首页 > 最新文献

Journal of General and Applied Microbiology最新文献

英文 中文
Metarhizium robertsii COH1 functionally complements Schizosaccharomyces pombe Ecl family proteins. 罗伯特绿僵菌COH1在功能上与pombe裂殖酵母Ecl家族蛋白互补。
IF 1.2 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-05-02 Epub Date: 2023-10-06 DOI: 10.2323/jgam.2023.09.001
Hokuto Ohtsuka, Sawa Kawai, Yoko Otsubo, Takafumi Shimasaki, Akira Yamashita, Hirofumi Aiba

The fission yeast Schizosaccharomyces pombe ecl family genes respond to various starvation signals and induce appropriate intracellular responses, including the extension of chronological lifespan and induction of sexual differentiation. Herein, we propose that the colonization of hemocoel 1 (COH1) protein of Metarhizium robertsii, an insect-pathogenic fungus, is a functional homolog of S. pombe Ecl1 family proteins.

裂殖酵母裂殖酵母ecl家族基因对各种饥饿信号作出反应,并诱导适当的细胞内反应,包括延长按时间顺序排列的寿命和诱导性分化。在此,我们提出,昆虫病原真菌绿僵菌(Metarhizium robertsii)的血腔1(COH1)蛋白的定殖是绒球酵母Ecl1家族蛋白的功能同源物。
{"title":"Metarhizium robertsii COH1 functionally complements Schizosaccharomyces pombe Ecl family proteins.","authors":"Hokuto Ohtsuka, Sawa Kawai, Yoko Otsubo, Takafumi Shimasaki, Akira Yamashita, Hirofumi Aiba","doi":"10.2323/jgam.2023.09.001","DOIUrl":"10.2323/jgam.2023.09.001","url":null,"abstract":"<p><p>The fission yeast Schizosaccharomyces pombe ecl family genes respond to various starvation signals and induce appropriate intracellular responses, including the extension of chronological lifespan and induction of sexual differentiation. Herein, we propose that the colonization of hemocoel 1 (COH1) protein of Metarhizium robertsii, an insect-pathogenic fungus, is a functional homolog of S. pombe Ecl1 family proteins.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"335-338"},"PeriodicalIF":1.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41182753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gallic acid fermentation by metabolically engineered Escherichia coli producing p-hydroxybenzoate hydroxylase from Hylemonella gracilis NS1. 代谢工程大肠杆菌产生来自 Hylemonella gracilis NS1 的对羟基苯甲酸羟化酶发酵没食子酸。
IF 1.2 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-05-02 Epub Date: 2023-08-30 DOI: 10.2323/jgam.2023.08.004
Nozomi Katsuki, Shunsuke Masuo, Noriyuki Nukui, Hajime Minakawa, Naoki Takaya

Plant-derived phenolic gallic acid (GA) is an important raw material for antioxidants and food additives. Efforts to ferment GA using microbial processes have aimed at minimizing production costs and environmental load using enzymes that hydroxylate p-hydroxybenzoate and protocatechuate (PCA). Here, we found a p-hydroxybenzoate hydroxylase (PobA) in the bacterium Hylemonella gracilis NS1 (HgPobA) with 1.5-fold more hydroxylation activity than that from Pseudomonas aeruginosa PAO1 and thus converted PCA to GA more efficiently. The PCA hydroxylation activity of HgPobA was improved by introducing the amino acid substitutions L207V/Y393F or T302A/Y393F. These mutants had 2.9- and 3.7-fold lower Kmapp for PCA than wild-type HgPobA. An Escherichia coli strain that reinforces shikimate pathway metabolism and produces HgPobA when cultured for 60 h generated 0.27 g L-1 of GA. This is the first report of fermenting glucose to generate GA using a natural enzyme from the PobA family. The E. coli strain harboring the HgPobA L207V/Y393F mutant increased GA production to 0.56 g L-1. During the early stages of culture, GA was fermented at a 10-fold higher rate by a strain producing either HgPobA L207V/Y393F or T302A/Y393F compared with wild-type HgPobA, which agreed with the high kcatapp/Kmapp PCA values of this mutant. We enhanced a PobA isozyme and its PCA hydroxylating function to efficiently and cost-effectively ferment GA.

植物提取的酚类没食子酸(GA)是抗氧化剂和食品添加剂的重要原料。利用微生物工艺发酵没食子酸的努力旨在使用对羟基苯甲酸和原儿茶酸(PCA)羟化酶最大限度地降低生产成本和环境负荷。在这里,我们发现 Hylemonella gracilis NS1(HgPobA)细菌中的对羟基苯甲酸羟化酶(PobA)的羟化活性是铜绿假单胞菌 PAO1 的 1.5 倍,因此能更有效地将 PCA 转化为 GA。通过引入氨基酸替换 L207V/Y393F 或 T302A/Y393F,HgPobA 的 PCA 羟基化活性得到了提高。与野生型 HgPobA 相比,这些突变体的 PCA Kmapp 分别低 2.9 倍和 3.7 倍。一株加强莽草酸途径代谢并产生 HgPobA 的大肠杆菌在培养 60 小时后产生了 0.27 g L-1 的 GA。这是首次报道利用 PobA 家族的天然酶发酵葡萄糖产生 GA。携带 HgPobA L207V/Y393F 突变体的大肠杆菌菌株的 GA 产量增至 0.56 g L-1。在培养初期,产生 HgPobA L207V/Y393F 或 T302A/Y393F 的菌株发酵 GA 的速率是野生型 HgPobA 的 10 倍,这与该突变体的高 kcatapp/Kmapp PCA 值一致。我们增强了 PobA 同工酶及其 PCA 羟基化功能,以高效、低成本地发酵 GA。
{"title":"Gallic acid fermentation by metabolically engineered Escherichia coli producing p-hydroxybenzoate hydroxylase from Hylemonella gracilis NS1.","authors":"Nozomi Katsuki, Shunsuke Masuo, Noriyuki Nukui, Hajime Minakawa, Naoki Takaya","doi":"10.2323/jgam.2023.08.004","DOIUrl":"10.2323/jgam.2023.08.004","url":null,"abstract":"<p><p>Plant-derived phenolic gallic acid (GA) is an important raw material for antioxidants and food additives. Efforts to ferment GA using microbial processes have aimed at minimizing production costs and environmental load using enzymes that hydroxylate p-hydroxybenzoate and protocatechuate (PCA). Here, we found a p-hydroxybenzoate hydroxylase (PobA) in the bacterium Hylemonella gracilis NS1 (HgPobA) with 1.5-fold more hydroxylation activity than that from Pseudomonas aeruginosa PAO1 and thus converted PCA to GA more efficiently. The PCA hydroxylation activity of HgPobA was improved by introducing the amino acid substitutions L207V/Y393F or T302A/Y393F. These mutants had 2.9- and 3.7-fold lower K<sub>m</sub><sup>app</sup> for PCA than wild-type HgPobA. An Escherichia coli strain that reinforces shikimate pathway metabolism and produces HgPobA when cultured for 60 h generated 0.27 g L<sup>-1</sup> of GA. This is the first report of fermenting glucose to generate GA using a natural enzyme from the PobA family. The E. coli strain harboring the HgPobA L207V/Y393F mutant increased GA production to 0.56 g L<sup>-1</sup>. During the early stages of culture, GA was fermented at a 10-fold higher rate by a strain producing either HgPobA L207V/Y393F or T302A/Y393F compared with wild-type HgPobA, which agreed with the high k<sub>cat</sub><sup>app</sup>/K<sub>m</sub><sup>app</sup> PCA values of this mutant. We enhanced a PobA isozyme and its PCA hydroxylating function to efficiently and cost-effectively ferment GA.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"301-308"},"PeriodicalIF":1.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10120794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition and biocontrol potential of Ochrobactrum pseudogrignonense NC1 against four Phytophthora species. 伪绿僵杆菌NC1对4种疫霉的抑制作用及其生物防治潜力。
IF 1.2 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-05-02 Epub Date: 2023-11-21 DOI: 10.2323/jgam.2023.11.001
Jinming Liu, Shiyu Zhang, Haikun Ma, Jun Huang, Meichun Xiang, Xingzhong Liu

Phytophthora species are highly destructive soilborne oomycetes pathogens that spread through infested soil and water. Ochrobactrum pseudogrignonense NC1 has been shown to inhibit plant parasitic nematodes via volatile organic compounds (VOCs). In this study, we investigated the inhibitory effect of O. pseudogrignonense NC1 against four Phytophthora species on agar plates and in vivo bioassay. We found that NC1 significantly inhibited the mycelial growth and zoospore production of all four species of Phytophthora in a dose-dependent manner. The half maximal inhibitory concentration (IC50) values for inhibition of mycelial growth (or zoospore production) were 26% (14.8%), 18.9% (14.2%), 20.3% (8.3%) and 46.9% (4%) for Phytophthora capsici Leonian, Phytophthora infestans, Phytophthora parasitica var. nicotiana and Phytophthora sojae, respectively. The biocontrol efficiency of NC1 was 46.3% in pepper seedlings against P. capsici, almost 100% in potato tubers against P. infestans, 60% in tomato leave against P. parasitica and 100% in soybean leave against P. sojae, respectively. Our findings suggest that O. pseudogrignonense NC1 has great potential as a biocontrol agent for managing Phytophthora diseases.

疫霉是一种极具破坏性的土传卵菌病原体,通过受感染的土壤和水传播。Ochrobactrum pseudogrignonense NC1通过挥发性有机化合物(VOCs)抑制植物寄生线虫。在本研究中,我们研究了O. pseudogrignonense NC1对4种疫霉菌的抑菌作用,并进行了体内生物测定。我们发现,NC1显著抑制所有四种疫霉菌丝生长和游动孢子产生,并呈剂量依赖性。对辣椒疫霉、鼠疫疫霉、烟草疫霉和大豆疫霉菌丝生长(或虫孢子产生)的半数最大抑制浓度(IC50)值分别为26%(14.8%)、18.9%(14.2%)、20.3%(8.3%)和46.9%(4%)。NC1对辣椒幼苗、马铃薯块茎、番茄叶片和大豆叶片的防虫效果分别为46.3%、100%、60%和100%。我们的研究结果表明,伪grignonense NC1作为防治疫霉病的生物防治剂具有很大的潜力。
{"title":"Inhibition and biocontrol potential of Ochrobactrum pseudogrignonense NC1 against four Phytophthora species.","authors":"Jinming Liu, Shiyu Zhang, Haikun Ma, Jun Huang, Meichun Xiang, Xingzhong Liu","doi":"10.2323/jgam.2023.11.001","DOIUrl":"10.2323/jgam.2023.11.001","url":null,"abstract":"<p><p>Phytophthora species are highly destructive soilborne oomycetes pathogens that spread through infested soil and water. Ochrobactrum pseudogrignonense NC1 has been shown to inhibit plant parasitic nematodes via volatile organic compounds (VOCs). In this study, we investigated the inhibitory effect of O. pseudogrignonense NC1 against four Phytophthora species on agar plates and in vivo bioassay. We found that NC1 significantly inhibited the mycelial growth and zoospore production of all four species of Phytophthora in a dose-dependent manner. The half maximal inhibitory concentration (IC<sub>50</sub>) values for inhibition of mycelial growth (or zoospore production) were 26% (14.8%), 18.9% (14.2%), 20.3% (8.3%) and 46.9% (4%) for Phytophthora capsici Leonian, Phytophthora infestans, Phytophthora parasitica var. nicotiana and Phytophthora sojae, respectively. The biocontrol efficiency of NC1 was 46.3% in pepper seedlings against P. capsici, almost 100% in potato tubers against P. infestans, 60% in tomato leave against P. parasitica and 100% in soybean leave against P. sojae, respectively. Our findings suggest that O. pseudogrignonense NC1 has great potential as a biocontrol agent for managing Phytophthora diseases.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"327-334"},"PeriodicalIF":1.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138291158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geographical variation of bacterial and ciliophoran communities in tidal flats in a continental archipelago. 大陆群岛潮滩细菌和纤毛虫群落的地理差异。
IF 1.2 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-03-07 Epub Date: 2023-07-19 DOI: 10.2323/jgam.2023.07.002
Yasutake Kawamoto, Jotaro Urabe

In tidal flats, which are located at the transition zone between terrestrial and marine ecosystems, environmental factors such as temperature, sediment particle size, and tidal range exhibit geographic variation. Accordingly, the composition and structure of the microbial communities in the tidal flats are likely to vary in geographically different habitats. To clarify these differences with environmental factors causing them, we analyzed microbial communities consisting of bacteria and ciliates in sediments collected from nine tidal flats in geographical diverse region from Hokkaido to Kagoshima, Japan. The results confirmed that the community structures of bacteria and ciliophora in tidal flat sediments differed at the geographical scale of the Japanese archipelago. However, the variation could not be explained by the physical distance between the tidal flats nor by the differences in the trophic conditions among the tidal flats. Instead, the OTU richness of both the bacterial and ciliophoran communities was significantly related to the tidal range. The results also showed that bacteria and ciliophora tended to form similar communities among the tidal flats with similar median particle sizes. Furthermore, ciliophoran communities were similar among the tidal flats with similar bacterial communities. The results suggest that bacteria and ciliophora interact each other through trophic relationships or physical and chemical processes in the sediment habitats.

滩涂位于陆地和海洋生态系统的过渡地带,温度、沉积物颗粒大小和潮汐范围等环境因素呈现出地域差异。因此,滩涂微生物群落的组成和结构在不同的地理栖息地也可能有所不同。为了澄清造成这些差异的环境因素,我们分析了从日本北海道到鹿儿岛不同地理区域的 9 个滩涂采集的沉积物中由细菌和纤毛虫组成的微生物群落。结果证实,在日本列岛的地理范围内,潮滩沉积物中细菌和纤毛虫的群落结构存在差异。然而,潮滩之间的物理距离和潮滩之间的营养条件差异无法解释这种差异。相反,细菌和纤毛虫群落的 OTU 丰富度与潮汐范围有显著关系。研究结果还表明,在中位粒径相似的潮滩上,细菌和纤毛虫群落的形成趋于相似。此外,在细菌群落相似的潮滩中,纤毛虫群落也相似。结果表明,细菌和纤毛虫通过营养关系或沉积物生境中的物理和化学过程相互影响。
{"title":"Geographical variation of bacterial and ciliophoran communities in tidal flats in a continental archipelago.","authors":"Yasutake Kawamoto, Jotaro Urabe","doi":"10.2323/jgam.2023.07.002","DOIUrl":"10.2323/jgam.2023.07.002","url":null,"abstract":"<p><p>In tidal flats, which are located at the transition zone between terrestrial and marine ecosystems, environmental factors such as temperature, sediment particle size, and tidal range exhibit geographic variation. Accordingly, the composition and structure of the microbial communities in the tidal flats are likely to vary in geographically different habitats. To clarify these differences with environmental factors causing them, we analyzed microbial communities consisting of bacteria and ciliates in sediments collected from nine tidal flats in geographical diverse region from Hokkaido to Kagoshima, Japan. The results confirmed that the community structures of bacteria and ciliophora in tidal flat sediments differed at the geographical scale of the Japanese archipelago. However, the variation could not be explained by the physical distance between the tidal flats nor by the differences in the trophic conditions among the tidal flats. Instead, the OTU richness of both the bacterial and ciliophoran communities was significantly related to the tidal range. The results also showed that bacteria and ciliophora tended to form similar communities among the tidal flats with similar median particle sizes. Furthermore, ciliophoran communities were similar among the tidal flats with similar bacterial communities. The results suggest that bacteria and ciliophora interact each other through trophic relationships or physical and chemical processes in the sediment habitats.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"249-259"},"PeriodicalIF":1.2,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9837699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and characterization of lignin depolymerization enzymes in Bacillus subtilis strain S11Y isolated from a tropical environment in Malaysia. 从马来西亚热带环境中分离出的枯草芽孢杆菌 S11Y 菌株中木质素解聚酶的鉴定和特征描述。
IF 1.2 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-03-07 Epub Date: 2023-08-22 DOI: 10.2323/jgam.2023.08.003
Fatimah Azizah Riyadi, Nadia Farhana Azman, Fazrena Nadia Md Akhir, Nor'azizi Othman, Hirofumi Hara

Biological pretreatment using microbial enzymes appears to be the most promising pre-treatment technology for the breakdown of recalcitrant lignin structure. This research focuses on the identification and characterization of lignin-depolymerizing enzymes in Bacillus subtilis strain S11Y, previously isolated from palm oil wastes in Malaysia. The draft genome sequences of this highly lignin-depolymerizing strain revealed that the genome lacked any of the well-known dye-decolorizing peroxidase or catalase-peroxidase that are commonly reported to be involved in lignin depolymerization by bacteria, indicating that strain S11Y has distinct sets of potential lignin depolymerization genes. The oxidative stress-related enzymes Cu/Zn type-superoxide dismutase (Sod2) and a heme-containing monofunctional catalase (Kat2) were identified in the genome sequences that are of interest. Their lignin-depolymerizing ability were evaluated by treating Alkali lignin (AL) with each enzyme and their degradation ability were evaluated using gel-permeation chromatography (GPC), ultrahigh-pressure liquid chromatography-mass spectrometry (UHPLC/MS), and gas chromatography-mass spectrometry (GC/MS), which successfully proved lignin depolymerizing ability. Successful evaluation of lignin depolymerizing enzymes can be applicable for lignin pretreatment process in green energy production and generation of valuable chemicals in bio-refinery.

使用微生物酶进行生物预处理似乎是最有希望分解难处理木质素结构的预处理技术。这项研究的重点是鉴定和表征枯草芽孢杆菌 S11Y 菌株中的木质素解聚酶,该菌株以前曾从马来西亚的棕榈油废物中分离出来。对这一高度木质素解聚菌株的基因组序列草案进行的研究发现,该菌株的基因组中缺乏任何一种众所周知的染料脱色过氧化物酶或过氧化氢酶,而这些酶通常被报道参与细菌的木质素解聚过程,这表明 S11Y 菌株具有独特的潜在木质素解聚基因集。在基因组序列中发现了与氧化应激有关的铜/锌型超氧化物歧化酶(Sod2)和含血红素的单功能过氧化氢酶(Kat2)。利用凝胶渗透色谱法(GPC)、超高压液相色谱-质谱法(UHPLC/MS)和气相色谱-质谱法(GC/MS)评估了每种酶处理碱木素(AL)的木质素解聚能力,并成功证明了它们的木质素解聚能力。木质素解聚酶的成功评价可用于木质素预处理工艺,在绿色能源生产和生物炼制中生成有价值的化学品。
{"title":"Identification and characterization of lignin depolymerization enzymes in Bacillus subtilis strain S11Y isolated from a tropical environment in Malaysia.","authors":"Fatimah Azizah Riyadi, Nadia Farhana Azman, Fazrena Nadia Md Akhir, Nor'azizi Othman, Hirofumi Hara","doi":"10.2323/jgam.2023.08.003","DOIUrl":"10.2323/jgam.2023.08.003","url":null,"abstract":"<p><p>Biological pretreatment using microbial enzymes appears to be the most promising pre-treatment technology for the breakdown of recalcitrant lignin structure. This research focuses on the identification and characterization of lignin-depolymerizing enzymes in Bacillus subtilis strain S11Y, previously isolated from palm oil wastes in Malaysia. The draft genome sequences of this highly lignin-depolymerizing strain revealed that the genome lacked any of the well-known dye-decolorizing peroxidase or catalase-peroxidase that are commonly reported to be involved in lignin depolymerization by bacteria, indicating that strain S11Y has distinct sets of potential lignin depolymerization genes. The oxidative stress-related enzymes Cu/Zn type-superoxide dismutase (Sod2) and a heme-containing monofunctional catalase (Kat2) were identified in the genome sequences that are of interest. Their lignin-depolymerizing ability were evaluated by treating Alkali lignin (AL) with each enzyme and their degradation ability were evaluated using gel-permeation chromatography (GPC), ultrahigh-pressure liquid chromatography-mass spectrometry (UHPLC/MS), and gas chromatography-mass spectrometry (GC/MS), which successfully proved lignin depolymerizing ability. Successful evaluation of lignin depolymerizing enzymes can be applicable for lignin pretreatment process in green energy production and generation of valuable chemicals in bio-refinery.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"278-286"},"PeriodicalIF":1.2,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10049769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of the Rhodobacter sphaeroides strain overproducing 5-aminolevulinic acid by insertion of endogenous promoter. 通过插入内源启动子构建过量生产 5-氨基乙酰丙酸的 Sphaeroides 罗杆菌菌株。
IF 1.2 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-03-07 Epub Date: 2023-07-24 DOI: 10.2323/jgam.2023.07.004
Takuma Kojima, Shinji Masuda

5-Aminolevulinic acid (ALA) is a precursor of heme and a natural amino acid synthesized in the cells of most living organisms. Currently, ALA is used as an ingredient in pharmaceuticals, supplements, cosmetics, feed, fertilizers, and other products. ALA is mainly produced by industrial fermentation by the photosynthetic bacterium Rhodobacter sphaeroides. In this study, we tried to improve the ALA productivity by R. sphaeroides using a genetic strategy to highly express ALA synthase (ALAS) genes. We inserted a constitutive promoter (PrrnB or Prsp_7571) upstream of genes encoding ALAS (hemA and/or hemT) to construct strains that constitutively express ALAS. The highest transcript levels of hemA were observed in the strain where PrrnB was inserted into the hemA promoter region and were 3.5-fold higher than those in the wild-type. The highest transcript levels of hemT were observed in the strain where PrrnB was inserted into the hemT promoter region and were 46-fold higher than those in the wild-type. The maximum ALAS activity was observed in crude cell extracts of the strain where PrrnB was inserted into the hemT promoter region under optimized growth conditions that was 2.7-fold higher than that in the wild type. This strain showed 12-fold accumulation of ALA compared to the wild-type. Thus, we improved ALA productivity without using exogenous DNA sequences. In the future, further improvement in ALA productivity may be expected by applying this approach to current industrial ALA-producing bacteria.

5-Aminolevulinic acid(ALA)是血红素的前体,也是一种在大多数生物体细胞中合成的天然氨基酸。目前,ALA 被用作药品、保健品、化妆品、饲料、肥料和其他产品的成分。ALA 主要由光合细菌 Rhodobacter sphaeroides 通过工业发酵生产。在本研究中,我们尝试使用高表达 ALA 合成酶(ALAS)基因的遗传策略来提高水合根瘤菌的 ALA 生产率。我们在编码 ALAS(hemA 和/或 hemT)的基因上游插入了一个组成型启动子(PrrnB 或 Prsp_7571),以构建能组成型表达 ALAS 的菌株。在将 PrrnB 插入 hemA 启动子区域的菌株中观察到了最高的 hemA 转录水平,是野生型的 3.5 倍。在将 PrrnB 插入 hemT 启动子区域的菌株中,观察到 hemT 的转录水平最高,是野生型的 46 倍。在优化生长条件下,将 PrrnB 插入 hemT 启动子区域的菌株的粗细胞提取物中观察到的 ALAS 活性最高,是野生型的 2.7 倍。该菌株的 ALA 积累是野生型的 12 倍。因此,我们在不使用外源 DNA 序列的情况下提高了 ALA 的产量。未来,将这种方法应用于目前的工业 ALA 生产菌,有望进一步提高 ALA 的生产率。
{"title":"Construction of the Rhodobacter sphaeroides strain overproducing 5-aminolevulinic acid by insertion of endogenous promoter.","authors":"Takuma Kojima, Shinji Masuda","doi":"10.2323/jgam.2023.07.004","DOIUrl":"10.2323/jgam.2023.07.004","url":null,"abstract":"<p><p>5-Aminolevulinic acid (ALA) is a precursor of heme and a natural amino acid synthesized in the cells of most living organisms. Currently, ALA is used as an ingredient in pharmaceuticals, supplements, cosmetics, feed, fertilizers, and other products. ALA is mainly produced by industrial fermentation by the photosynthetic bacterium Rhodobacter sphaeroides. In this study, we tried to improve the ALA productivity by R. sphaeroides using a genetic strategy to highly express ALA synthase (ALAS) genes. We inserted a constitutive promoter (P<sub>rrnB</sub> or P<sub>rsp_7571</sub>) upstream of genes encoding ALAS (hemA and/or hemT) to construct strains that constitutively express ALAS. The highest transcript levels of hemA were observed in the strain where P<sub>rrnB</sub> was inserted into the hemA promoter region and were 3.5-fold higher than those in the wild-type. The highest transcript levels of hemT were observed in the strain where P<sub>rrnB</sub> was inserted into the hemT promoter region and were 46-fold higher than those in the wild-type. The maximum ALAS activity was observed in crude cell extracts of the strain where P<sub>rrnB</sub> was inserted into the hemT promoter region under optimized growth conditions that was 2.7-fold higher than that in the wild type. This strain showed 12-fold accumulation of ALA compared to the wild-type. Thus, we improved ALA productivity without using exogenous DNA sequences. In the future, further improvement in ALA productivity may be expected by applying this approach to current industrial ALA-producing bacteria.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"270-277"},"PeriodicalIF":1.2,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9860264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of bacterial phosphite dehydrogenase confers phosphite availability in a unicellular red alga Cyanidioschyzon merolae. 细菌亚磷酸脱氢酶的表达使单细胞红藻 Cyanidioschyzon merolae 获得亚磷酸。
IF 1.2 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-03-07 Epub Date: 2023-08-17 DOI: 10.2323/jgam.2023.08.002
Ikki Kobayashi, Sousuke Imamura, Ryuichi Hirota, Akio Kuroda, Kan Tanaka

 Microalgae are promising cell factories for producing value-added products. Large-scale microalgal cultivation suffers from invasion by contaminating microorganisms. Since most contaminating organisms cannot utilize phosphite as a unique phosphorus source, phosphite-utilizing ability may provide a growth advantage against contaminating organisms and solve this problem. Studies showed that microorganisms, typically unable to metabolize phosphite, can utilize phosphite by expressing exogenous phosphite dehydrogenase. Here, we constructed Cyanidioschyzon merolae strains introduced with the phosphite dehydrogenase gene, ptxD, from Ralstonia sp. 4506. The ptxD-introduced strains grew in a phosphite-dependent manner, with the phosphite-related growth rate almost matching that with phosphate as sole phosphorus source.

微藻是生产高附加值产品的前景广阔的细胞工厂。大规模微藻栽培会受到污染微生物的侵袭。由于大多数污染微生物不能利用亚磷酸作为一种独特的磷源,因此利用亚磷酸的能力可为微生物提供生长优势,从而解决这一问题。研究表明,通常不能代谢亚磷酸的微生物可以通过表达外源亚磷酸脱氢酶来利用亚磷酸。在此,我们构建了引入 Ralstonia sp. 4506 中亚磷酸脱氢酶基因 ptxD 的 Merolae 青虫菌株。导入ptxD的菌株以亚磷酸依赖的方式生长,与亚磷酸相关的生长速率几乎与以磷酸盐为唯一磷源的生长速率一致。
{"title":"Expression of bacterial phosphite dehydrogenase confers phosphite availability in a unicellular red alga Cyanidioschyzon merolae.","authors":"Ikki Kobayashi, Sousuke Imamura, Ryuichi Hirota, Akio Kuroda, Kan Tanaka","doi":"10.2323/jgam.2023.08.002","DOIUrl":"10.2323/jgam.2023.08.002","url":null,"abstract":"<p><p> Microalgae are promising cell factories for producing value-added products. Large-scale microalgal cultivation suffers from invasion by contaminating microorganisms. Since most contaminating organisms cannot utilize phosphite as a unique phosphorus source, phosphite-utilizing ability may provide a growth advantage against contaminating organisms and solve this problem. Studies showed that microorganisms, typically unable to metabolize phosphite, can utilize phosphite by expressing exogenous phosphite dehydrogenase. Here, we constructed Cyanidioschyzon merolae strains introduced with the phosphite dehydrogenase gene, ptxD, from Ralstonia sp. 4506. The ptxD-introduced strains grew in a phosphite-dependent manner, with the phosphite-related growth rate almost matching that with phosphate as sole phosphorus source.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"287-291"},"PeriodicalIF":1.2,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10367828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subcomponents in humic acid structure contribute to the differential responses of Aspergillus oryzae strains to humic acid. 腐殖酸结构中的子成分导致了黑曲霉菌株对腐殖酸的不同反应。
IF 1.2 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-03-07 Epub Date: 2023-07-19 DOI: 10.2323/jgam.2023.07.003
Liyun Liu, Kanae Sakai, Takumi Tanaka, Ken-Ichi Kusumoto

Humic acid (HA) is a complex natural organic macromolecule, can be decomposed to low-molecular compounds by some soil fungi and then influences the growth of fungi. Aspergillus oryzae is a fungus domesticated from its ancestor, which was supposed to live in soil. Group 3 strains of A. oryzae hold fewer aflatoxin-biosynthetic genes than group 1 strains and may differently response to HA because of the deletion of some genes along with the domestication. However, effect of HA on growth of A. oryzae group 1 and group 3 strains remains unclear. In this study, four strains of A. oryzae in group 1 and four in group 3 were point inoculated on equivalent medium (pH 7.3) with two commercially available HAs. The growth of RIB40 was the most stimulated among group 1 strains and that of RIB143 was the most inhibited among group 3 strains. To identify the basis of these differences, we examined the possible effects of HA subcomponents including polyphenol and minerals on the growth of RIB40 and RIB143. Polyphenol represented by gallic acid (GA), a partial structure common with model HA, and mineral ions including Al 3+ , Ca 2+ , Ti 4+ , Mn 2+ , Sr 2+ , and Ba2+ contributed to stimulating the growth of RIB40, whereas these components generally did not affect the growth of RIB143. Thus, our findings indicate that the sub-compositions of HAs, including GA and several minerals, were the main factors driving the different responses of RIB40 and RIB143 to HAs.

腐植酸(HA)是一种复杂的天然有机大分子,可被一些土壤真菌分解为低分子化合物,进而影响真菌的生长。黑曲霉(Aspergillus oryzae)是一种从其祖先驯化而来的真菌,其祖先本应生活在土壤中。与第一类菌株相比,第三类菌株所含的黄曲霉毒素生物合成基因较少,而且由于驯化过程中删除了一些基因,因此对 HA 的反应可能有所不同。然而,HA 对第 1 组和第 3 组黄曲霉毒素菌株生长的影响仍不清楚。本研究将 4 株第 1 组和 4 株第 3 组 A. oryzae 分点接种在两种市售 HAs 的等效培养基(pH 7.3)上。在第 1 组菌株中,RIB40 的生长受到的刺激最大,而在第 3 组菌株中,RIB143 的生长受到的抑制最大。为了找出造成这些差异的原因,我们研究了 HA 子成分(包括多酚和矿物质)对 RIB40 和 RIB143 生长的可能影响。以没食子酸(GA)为代表的多酚和矿物质离子(包括 Al 3+ 、Ca 2+ 、Ti 4+ 、Mn 2+ 、Sr 2+ 和 Ba2+ )刺激了 RIB40 的生长,而这些成分一般不会影响 RIB143 的生长。因此,我们的研究结果表明,包括 GA 和几种矿物质在内的 HAs 子成分是导致 RIB40 和 RIB143 对 HAs 产生不同反应的主要因素。
{"title":"Subcomponents in humic acid structure contribute to the differential responses of Aspergillus oryzae strains to humic acid.","authors":"Liyun Liu, Kanae Sakai, Takumi Tanaka, Ken-Ichi Kusumoto","doi":"10.2323/jgam.2023.07.003","DOIUrl":"10.2323/jgam.2023.07.003","url":null,"abstract":"<p><p>Humic acid (HA) is a complex natural organic macromolecule, can be decomposed to low-molecular compounds by some soil fungi and then influences the growth of fungi. Aspergillus oryzae is a fungus domesticated from its ancestor, which was supposed to live in soil. Group 3 strains of A. oryzae hold fewer aflatoxin-biosynthetic genes than group 1 strains and may differently response to HA because of the deletion of some genes along with the domestication. However, effect of HA on growth of A. oryzae group 1 and group 3 strains remains unclear. In this study, four strains of A. oryzae in group 1 and four in group 3 were point inoculated on equivalent medium (pH 7.3) with two commercially available HAs. The growth of RIB40 was the most stimulated among group 1 strains and that of RIB143 was the most inhibited among group 3 strains. To identify the basis of these differences, we examined the possible effects of HA subcomponents including polyphenol and minerals on the growth of RIB40 and RIB143. Polyphenol represented by gallic acid (GA), a partial structure common with model HA, and mineral ions including Al <sup>3+</sup> , Ca <sup>2+</sup> , Ti <sup>4+</sup> , Mn <sup>2+</sup> , Sr <sup>2+</sup> , and Ba<sup>2+</sup> contributed to stimulating the growth of RIB40, whereas these components generally did not affect the growth of RIB143. Thus, our findings indicate that the sub-compositions of HAs, including GA and several minerals, were the main factors driving the different responses of RIB40 and RIB143 to HAs.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"260-269"},"PeriodicalIF":1.2,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9837698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Indole inhibited the expression of csrA gene in Escherichia coli. 吲哚抑制了大肠杆菌中 csrA 基因的表达。
IF 1.2 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-03-07 Epub Date: 2023-07-07 DOI: 10.2323/jgam.2023.06.007
Jing Zheng, Guocai Zuo, Zhiguo Zhou, Zhenxia Shi, Huiying Guo, Zemin Sun, Yongjun Feng

Indole is a very important signal molecule which plays multiple regulatory roles in many physiological and biochemical processes of bacteria, but up to now, the reasons for its wide range of functions have not been revealed. In this study, we found that indole inhibits the motility, promotes glycogen accumulation and enhances starvation resistance of Escherichia coli. However, the regulatory effects of indole became insignificant while the global csrA gene was mutated. To reveal the regulatory relationship between indole and csrA, we studied the effects of indole on the transcription level of csrA, flhDC, glgCAP and cstA, and also the sensing of the promoters of the genes on indole. It was found that indole inhibited the transcription of csrA, and only the promoter of the csrA gene can sense indole. Namely, indole indirectly regulated the translation level of FlhDC, GlgCAP and CstA. These data indicates that indole regulation is related with the regulation of CsrA, which may throw light on the regulation mechanism research of indole.

吲哚是一种非常重要的信号分子,在细菌的许多生理生化过程中发挥着多重调控作用,但迄今为止,其发挥广泛功能的原因尚未揭示。在这项研究中,我们发现吲哚能抑制大肠杆菌的运动、促进糖原累积和增强抗饥饿能力。然而,当全局 csrA 基因发生突变时,吲哚的调控作用变得不明显。为了揭示吲哚与 csrA 之间的调控关系,我们研究了吲哚对 csrA、flhDC、glgCAP 和 cstA 转录水平的影响,以及各基因启动子对吲哚的感应。结果发现,吲哚抑制了 csrA 的转录,只有 csrA 基因的启动子能感应到吲哚。也就是说,吲哚间接调节了 FlhDC、GlgCAP 和 CstA 的翻译水平。这些数据表明,吲哚的调控与 CsrA 的调控有关,这可能对吲哚的调控机制研究有所启示。
{"title":"Indole inhibited the expression of csrA gene in Escherichia coli.","authors":"Jing Zheng, Guocai Zuo, Zhiguo Zhou, Zhenxia Shi, Huiying Guo, Zemin Sun, Yongjun Feng","doi":"10.2323/jgam.2023.06.007","DOIUrl":"10.2323/jgam.2023.06.007","url":null,"abstract":"<p><p>Indole is a very important signal molecule which plays multiple regulatory roles in many physiological and biochemical processes of bacteria, but up to now, the reasons for its wide range of functions have not been revealed. In this study, we found that indole inhibits the motility, promotes glycogen accumulation and enhances starvation resistance of Escherichia coli. However, the regulatory effects of indole became insignificant while the global csrA gene was mutated. To reveal the regulatory relationship between indole and csrA, we studied the effects of indole on the transcription level of csrA, flhDC, glgCAP and cstA, and also the sensing of the promoters of the genes on indole. It was found that indole inhibited the transcription of csrA, and only the promoter of the csrA gene can sense indole. Namely, indole indirectly regulated the translation level of FlhDC, GlgCAP and CstA. These data indicates that indole regulation is related with the regulation of CsrA, which may throw light on the regulation mechanism research of indole.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"239-248"},"PeriodicalIF":1.2,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9766600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Screening for termination sequences of a rolling-circle plasmid: a novel scheme using genomic DNA. 筛选滚圆质粒的终止序列:使用基因组 DNA 的新方案。
IF 1.2 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-02-02 Epub Date: 2023-04-20 DOI: 10.2323/jgam.2023.04.001
Ryo Hanai, Kazuya Hosono

The Escherichia coli genome was searched for potential terminators of the rolling-circle replication of staphylococcal plasmid pC194. The replication origin of pC194 was randomly inserted into the E. coli chromosome and rolling-circle replication was initiated by producing pC194's replication protein from a plasmid. Circular DNA resulting from termination in the chromosome was recovered from 42 of the 100 insertion clones screened. The nucleotide sequences at the ends of the chromosomal segment in the recovered DNA were determined and used to identify the locus of integration and the point of termination. The sequence beyond the termination point was retrieved from the database. This information would have been unrecoverable if synthetic random sequences had been used for screening. The consensus sequence based on the discovered potential terminators was consistent with the results of previous and new experiments. The recovered circular DNAs contain a hybrid origin consisting of a 5' part derived from the chromosomal DNA and a 3' part of the integrated origin. Two such hybrid origins were examined for initiation function and shown to be as effective as the authentic pC194 origin. These results suggest a possible evolutionary mechanism in which a rolling-circle plasmid may acquire genes from the host organism.

在大肠杆菌基因组中寻找葡萄球菌质粒 pC194 的滚圆复制的潜在终止子。将 pC194 的复制原点随机插入大肠杆菌染色体,并通过从质粒中产生 pC194 的复制蛋白来启动滚圆复制。在筛选出的 100 个插入克隆中,有 42 个克隆回收了染色体终止后产生的环状 DNA。在回收的 DNA 中,染色体片段末端的核苷酸序列被确定下来,并用于识别整合位点和终止点。从数据库中检索了终止点以外的序列。如果使用合成随机序列进行筛选,则无法检索到这些信息。基于已发现的潜在终止子的共识序列与之前和新实验的结果一致。回收的环状 DNA 包含一个由染色体 DNA 的 5' 部分和整合起源的 3' 部分组成的混合起源。对两个这样的混合起源进行了起始功能检测,结果表明它们与真正的 pC194 起源一样有效。这些结果表明了一种可能的进化机制,在这种机制中,滚圆质粒可以从宿主生物体中获得基因。
{"title":"Screening for termination sequences of a rolling-circle plasmid: a novel scheme using genomic DNA.","authors":"Ryo Hanai, Kazuya Hosono","doi":"10.2323/jgam.2023.04.001","DOIUrl":"10.2323/jgam.2023.04.001","url":null,"abstract":"<p><p>The Escherichia coli genome was searched for potential terminators of the rolling-circle replication of staphylococcal plasmid pC194. The replication origin of pC194 was randomly inserted into the E. coli chromosome and rolling-circle replication was initiated by producing pC194's replication protein from a plasmid. Circular DNA resulting from termination in the chromosome was recovered from 42 of the 100 insertion clones screened. The nucleotide sequences at the ends of the chromosomal segment in the recovered DNA were determined and used to identify the locus of integration and the point of termination. The sequence beyond the termination point was retrieved from the database. This information would have been unrecoverable if synthetic random sequences had been used for screening. The consensus sequence based on the discovered potential terminators was consistent with the results of previous and new experiments. The recovered circular DNAs contain a hybrid origin consisting of a 5' part derived from the chromosomal DNA and a 3' part of the integrated origin. Two such hybrid origins were examined for initiation function and shown to be as effective as the authentic pC194 origin. These results suggest a possible evolutionary mechanism in which a rolling-circle plasmid may acquire genes from the host organism.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":"196-205"},"PeriodicalIF":1.2,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9414538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of General and Applied Microbiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1