Corynebacterium glutamicum was metabolically engineered to produce phenylalanine, a valuable aromatic amino acid that can be used as a raw material in the food and pharmaceutical industries. First, a starting phenylalanine-producer was constructed by overexpressing tryptophan-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase and phenylalanine- and tyrosine-insensitive bifunctional enzyme chorismate mutase prephenate dehydratase from Escherichia coli, followed by the inactivation of enzymes responsible for the formation of dihydroxyacetone and the consumption of shikimate pathway-related compounds. Second, redirection of the carbon flow from tyrosine to phenylalanine was attempted by deleting of the tyrA gene encoding prephenate dehydrogenase, which catalyzes the committed step for tyrosine biosynthesis from prephenate. However, suppressor mutants were generated, and two mutants were isolated and examined for phenylalanine production and genome sequencing. The suppressor mutant harboring an amino acid exchange (L180R) on RNase J, which was experimentally proven to lead to a loss of function of the enzyme, showed significantly enhanced production of phenylalanine. Finally, modifications of phosphoenolpyruvate-pyruvate metabolism were investigated, revealing that the inactivation of either phosphoenolpyruvate carboxylase or pyruvate carboxylase, which are enzymes of the anaplerotic pathway, is an effective means for improving phenylalanine production. The resultant strain, harboring a phosphoenolpyruvate carboxylase deficiency, synthesized 50.7 mM phenylalanine from 444 mM glucose. These results not only provided new insights into the practical mutations in constructing a phenylalanine-producing C. glutamicum but also demonstrated the creation of a potential strain for the biosynthesis of phenylalanine-derived compounds represented by plant secondary metabolites.
{"title":"Stepwise metabolic engineering of Corynebacterium glutamicum for the production of phenylalanine.","authors":"Naoya Kataoka, Mienosuke Matsutani, Kazunobu Matsushita, Toshiharu Yakushi","doi":"10.2323/jgam.2022.08.002","DOIUrl":"https://doi.org/10.2323/jgam.2022.08.002","url":null,"abstract":"<p><p>Corynebacterium glutamicum was metabolically engineered to produce phenylalanine, a valuable aromatic amino acid that can be used as a raw material in the food and pharmaceutical industries. First, a starting phenylalanine-producer was constructed by overexpressing tryptophan-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase and phenylalanine- and tyrosine-insensitive bifunctional enzyme chorismate mutase prephenate dehydratase from Escherichia coli, followed by the inactivation of enzymes responsible for the formation of dihydroxyacetone and the consumption of shikimate pathway-related compounds. Second, redirection of the carbon flow from tyrosine to phenylalanine was attempted by deleting of the tyrA gene encoding prephenate dehydrogenase, which catalyzes the committed step for tyrosine biosynthesis from prephenate. However, suppressor mutants were generated, and two mutants were isolated and examined for phenylalanine production and genome sequencing. The suppressor mutant harboring an amino acid exchange (L180R) on RNase J, which was experimentally proven to lead to a loss of function of the enzyme, showed significantly enhanced production of phenylalanine. Finally, modifications of phosphoenolpyruvate-pyruvate metabolism were investigated, revealing that the inactivation of either phosphoenolpyruvate carboxylase or pyruvate carboxylase, which are enzymes of the anaplerotic pathway, is an effective means for improving phenylalanine production. The resultant strain, harboring a phosphoenolpyruvate carboxylase deficiency, synthesized 50.7 mM phenylalanine from 444 mM glucose. These results not only provided new insights into the practical mutations in constructing a phenylalanine-producing C. glutamicum but also demonstrated the creation of a potential strain for the biosynthesis of phenylalanine-derived compounds represented by plant secondary metabolites.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":"69 1","pages":"11-23"},"PeriodicalIF":1.2,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9674716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yet another kinase (YAK) 1 is a conserved eukaryotic protein kinase coordinating growth and development. We previously isolated a mutant of Chlamydomonas reinhardtii defective in the YAK1 ortholog triacylglycerol (TAG) accumulation regulator 1 (TAR1). The mutant tar1-1 displayed higher levels of chlorophyll, starch, TAG, and biomass than the parental strain C9 (renamed as C9-3) in photoautotrophic nitrogen (N)-deficient conditions. However, we found that the parental C9-3 showed faster chlorosis upon N-deficiency than the original C9 (C9-1) freshly recovered from cryopreservation, suggesting that C9-3 had acquired particular characteristics during long-term subculturing. To exclude phenotypes dependent on a particular parental strain, we newly created tar1 mutants from two wild-types, C9-1 and CC 125. Like tar1-1, the new tar1 mutants showed higher levels of chlorophyll and TAG/starch than the parental strain. Upon removal of N, Chlamydomonas cells divide once before ceasing further division. Previously, the single division after N-removal was arrested in tar1-1 in photomixotrophic conditions, but this phenotype was not observed in photoautotrophic conditions because of the particular characteristics of the parental C9-3. However, using C9- 1 and CC-125 as parental strains, we showed that cell division after N-removal was impaired in new tar1 mutants in photoautotrophic conditions. Consistent with the view that the division under N-deficiency is necessary for gametic differentiation, new tar1 mutants showed lower mating efficiency than the parental strains. Taken together, TAR1 was suggested to promote differentiation into gametes through the regulation of cell division in response to N-deficiency.
{"title":"A YAK1-type protein kinase, triacylglycerol accumulation regulator 1, in the green alga Chlamydomonas reinhardtii is a potential regulator of cell division and differentiation into gametes during photoautotrophic nitrogen deficiency.","authors":"Yoshinori Tsuji, Akari Kinoshita, Mizuho Tsukahara, Takumi Ishikawa, Haruka Shinkawa, Takashi Yamano, Hideya Fukuzawa","doi":"10.2323/jgam.2022.08.001","DOIUrl":"https://doi.org/10.2323/jgam.2022.08.001","url":null,"abstract":"<p><p>Yet another kinase (YAK) 1 is a conserved eukaryotic protein kinase coordinating growth and development. We previously isolated a mutant of Chlamydomonas reinhardtii defective in the YAK1 ortholog triacylglycerol (TAG) accumulation regulator 1 (TAR1). The mutant tar1-1 displayed higher levels of chlorophyll, starch, TAG, and biomass than the parental strain C9 (renamed as C9-3) in photoautotrophic nitrogen (N)-deficient conditions. However, we found that the parental C9-3 showed faster chlorosis upon N-deficiency than the original C9 (C9-1) freshly recovered from cryopreservation, suggesting that C9-3 had acquired particular characteristics during long-term subculturing. To exclude phenotypes dependent on a particular parental strain, we newly created tar1 mutants from two wild-types, C9-1 and CC 125. Like tar1-1, the new tar1 mutants showed higher levels of chlorophyll and TAG/starch than the parental strain. Upon removal of N, Chlamydomonas cells divide once before ceasing further division. Previously, the single division after N-removal was arrested in tar1-1 in photomixotrophic conditions, but this phenotype was not observed in photoautotrophic conditions because of the particular characteristics of the parental C9-3. However, using C9- 1 and CC-125 as parental strains, we showed that cell division after N-removal was impaired in new tar1 mutants in photoautotrophic conditions. Consistent with the view that the division under N-deficiency is necessary for gametic differentiation, new tar1 mutants showed lower mating efficiency than the parental strains. Taken together, TAR1 was suggested to promote differentiation into gametes through the regulation of cell division in response to N-deficiency.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":"69 1","pages":"1-10"},"PeriodicalIF":1.2,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10047977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Various bacteria can change to a spherical cell-wall-deficient state, called L-from, in the presence of antibiotics that inhibit cell wall synthesis. L-forms are classified into two types: unstable and stable L-forms. Unstable L-forms revert to a normal walled state in the absence of antibiotics, while stable L-forms remain in their wall-deficient state. The conversion from unstable to stable L-forms has been often observed during long-term cultivation. However, the genetic cause for this conversion is not yet fully understood. Here, we obtained stable Bacillus subtilis L-form strains from unstable L-form strains via three independent long-term culturing experiments. The whole genome sequencing of the long-cultured strains identified many mutations, and some mutations were commonly found in all three long-cultured strains. The knockout strain of one of the commonly mutated genes, tagF, in the ancestral strain lost the ability to revert to walled state (rod shape), supporting that eliminating the function of tagF gene is one of the possible methods to convert unstable L forms to a stable state.
在抑制细胞壁合成的抗生素作用下,各种细菌会转变为缺乏细胞壁的球形状态,即 L 型。L 型分为两种:不稳定型和稳定型。不稳定的 L 型在没有抗生素的情况下会恢复到正常的细胞壁状态,而稳定的 L 型则保持缺壁状态。在长期培养过程中,经常可以观察到不稳定 L 型向稳定 L 型的转化。然而,这种转化的基因原因尚未完全清楚。在此,我们通过三次独立的长期培养实验,从不稳定性 L 型菌株中获得了稳定的枯草芽孢杆菌 L 型菌株。对长期培养菌株的全基因组测序发现了许多突变,有些突变在三个长期培养菌株中都普遍存在。祖先菌株中一个常见突变基因(tagF)的敲除菌株失去了恢复到贴壁状态(棒状)的能力,这证明消除tagF基因的功能是将不稳定的L型菌株转化为稳定状态的可能方法之一。
{"title":"Genetic analysis of Bacillus subtilis stable L-forms obtained via long-term cultivation.","authors":"Kazuki Ohta, Tenma Shimizu, Taku Oshima, Norikazu Ichihashi","doi":"10.2323/jgam.2022.10.003","DOIUrl":"10.2323/jgam.2022.10.003","url":null,"abstract":"<p><p>Various bacteria can change to a spherical cell-wall-deficient state, called L-from, in the presence of antibiotics that inhibit cell wall synthesis. L-forms are classified into two types: unstable and stable L-forms. Unstable L-forms revert to a normal walled state in the absence of antibiotics, while stable L-forms remain in their wall-deficient state. The conversion from unstable to stable L-forms has been often observed during long-term cultivation. However, the genetic cause for this conversion is not yet fully understood. Here, we obtained stable Bacillus subtilis L-form strains from unstable L-form strains via three independent long-term culturing experiments. The whole genome sequencing of the long-cultured strains identified many mutations, and some mutations were commonly found in all three long-cultured strains. The knockout strain of one of the commonly mutated genes, tagF, in the ancestral strain lost the ability to revert to walled state (rod shape), supporting that eliminating the function of tagF gene is one of the possible methods to convert unstable L forms to a stable state.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":"69 1","pages":"45-52"},"PeriodicalIF":1.2,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10030379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-10DOI: 10.2323/jgam.2023.03.001
Article title: The spatiotemporal dimension of population change in Ireland: Visualisation of growth and shrinkage in Irish Electoral Divisions (1986-2016) Authors: Josh O’Driscoll, David Meredith, Frank Crowley, Justin Doran, Mary O’Shaughnessy and Jesko Zimmermann Journal: Journal of Maps DOI: https://doi.org/10.1080/17445647.2022.2052766 This paper has been updated. The paragraph beginning ‘The 2006–2011 map captures a socio-economically volatile...’ as well as Figure 1 and the supplemental map have been edited so the 1996–2002 map and 2006–2011 map match electoral division thresholds of other maps.
{"title":"Correction.","authors":"","doi":"10.2323/jgam.2023.03.001","DOIUrl":"https://doi.org/10.2323/jgam.2023.03.001","url":null,"abstract":"Article title: The spatiotemporal dimension of population change in Ireland: Visualisation of growth and shrinkage in Irish Electoral Divisions (1986-2016) Authors: Josh O’Driscoll, David Meredith, Frank Crowley, Justin Doran, Mary O’Shaughnessy and Jesko Zimmermann Journal: Journal of Maps DOI: https://doi.org/10.1080/17445647.2022.2052766 This paper has been updated. The paragraph beginning ‘The 2006–2011 map captures a socio-economically volatile...’ as well as Figure 1 and the supplemental map have been edited so the 1996–2002 map and 2006–2011 map match electoral division thresholds of other maps.","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9099568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
There is currently great interest in the salt-tolerant yeast strains used to produce miso and soy sauce. Since the isolation of Zygosaccharomyces sp. strain from Japanese miso more than 60 years, several hybrid strains have been identified in fermented foods. Studies have shown that the active mating-type locus of the original Zygosaccharomyces sp. yeast strain is located between the T-subgenome sequence and the P-subgenome sequence. In this study, 32 salt-tolerant Zygosaccharomyces sp. yeast strains were isolated from five miso factories in Hiroshima Prefecture, Japan. Analysis by flow cytometry revealed that 27 strains were diploid and five strains were haploid. PCR analysis indicated that the 27 diploid strains had the same chromosomal structure of the active mating-type (MAT) locus as the original yeast strain isolated from miso 60 years ago. In addition, the 27 diploid strains were allodiploid, namely, natural hybrids of Z. rouxii and a related species, while the five haploid strains were all Z. rouxii. We found that cells of yeast strains isolated from miso changed morphologically when co-cultured with a yeast strain of opposite mating-type under nitrogen starvation conditions. The DNA sequence of the active mating-type locus and the results of cell morphology changes by co-culture were consistent with the mating type of each strain shown in the mating experiments. These findings will be useful for the future production of miso and soy sauce.
{"title":"Isolation and characterization of Zygosaccharomyces sp. yeast strains from miso.","authors":"Tomoko Fujiwara, Atsuko Matsura, Momoka Fukuda, Katsuaki Kuroki, Tomoo Ogata","doi":"10.2323/jgam.2022.07.002","DOIUrl":"https://doi.org/10.2323/jgam.2022.07.002","url":null,"abstract":"<p><p>There is currently great interest in the salt-tolerant yeast strains used to produce miso and soy sauce. Since the isolation of Zygosaccharomyces sp. strain from Japanese miso more than 60 years, several hybrid strains have been identified in fermented foods. Studies have shown that the active mating-type locus of the original Zygosaccharomyces sp. yeast strain is located between the T-subgenome sequence and the P-subgenome sequence. In this study, 32 salt-tolerant Zygosaccharomyces sp. yeast strains were isolated from five miso factories in Hiroshima Prefecture, Japan. Analysis by flow cytometry revealed that 27 strains were diploid and five strains were haploid. PCR analysis indicated that the 27 diploid strains had the same chromosomal structure of the active mating-type (MAT) locus as the original yeast strain isolated from miso 60 years ago. In addition, the 27 diploid strains were allodiploid, namely, natural hybrids of Z. rouxii and a related species, while the five haploid strains were all Z. rouxii. We found that cells of yeast strains isolated from miso changed morphologically when co-cultured with a yeast strain of opposite mating-type under nitrogen starvation conditions. The DNA sequence of the active mating-type locus and the results of cell morphology changes by co-culture were consistent with the mating type of each strain shown in the mating experiments. These findings will be useful for the future production of miso and soy sauce.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":"68 6","pages":"295-302"},"PeriodicalIF":1.2,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10852723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Low-density polyethylene (LDPE) has been commercially used and accumulated as plastic solid waste. LDPE has also been found to be a non-degradable waste for decades and found as a pollution source in the environment. In this study, 65 fungi were screened for their biodegradation of LDPE. The fungi Neopestalotiopsis phangngaensis, Alternaria burnsii, Alternaria pseudoeichhorniae, and Arthrinium sacchari showed significant potential in LDPE biodegradation. These fungi were individually cultured with an LDPE sheet as a carbon source for 90 days. A maximum weight loss of the LDPE sheet was detected by the fungus N. phangngaensis (54.34%). This fungus also revealed the highest reduction rate of tensile strength of the LDPE sheet (0.33 MPa). The morphological surface of LDPE culturing with N. phangngaensis was crack, pit, and rough analyzed by scanning electron microscopy. The biodegradation of the LDPE sheet by N. phangngaensis was also confirmed by the Sturm test and analysis of enzymatic activities. The Sturm test showed the highest decomposition of the LDPE sheet by N. phangngaensis into CO2 with 2.14 g/L after incubation. Enzymatic activities of laccase, manganese peroxidase, and lignin peroxidase enzymes were found by N. phangngaensis during the LDPE degradation. The volatile organic compounds in culture supernatant of N. phangngaensis were also investigated. The major compounds were 3Z-diethyl acetal hexenal, 2E,4E-decadienol, and 2Z-diethyl acetal hexenal. This study reveals the utilization of the fungus N. phangngaensis as the carbon source at a considerable biodegradation rate without any prior treatment. Therefore, the fungus N. phangngaensis may be applied as an alternative degrader for LDPE degradation in the environment.
{"title":"Microbial degradation of low-density polyethylene by Neopestalotiopsis phangngaensis.","authors":"Sarunpron Khruengsai, Teerapong Sripahco, Patcharee Pripdeevech","doi":"10.2323/jgam.2022.07.001","DOIUrl":"https://doi.org/10.2323/jgam.2022.07.001","url":null,"abstract":"<p><p>Low-density polyethylene (LDPE) has been commercially used and accumulated as plastic solid waste. LDPE has also been found to be a non-degradable waste for decades and found as a pollution source in the environment. In this study, 65 fungi were screened for their biodegradation of LDPE. The fungi Neopestalotiopsis phangngaensis, Alternaria burnsii, Alternaria pseudoeichhorniae, and Arthrinium sacchari showed significant potential in LDPE biodegradation. These fungi were individually cultured with an LDPE sheet as a carbon source for 90 days. A maximum weight loss of the LDPE sheet was detected by the fungus N. phangngaensis (54.34%). This fungus also revealed the highest reduction rate of tensile strength of the LDPE sheet (0.33 MPa). The morphological surface of LDPE culturing with N. phangngaensis was crack, pit, and rough analyzed by scanning electron microscopy. The biodegradation of the LDPE sheet by N. phangngaensis was also confirmed by the Sturm test and analysis of enzymatic activities. The Sturm test showed the highest decomposition of the LDPE sheet by N. phangngaensis into CO<sub>2</sub> with 2.14 g/L after incubation. Enzymatic activities of laccase, manganese peroxidase, and lignin peroxidase enzymes were found by N. phangngaensis during the LDPE degradation. The volatile organic compounds in culture supernatant of N. phangngaensis were also investigated. The major compounds were 3Z-diethyl acetal hexenal, 2E,4E-decadienol, and 2Z-diethyl acetal hexenal. This study reveals the utilization of the fungus N. phangngaensis as the carbon source at a considerable biodegradation rate without any prior treatment. Therefore, the fungus N. phangngaensis may be applied as an alternative degrader for LDPE degradation in the environment.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":"68 6","pages":"287-294"},"PeriodicalIF":1.2,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9399216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mycoplasma pneumoniae is one of the most important pathogens causing community acquired pneumonia in children, and the pathogenic mechanism of M. pneumoniae infection is complex. Azithromycin is an effective agent for treating the acquired lower respiratory tract infection and urogenital tract infection with slight adverse reactions. This study aimed to compare the intestinal microflora before (PP1) and after azithromycin intervention (PP2) in children with pneumonia caused by M. pneumoniae, combined with body fluid biochemical analysis to determine the intestinal flora affecting the progress of the disease. Fifteen children diagnosed with M. pneumoniae pneumonia were recruited. The fecal samples and clinical biochemical data were collected. 16S rRNA gene amplicon sequencing and bioinformatics analysis were conducted by the Beijing Genomics Institute. The operational taxonomic unit abundance analysis showed significant differences between the two groups. The species richness analysis showed differences in class, family, genus, order, species, and phylum. The abundance of Haemophilus, Pasteurellales, and Pasteurellaceae was found to be significantly higher in the PP1 group. The Pearson correlation analysis showed that the microbes strongly correlated with the clinical features. 16S rRNA gene sequencing data revealed altered composition of gut microbiota in children with M. pneumoniae pneumonia treated with azithromycin. The altered expression of microbes correlated with clinical features, which might help diagnose and treat the disease.
{"title":"16S rRNA gene sequencing reveals an altered composition of gut microbiota in children with Mycoplasma pneumoniae pneumonia treated with azithromycin.","authors":"Qiong Deng, Zhu Wang, Pengmei Wu, Hui Liang, Haixia Wu, Lirong Zhang, Jing Ying","doi":"10.2323/jgam.2022.05.004","DOIUrl":"https://doi.org/10.2323/jgam.2022.05.004","url":null,"abstract":"<p><p>Mycoplasma pneumoniae is one of the most important pathogens causing community acquired pneumonia in children, and the pathogenic mechanism of M. pneumoniae infection is complex. Azithromycin is an effective agent for treating the acquired lower respiratory tract infection and urogenital tract infection with slight adverse reactions. This study aimed to compare the intestinal microflora before (PP1) and after azithromycin intervention (PP2) in children with pneumonia caused by M. pneumoniae, combined with body fluid biochemical analysis to determine the intestinal flora affecting the progress of the disease. Fifteen children diagnosed with M. pneumoniae pneumonia were recruited. The fecal samples and clinical biochemical data were collected. 16S rRNA gene amplicon sequencing and bioinformatics analysis were conducted by the Beijing Genomics Institute. The operational taxonomic unit abundance analysis showed significant differences between the two groups. The species richness analysis showed differences in class, family, genus, order, species, and phylum. The abundance of Haemophilus, Pasteurellales, and Pasteurellaceae was found to be significantly higher in the PP1 group. The Pearson correlation analysis showed that the microbes strongly correlated with the clinical features. 16S rRNA gene sequencing data revealed altered composition of gut microbiota in children with M. pneumoniae pneumonia treated with azithromycin. The altered expression of microbes correlated with clinical features, which might help diagnose and treat the disease.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":"68 6","pages":"253-261"},"PeriodicalIF":1.2,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9398757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-06DOI: 10.2323/jgam.2022.05.005
Vu Dinh Giap, Hoang Thanh Duc, Pham Thi Mai Huong, Do Thi Hanh, Do Huu Nghi, Vu Dinh Duy, Dang Thu Quynh
From the biotechnological point of view, enzymes are powerful tools that help sustain a clean environment in several ways. The enzymatic biodegradation of synthetic dyes is a promising goal since it reduces pollution caused by textile dyeing factory wastewater. Lignin peroxidase (EC 1.11.1.14, LiP) has high redox potential; thus, it is great for application in various industrial fields (e.g., paper- waste treatment and textile dyeing wastewater treatment). In the present study, a LiP from an isolated strain Pleurotus pulmonarius CPG6 (PpuLiP) was successfully purified with a specific activity of 6.59 U mg -1. The enzyme was purified by using three-step column chromatography procedures including DEAE, Sephadex G-75, and HiTrapTM Q FF columns with 17.8-fold purity. The enzyme with a molecular weight of 40 kDa exhibited enhanced pH stability in the acidic range. The activity retention was over 75% at a pH of 3.0 for more than 6 hours. Purified PpuLiP was able to oxidize a variety of substrates including veratryl alcohol, 2,4-DCP, n propanol, and guaiacol. The effect of metal ions on PpuLiP activity was analyzed. The study will provide a ground to decolorize dyes from various groups of PpuLiP. Purified PpuLiP could decolorize 35% Acid blue 25 (AB25), 50% Acid red 129 (AB129), 72% Acid blue 62 (NY3), 85% Acid blue 113 (AB113), 55% Remazol Brilliant blue R (RBBR), and 100% Reactive red 120 (RR120) for 12 hours. Most of the dyes were decolorized, but the heat-denatured enzyme used as negative control obviously did not decolorize the tested dyes. These results indicate that the PpuLiP has potential application in enzyme-based decolorization of synthetic dyes. Keywords: Decolorization; lignin peroxidase; Pleurotus pulmonarius; textile dyes.
{"title":"Purification and characterization of lignin peroxidase from white-rot fungi Pleurotus pulmonarius CPG6 and its application in decolorization of synthetic textile dyes.","authors":"Vu Dinh Giap, Hoang Thanh Duc, Pham Thi Mai Huong, Do Thi Hanh, Do Huu Nghi, Vu Dinh Duy, Dang Thu Quynh","doi":"10.2323/jgam.2022.05.005","DOIUrl":"https://doi.org/10.2323/jgam.2022.05.005","url":null,"abstract":"<p><p>From the biotechnological point of view, enzymes are powerful tools that help sustain a clean environment in several ways. The enzymatic biodegradation of synthetic dyes is a promising goal since it reduces pollution caused by textile dyeing factory wastewater. Lignin peroxidase (EC 1.11.1.14, LiP) has high redox potential; thus, it is great for application in various industrial fields (e.g., paper- waste treatment and textile dyeing wastewater treatment). In the present study, a LiP from an isolated strain Pleurotus pulmonarius CPG6 (PpuLiP) was successfully purified with a specific activity of 6.59 U mg <sup>-1</sup>. The enzyme was purified by using three-step column chromatography procedures including DEAE, Sephadex G-75, and HiTrap<sup>TM</sup> Q FF columns with 17.8-fold purity. The enzyme with a molecular weight of 40 kDa exhibited enhanced pH stability in the acidic range. The activity retention was over 75% at a pH of 3.0 for more than 6 hours. Purified PpuLiP was able to oxidize a variety of substrates including veratryl alcohol, 2,4-DCP, n propanol, and guaiacol. The effect of metal ions on PpuLiP activity was analyzed. The study will provide a ground to decolorize dyes from various groups of PpuLiP. Purified PpuLiP could decolorize 35% Acid blue 25 (AB25), 50% Acid red 129 (AB129), 72% Acid blue 62 (NY3), 85% Acid blue 113 (AB113), 55% Remazol Brilliant blue R (RBBR), and 100% Reactive red 120 (RR120) for 12 hours. Most of the dyes were decolorized, but the heat-denatured enzyme used as negative control obviously did not decolorize the tested dyes. These results indicate that the PpuLiP has potential application in enzyme-based decolorization of synthetic dyes. Keywords: Decolorization; lignin peroxidase; Pleurotus pulmonarius; textile dyes.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":"68 6","pages":"262-269"},"PeriodicalIF":1.2,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10852251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fission yeast, Schizosaccharomyces pombe, possesses eight hexose transporters, Ght1~8. In order to clarify the role of each hexose transporter on glucose uptake, a glucose uptake assay system was established and the actual glucose uptake activity of each hexose transporter-deletion mutant was measured. Under normal growth condition containing 2% glucose, ∆ght5 and ∆ght2 mutants showed large and small decrease in glucose uptake activity, respectively. On the other hand, the other deletion mutants did not show any decrease in glucose uptake activity indicating that, in the presence of Ght5 and Ght2, the other hexose transporters do not play a significant role in glucose uptake. To understand the relevance between glucose uptake and lifespan regulation, we measured the chronological lifespan of each hexose transporter deletion mutant, and found that only ∆ght5 mutant showed a significant lifespan extension. Based on these results we showed that Ght5 is mainly involved in the glucose uptake in Schizosaccharomyces pombe, and suggested that the ∆ght5 mutant has prolonged lifespan due to physiological changes similar to calorie restriction.
{"title":"Characterization of hexose transporter genes in the views of the chronological life span and glucose uptake in fission yeast.","authors":"Teppei Maruyama, Kanako Hayashi, Kotaro Matsui, Yasukichi Maekawa, Takafumi Shimasaki, Hokuto Ohtsuka, Saitoh Shigeaki, Hirofumi Aiba","doi":"10.2323/jgam.2022.05.006","DOIUrl":"https://doi.org/10.2323/jgam.2022.05.006","url":null,"abstract":"<p><p>Fission yeast, Schizosaccharomyces pombe, possesses eight hexose transporters, Ght1~8. In order to clarify the role of each hexose transporter on glucose uptake, a glucose uptake assay system was established and the actual glucose uptake activity of each hexose transporter-deletion mutant was measured. Under normal growth condition containing 2% glucose, ∆ght5 and ∆ght2 mutants showed large and small decrease in glucose uptake activity, respectively. On the other hand, the other deletion mutants did not show any decrease in glucose uptake activity indicating that, in the presence of Ght5 and Ght2, the other hexose transporters do not play a significant role in glucose uptake. To understand the relevance between glucose uptake and lifespan regulation, we measured the chronological lifespan of each hexose transporter deletion mutant, and found that only ∆ght5 mutant showed a significant lifespan extension. Based on these results we showed that Ght5 is mainly involved in the glucose uptake in Schizosaccharomyces pombe, and suggested that the ∆ght5 mutant has prolonged lifespan due to physiological changes similar to calorie restriction.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":"68 6","pages":"270-277"},"PeriodicalIF":1.2,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10852250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-06DOI: 10.2323/jgam.2022.06.002
Ruijie Wang, Manabu Arioka
Glucuronoyl esterase (GE) is a promising agent for the delignification of plant biomass since it has been shown to cleave the linkage between xylan and lignin in vitro. In this study, we demonstrate that NcGE, a GE from Neurospora crassa, stimulates plant biomass degradation. In vitro, NcGE synergistically increased the release of reducing sugars from plant biomass when added together with cellulase or xylanase. In vivo, overexpression of NcGE in N. crassa resulted in an increase in xylanolytic activity. Consistently, elevated transcription of genes encoding the major plant biomass degrading-enzymes (PBDEs) was observed in the NcGE overexpression strain. Increased xylanolytic activity and transcription of PDBE genes were largely abolished when the transcription factors clr-1, clr-2, or xlr-1 were deleted. Interestingly, the expression of some PBDE genes was increased when the hydrolysate of plant biomass by NcGE was added to the culture medium. We propose that NcGE boosts the production of PBDEs through the activation of key transcription factors, which is presumably caused by NcGE-mediated generation of hypothetical inducer(s) from plant biomass.
{"title":"Glucuronoyl esterase facilitates biomass degradation in Neurospora crassa by upregulating the expression of plant biomass-degrading enzymes.","authors":"Ruijie Wang, Manabu Arioka","doi":"10.2323/jgam.2022.06.002","DOIUrl":"https://doi.org/10.2323/jgam.2022.06.002","url":null,"abstract":"<p><p>Glucuronoyl esterase (GE) is a promising agent for the delignification of plant biomass since it has been shown to cleave the linkage between xylan and lignin in vitro. In this study, we demonstrate that NcGE, a GE from Neurospora crassa, stimulates plant biomass degradation. In vitro, NcGE synergistically increased the release of reducing sugars from plant biomass when added together with cellulase or xylanase. In vivo, overexpression of NcGE in N. crassa resulted in an increase in xylanolytic activity. Consistently, elevated transcription of genes encoding the major plant biomass degrading-enzymes (PBDEs) was observed in the NcGE overexpression strain. Increased xylanolytic activity and transcription of PDBE genes were largely abolished when the transcription factors clr-1, clr-2, or xlr-1 were deleted. Interestingly, the expression of some PBDE genes was increased when the hydrolysate of plant biomass by NcGE was added to the culture medium. We propose that NcGE boosts the production of PBDEs through the activation of key transcription factors, which is presumably caused by NcGE-mediated generation of hypothetical inducer(s) from plant biomass.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":"68 6","pages":"278-286"},"PeriodicalIF":1.2,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9103790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}