为了了解葡萄糖摄取与寿命调节之间的相关性,我们测量了每个己糖转运体缺失突变体的按时间顺序的寿命,发现只有∆ght5突变体表现出显著的寿命延长。基于这些结果,我们发现Ght5主要参与了pombe Schizosaccharomyces的葡萄糖摄取,并提示∆Ght5突变体由于类似于热量限制的生理变化而延长了寿命。
{"title":"Characterization of hexose transporter genes in the views of the chronological life span and glucose uptake in fission yeast.","authors":"Teppei Maruyama,&nbsp;Kanako Hayashi,&nbsp;Kotaro Matsui,&nbsp;Yasukichi Maekawa,&nbsp;Takafumi Shimasaki,&nbsp;Hokuto Ohtsuka,&nbsp;Saitoh Shigeaki,&nbsp;Hirofumi Aiba","doi":"10.2323/jgam.2022.05.006","DOIUrl":"https://doi.org/10.2323/jgam.2022.05.006","url":null,"abstract":"<p><p>Fission yeast, Schizosaccharomyces pombe, possesses eight hexose transporters, Ght1~8. In order to clarify the role of each hexose transporter on glucose uptake, a glucose uptake assay system was established and the actual glucose uptake activity of each hexose transporter-deletion mutant was measured. Under normal growth condition containing 2% glucose, ∆ght5 and ∆ght2 mutants showed large and small decrease in glucose uptake activity, respectively. On the other hand, the other deletion mutants did not show any decrease in glucose uptake activity indicating that, in the presence of Ght5 and Ght2, the other hexose transporters do not play a significant role in glucose uptake. To understand the relevance between glucose uptake and lifespan regulation, we measured the chronological lifespan of each hexose transporter deletion mutant, and found that only ∆ght5 mutant showed a significant lifespan extension. Based on these results we showed that Ght5 is mainly involved in the glucose uptake in Schizosaccharomyces pombe, and suggested that the ∆ght5 mutant has prolonged lifespan due to physiological changes similar to calorie restriction.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10852250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glucuronoyl esterase facilitates biomass degradation in Neurospora crassa by upregulating the expression of plant biomass-degrading enzymes. 葡萄糖醛酸酯酶通过上调植物生物量降解酶的表达促进粗草神经孢子菌的生物量降解。
IF 1.2 4区 生物学 Q2 Medicine Pub Date : 2023-03-06 DOI: 10.2323/jgam.2022.06.002
Ruijie Wang, Manabu Arioka

Glucuronoyl esterase (GE) is a promising agent for the delignification of plant biomass since it has been shown to cleave the linkage between xylan and lignin in vitro. In this study, we demonstrate that NcGE, a GE from Neurospora crassa, stimulates plant biomass degradation. In vitro, NcGE synergistically increased the release of reducing sugars from plant biomass when added together with cellulase or xylanase. In vivo, overexpression of NcGE in N. crassa resulted in an increase in xylanolytic activity. Consistently, elevated transcription of genes encoding the major plant biomass degrading-enzymes (PBDEs) was observed in the NcGE overexpression strain. Increased xylanolytic activity and transcription of PDBE genes were largely abolished when the transcription factors clr-1, clr-2, or xlr-1 were deleted. Interestingly, the expression of some PBDE genes was increased when the hydrolysate of plant biomass by NcGE was added to the culture medium. We propose that NcGE boosts the production of PBDEs through the activation of key transcription factors, which is presumably caused by NcGE-mediated generation of hypothetical inducer(s) from plant biomass.

葡萄糖醛酸酯酶(GE)是一种很有前途的植物生物质脱木质素剂,因为它已被证明可以在体外切断木聚糖和木质素之间的联系。在这项研究中,我们证明了NcGE(一种来自粗神经孢子虫的GE)促进了植物生物量的降解。在体外,当NcGE与纤维素酶或木聚糖酶一起添加时,可以协同增加植物生物量中还原糖的释放。在体内,NcGE在粗草中的过表达导致木聚糖分解活性增加。在NcGE过表达菌株中,编码主要植物生物量降解酶(PBDEs)的基因转录水平升高。当转录因子clr-1、clr-2或xlr-1被删除时,增加的PDBE基因的木解活性和转录基本消失。有趣的是,在培养基中加入NcGE水解的植物生物量后,一些PBDE基因的表达有所增加。我们提出NcGE通过激活关键转录因子促进多溴二苯醚的产生,这可能是由NcGE介导的植物生物量产生的假设诱导剂引起的。
{"title":"Glucuronoyl esterase facilitates biomass degradation in Neurospora crassa by upregulating the expression of plant biomass-degrading enzymes.","authors":"Ruijie Wang,&nbsp;Manabu Arioka","doi":"10.2323/jgam.2022.06.002","DOIUrl":"https://doi.org/10.2323/jgam.2022.06.002","url":null,"abstract":"<p><p>Glucuronoyl esterase (GE) is a promising agent for the delignification of plant biomass since it has been shown to cleave the linkage between xylan and lignin in vitro. In this study, we demonstrate that NcGE, a GE from Neurospora crassa, stimulates plant biomass degradation. In vitro, NcGE synergistically increased the release of reducing sugars from plant biomass when added together with cellulase or xylanase. In vivo, overexpression of NcGE in N. crassa resulted in an increase in xylanolytic activity. Consistently, elevated transcription of genes encoding the major plant biomass degrading-enzymes (PBDEs) was observed in the NcGE overexpression strain. Increased xylanolytic activity and transcription of PDBE genes were largely abolished when the transcription factors clr-1, clr-2, or xlr-1 were deleted. Interestingly, the expression of some PBDE genes was increased when the hydrolysate of plant biomass by NcGE was added to the culture medium. We propose that NcGE boosts the production of PBDEs through the activation of key transcription factors, which is presumably caused by NcGE-mediated generation of hypothetical inducer(s) from plant biomass.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9103790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PA0575 (RmcA) interacts with other c-di-GMP metabolizing proteins in Pseudomonas aeruginosa PAO1. PA0575 (RmcA)与铜绿假单胞菌PAO1中其他c-二gmp代谢蛋白相互作用。
IF 1.2 4区 生物学 Q2 Medicine Pub Date : 2023-01-24 DOI: 10.2323/jgam.2022.05.003
Yanxiang Yao, Naren Xi, E Hai, Xiaomin Zhang, Jiayi Guo, Zhi Lin, Weidong Huang

As a central signaling molecule, c-di-GMP (bis-(3,5)-cyclic diguanosine monophosphate) is becoming the focus for research in bacteria physiology. Pseudomonas aeruginosa PAO1 genome contains highly complicated c-di-GMP metabolizing genes and a number of these proteins have been identified and investigated. Especially, a sophisticated network of these proteins is emerging. In current study, mainly through Bacteria-2-Hybrid assay, we found PA0575 (RmcA), a GGDEF-EAL dual protein, to interact with two other dual proteins of PA4601 (MorA) and PA4959 (FimX). These observations imply the intricacy of c-di-GMP metabolizing protein interactions. Our work thus provides one piece of data to increase the understandings to c-di-GMP signaling.

c-二- gmp(双-(3,5)-环二鸟苷单磷酸)作为一种中心信号分子正成为细菌生理学研究的热点。铜绿假单胞菌PAO1基因组包含高度复杂的c-二gmp代谢基因,许多这些蛋白质已经被鉴定和研究。特别是,这些蛋白质的复杂网络正在出现。在本研究中,我们主要通过Bacteria-2-Hybrid实验,发现ggdefa - eal双蛋白PA0575 (RmcA)与另外两个双蛋白PA4601 (MorA)和PA4959 (FimX)相互作用。这些观察结果暗示了c-二gmp代谢蛋白相互作用的复杂性。因此,我们的工作为增加对c-di-GMP信号的理解提供了一条数据。
{"title":"PA0575 (RmcA) interacts with other c-di-GMP metabolizing proteins in Pseudomonas aeruginosa PAO1.","authors":"Yanxiang Yao,&nbsp;Naren Xi,&nbsp;E Hai,&nbsp;Xiaomin Zhang,&nbsp;Jiayi Guo,&nbsp;Zhi Lin,&nbsp;Weidong Huang","doi":"10.2323/jgam.2022.05.003","DOIUrl":"https://doi.org/10.2323/jgam.2022.05.003","url":null,"abstract":"<p><p>As a central signaling molecule, c-di-GMP (bis-(3,5)-cyclic diguanosine monophosphate) is becoming the focus for research in bacteria physiology. Pseudomonas aeruginosa PAO1 genome contains highly complicated c-di-GMP metabolizing genes and a number of these proteins have been identified and investigated. Especially, a sophisticated network of these proteins is emerging. In current study, mainly through Bacteria-2-Hybrid assay, we found PA0575 (RmcA), a GGDEF-EAL dual protein, to interact with two other dual proteins of PA4601 (MorA) and PA4959 (FimX). These observations imply the intricacy of c-di-GMP metabolizing protein interactions. Our work thus provides one piece of data to increase the understandings to c-di-GMP signaling.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10672908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genotypic analysis of the FAS2-F1279Y (3836T>A) polymorphism conferring high ethyl caprylate productivity in industrial sake yeast strains. 清酒工业酵母菌高乙酸乙酯产率FAS2-F1279Y (3836T>A)多态性的基因型分析
IF 1.2 4区 生物学 Q2 Medicine Pub Date : 2023-01-24 DOI: 10.2323/jgam.2022.05.001
Takashi Kuribayashi, Toshiki Sakurai, Akira Hatakeyama, Toshio Joh, Mitsuoki Kaneoke

In Saccharomyces cerevisiae, ethyl caprylate is produced by the esterification of caprylic acid, which is synthesized through the action of fatty acid synthase. A recent study reported a yeast mutant with a single nucleotide substitution in the alpha subunit of fatty acid synthase (FAS2) gene (F1279Y; 3836T>A) that produced large amounts of ethyl caprylate. Here, we designed two primer sets (P1/P2 and P3/P4) with mismatches that incorporate restriction sites for the enzymes NdeI and SspI, respectively and developed an easy and rapid polymerase chain reaction-restriction fragment length polymorphism assay to identify yeasts harboring the FAS2-F1279Y mutation associated with high ethyl caprylate productivity.

在酿酒酵母菌中,辛酸是通过脂肪酸合酶的作用由辛酸酯化而产生辛酸乙酯。最近的一项研究报道了一种酵母突变体,其脂肪酸合成酶(FAS2)基因的α亚基(F1279Y;3836T>A)产生大量的辛酸乙酯。本研究设计了两组引物(P1/P2和P3/P4),分别包含NdeI酶和SspI酶的限制性内切位点,并建立了一种简单快速的聚合酶链反应-限制性片段长度多态性测定方法,以鉴定含有高羧酸乙酯产量相关的FAS2-F1279Y突变的酵母。
{"title":"Genotypic analysis of the FAS2-F1279Y (3836T>A) polymorphism conferring high ethyl caprylate productivity in industrial sake yeast strains.","authors":"Takashi Kuribayashi,&nbsp;Toshiki Sakurai,&nbsp;Akira Hatakeyama,&nbsp;Toshio Joh,&nbsp;Mitsuoki Kaneoke","doi":"10.2323/jgam.2022.05.001","DOIUrl":"https://doi.org/10.2323/jgam.2022.05.001","url":null,"abstract":"<p><p>In Saccharomyces cerevisiae, ethyl caprylate is produced by the esterification of caprylic acid, which is synthesized through the action of fatty acid synthase. A recent study reported a yeast mutant with a single nucleotide substitution in the alpha subunit of fatty acid synthase (FAS2) gene (F1279Y; 3836T>A) that produced large amounts of ethyl caprylate. Here, we designed two primer sets (P1/P2 and P3/P4) with mismatches that incorporate restriction sites for the enzymes NdeI and SspI, respectively and developed an easy and rapid polymerase chain reaction-restriction fragment length polymorphism assay to identify yeasts harboring the FAS2-F1279Y mutation associated with high ethyl caprylate productivity.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10624658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of dye decolorization using anaerobic granular sludge from an expanded granular sludge bed based on spectrometric and microbiome analyses. 基于光谱和微生物组分析的膨胀颗粒污泥床厌氧颗粒污泥染料脱色评价。
IF 1.2 4区 生物学 Q2 Medicine Pub Date : 2023-01-24 DOI: 10.2323/jgam.2022.04.003
Tomohiro Inaba, Mami Yamaguchi, Akira Taniguchi, Yuya Sato, Tomo Aoyagi, Tomohiro Hori, Hiroyuki Inoue, Masahiko Fujita, Masanori Iwata, Yoshihiro Iwata, Hiroshi Habe

The decolorization of 11 dyes by granular sludge from an anaerobic expanded granular sludge bed (EGSB) reactor was evaluated. Biological decolorization of Reactive Red 21, 23, and 180, and Reactive Yellow 15, 17, and 23 in model textile wastewater was observed for the first time after a 7-day incubation (over 94% decolorization). According to the sequencing analysis of 16S rRNA gene amplicons from EGSB granular sludge, the operational taxonomic unit related to Paludibacter propionicigenes showed the highest increase in relative abundance ratios in the presence of dyes (7.12 times on average over 11 dyes) compared to those without dyes.

研究了厌氧膨胀颗粒污泥床(EGSB)反应器中颗粒污泥对11种染料的脱色效果。经过7天的培养,首次观察到活性红21、23、180和活性黄15、17、23在模型纺织废水中的生物脱色效果(脱色率超过94%)。根据对EGSB颗粒污泥16S rRNA基因扩增子的测序分析,与丙酸古杆菌相关的操作分类单元在染料存在时的相对丰度比在没有染料的情况下增加最多(平均为7.12倍)。
{"title":"Evaluation of dye decolorization using anaerobic granular sludge from an expanded granular sludge bed based on spectrometric and microbiome analyses.","authors":"Tomohiro Inaba,&nbsp;Mami Yamaguchi,&nbsp;Akira Taniguchi,&nbsp;Yuya Sato,&nbsp;Tomo Aoyagi,&nbsp;Tomohiro Hori,&nbsp;Hiroyuki Inoue,&nbsp;Masahiko Fujita,&nbsp;Masanori Iwata,&nbsp;Yoshihiro Iwata,&nbsp;Hiroshi Habe","doi":"10.2323/jgam.2022.04.003","DOIUrl":"https://doi.org/10.2323/jgam.2022.04.003","url":null,"abstract":"<p><p>The decolorization of 11 dyes by granular sludge from an anaerobic expanded granular sludge bed (EGSB) reactor was evaluated. Biological decolorization of Reactive Red 21, 23, and 180, and Reactive Yellow 15, 17, and 23 in model textile wastewater was observed for the first time after a 7-day incubation (over 94% decolorization). According to the sequencing analysis of 16S rRNA gene amplicons from EGSB granular sludge, the operational taxonomic unit related to Paludibacter propionicigenes showed the highest increase in relative abundance ratios in the presence of dyes (7.12 times on average over 11 dyes) compared to those without dyes.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10620756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of polyamine production and proteolytic activities of co-cultivated bacteria on histamine production by Morganiella morganii. 共培养细菌多胺产量和蛋白水解活性对摩根氏摩根氏菌组胺产量的影响。
IF 1.2 4区 生物学 Q2 Medicine Pub Date : 2023-01-24 DOI: 10.2323/jgam.2022.04.001
Suma Devivilla, Manjusha Lekshmi, Fathima Salam, Sanath Kumar H, Rajendran Kooloth Valappil, Sibnarayan Dam Roy, Binaya Bhusan Nayak

Consumption of temperature-abused marine fish containing elevated levels of histamine results in histamine poisoning. Histamine is a biogenic amine produced in fish by the action of certain groups of bacteria which are capable of producing an exogenous enzyme called histidine decarboxylase (HDC). Morganella morganii is one of the major causative organisms of histamine poisoning. In this study, the histamine forming potential of M. morganii (BSS142) was evaluated when it was co-incubated with proteolytic as well as polyamine forming bacteria. This experiment was designed to examine whether biotic factors such as proteolysis and the presence of other amines influenced histamine forming ability of BSS142. The study showed that the proteolytic activity of Aeromonas hydrophila as well as Pseudomonas aeruginosa greatly enhanced the histamine forming ability of M. morganii. Psychrobacter sangunis, a non proteolytic polyamine producer, negatively influenced histamine production by M. morganii.

食用温度过高、组胺含量过高的海鱼会导致组胺中毒。组胺是鱼体内的一种生物胺,由某些细菌群的作用产生,这些细菌群能够产生一种叫做组氨酸脱羧酶(HDC)的外源酶。莫氏摩根菌是引起组胺中毒的主要病原菌之一。本研究对莫氏分枝杆菌(BSS142)与蛋白水解菌和多胺形成菌共培养时的组胺形成潜力进行了评价。本实验旨在研究生物因素如蛋白质水解和其他胺的存在是否影响BSS142的组胺形成能力。研究表明,嗜水气单胞菌和铜绿假单胞菌的蛋白水解活性大大增强了摩根氏分枝杆菌的组胺形成能力。非蛋白水解性多胺生产者桑格尼氏冻杆菌对莫氏分枝杆菌的组胺生产产生负面影响。
{"title":"Influence of polyamine production and proteolytic activities of co-cultivated bacteria on histamine production by Morganiella morganii.","authors":"Suma Devivilla,&nbsp;Manjusha Lekshmi,&nbsp;Fathima Salam,&nbsp;Sanath Kumar H,&nbsp;Rajendran Kooloth Valappil,&nbsp;Sibnarayan Dam Roy,&nbsp;Binaya Bhusan Nayak","doi":"10.2323/jgam.2022.04.001","DOIUrl":"https://doi.org/10.2323/jgam.2022.04.001","url":null,"abstract":"<p><p>Consumption of temperature-abused marine fish containing elevated levels of histamine results in histamine poisoning. Histamine is a biogenic amine produced in fish by the action of certain groups of bacteria which are capable of producing an exogenous enzyme called histidine decarboxylase (HDC). Morganella morganii is one of the major causative organisms of histamine poisoning. In this study, the histamine forming potential of M. morganii (BSS142) was evaluated when it was co-incubated with proteolytic as well as polyamine forming bacteria. This experiment was designed to examine whether biotic factors such as proteolysis and the presence of other amines influenced histamine forming ability of BSS142. The study showed that the proteolytic activity of Aeromonas hydrophila as well as Pseudomonas aeruginosa greatly enhanced the histamine forming ability of M. morganii. Psychrobacter sangunis, a non proteolytic polyamine producer, negatively influenced histamine production by M. morganii.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10620774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of General and Applied Microbiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1