The bidispersity observed in the particle-size distribution of rock avalanches and volcanic debris avalanches (rock/debris avalanches) has been proposed as a factor contributing to their long runout. This has been supported by small-scale analog experimental studies, which observe that a small proportion of fine particles mixed with coarser particles enhances granular avalanche runout. However, the mechanisms enabling this phenomenon and their resemblance to rock/debris avalanches have not been directly evaluated. Here, binary mixture granular avalanche experiments are employed to constrain the processes and conditions under which bidispersity enhances the runout of granular avalanches in experiments. Structure-from-motion photogrammetry is used to measure center of mass displacement and assess energy dissipation. Subsequently, this study evaluates the dynamic scaling and flow regimes in the lab and field to assess whether the runout-enhancing mechanism is applicable to rock/debris avalanches. In small-scale experiments, the granular mass propagates under a collisional regime, enabling kinetic sieving and size segregation. Fine particles migrate to the base where they reduce frictional areas between coarse particles and the substrate and encourage rolling. The reduced energy dissipation increases the kinetic energy conversion and avalanche mobility. However, rock/debris avalanches are unlikely to acquire a purely collisional regime; instead, they propagate under a frictional regime. The size segregation which is essential for the process observed at the lab-scale is prohibited by the frictional regime, as evident by the sedimentology of rock/debris avalanche deposits. The proposal of bidispersity as a runout-enhancing mechanism overlooks that scale-dependent behaviors of natural events are often omitted in small-scale experiments.
{"title":"Scale-Dependent Processes and Runout in Bidisperse Granular Flows: Insights From Laboratory Experiments and Implications for Rock/Debris Avalanches","authors":"S. Makris, I. Manzella, A. Sgarabotto","doi":"10.1029/2023JF007469","DOIUrl":"https://doi.org/10.1029/2023JF007469","url":null,"abstract":"<p>The bidispersity observed in the particle-size distribution of rock avalanches and volcanic debris avalanches (rock/debris avalanches) has been proposed as a factor contributing to their long runout. This has been supported by small-scale analog experimental studies, which observe that a small proportion of fine particles mixed with coarser particles enhances granular avalanche runout. However, the mechanisms enabling this phenomenon and their resemblance to rock/debris avalanches have not been directly evaluated. Here, binary mixture granular avalanche experiments are employed to constrain the processes and conditions under which bidispersity enhances the runout of granular avalanches in experiments. Structure-from-motion photogrammetry is used to measure center of mass displacement and assess energy dissipation. Subsequently, this study evaluates the dynamic scaling and flow regimes in the lab and field to assess whether the runout-enhancing mechanism is applicable to rock/debris avalanches. In small-scale experiments, the granular mass propagates under a collisional regime, enabling kinetic sieving and size segregation. Fine particles migrate to the base where they reduce frictional areas between coarse particles and the substrate and encourage rolling. The reduced energy dissipation increases the kinetic energy conversion and avalanche mobility. However, rock/debris avalanches are unlikely to acquire a purely collisional regime; instead, they propagate under a frictional regime. The size segregation which is essential for the process observed at the lab-scale is prohibited by the frictional regime, as evident by the sedimentology of rock/debris avalanche deposits. The proposal of bidispersity as a runout-enhancing mechanism overlooks that scale-dependent behaviors of natural events are often omitted in small-scale experiments.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 9","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JF007469","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. W. Dow, A. E. East, J. B. Sankey, J. A. Warrick, J. Kostelnik, D. N. Lindsay, J. W. Kean
Fire facilitates erosion through changes in vegetation and soil, with major postfire erosion commonly occurring even with moderate rainfall. As climate warms, the western United States (U.S.) is experiencing an intensifying fire regime and increasing frequency of extreme rain. We evaluated whether these hydroclimatic changes are evident in patterns of postfire erosion by modeling hillslope erosion following all wildfires larger than 100 km2 in California from 1984 to 2021. Our results show that annual statewide postfire hillslope erosion has increased significantly over time. To supplement the hillslope erosion modeling, we compiled modeled and measured postfire debris-flow volumes. We find that, in northern California, more than 50% of fires triggering the top 20 values of sediment mass and sediment yield occurred in the most recent decade (between 2011 and 2021). In southern California, the postfire sediment budget was dominated by debris flows, which showed no temporal trend. Our analysis reveals that 57% of postfire sediment erosion statewide occurred upstream of reservoirs, indicating potential impacts to reservoir storage capacity and thus increased risk to water-resource security with ongoing climate change.
{"title":"Postfire Sediment Mobilization and Its Downstream Implications Across California, 1984–2021","authors":"H. W. Dow, A. E. East, J. B. Sankey, J. A. Warrick, J. Kostelnik, D. N. Lindsay, J. W. Kean","doi":"10.1029/2024JF007725","DOIUrl":"https://doi.org/10.1029/2024JF007725","url":null,"abstract":"<p>Fire facilitates erosion through changes in vegetation and soil, with major postfire erosion commonly occurring even with moderate rainfall. As climate warms, the western United States (U.S.) is experiencing an intensifying fire regime and increasing frequency of extreme rain. We evaluated whether these hydroclimatic changes are evident in patterns of postfire erosion by modeling hillslope erosion following all wildfires larger than 100 km<sup>2</sup> in California from 1984 to 2021. Our results show that annual statewide postfire hillslope erosion has increased significantly over time. To supplement the hillslope erosion modeling, we compiled modeled and measured postfire debris-flow volumes. We find that, in northern California, more than 50% of fires triggering the top 20 values of sediment mass and sediment yield occurred in the most recent decade (between 2011 and 2021). In southern California, the postfire sediment budget was dominated by debris flows, which showed no temporal trend. Our analysis reveals that 57% of postfire sediment erosion statewide occurred upstream of reservoirs, indicating potential impacts to reservoir storage capacity and thus increased risk to water-resource security with ongoing climate change.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 8","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007725","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. B. Woodard, S. R. LaHusen, B. B. Mirus, K. R. Barnhart
Constraining landslide occurrence rates can help to generate landslide hazard models that predict the spatial and temporal occurrence of landslides. However, most landslide inventories do not include any temporal data due to the difficulties of dating landslide deposits. Here we introduce a method for estimating the mean landslide occurrence rate of deep-seated rotational and translational slides derived solely from high-resolution (≤3 m) elevation data and globally available estimates of the diffusion coefficient for sediment flux. The method applies a linear diffusion model to the roughest landslide deposits until they reach a representative non-landslide roughness distribution. This estimates the time for a landslide deposit to be unrecognizable in high-resolution digital elevation data, which we term the mean lifetime of the landslide. Using the mean lifetime and number of landslides within an area of interest, we can estimate the mean occurrence rate of landslides over that domain. We validate this approach using a comprehensive temporal inventory of landslides in western Oregon created using age-roughness curves that are calibrated with high-resolution elevation data and radiocarbon data. We find good agreement between our diffusion method and the existing age-roughness-derived estimates, producing mean lifetimes of 4500 and 5200 years (4% difference), respectively. Hazard maps produced using the two methodologies generally agree, with the maximum differences in landslide probability reaching 0.1. Due to the relative abundance of high-resolution elevation data compared with age-dated landslides, our method could help constrain landslide occurrence rates in areas previously considered unfeasible.
{"title":"Constraining Mean Landslide Occurrence Rates for Non-Temporal Landslide Inventories Using High-Resolution Elevation Data","authors":"J. B. Woodard, S. R. LaHusen, B. B. Mirus, K. R. Barnhart","doi":"10.1029/2024JF007700","DOIUrl":"https://doi.org/10.1029/2024JF007700","url":null,"abstract":"<p>Constraining landslide occurrence rates can help to generate landslide hazard models that predict the spatial and temporal occurrence of landslides. However, most landslide inventories do not include any temporal data due to the difficulties of dating landslide deposits. Here we introduce a method for estimating the mean landslide occurrence rate of deep-seated rotational and translational slides derived solely from high-resolution (≤3 m) elevation data and globally available estimates of the diffusion coefficient for sediment flux. The method applies a linear diffusion model to the roughest landslide deposits until they reach a representative non-landslide roughness distribution. This estimates the time for a landslide deposit to be unrecognizable in high-resolution digital elevation data, which we term the mean lifetime of the landslide. Using the mean lifetime and number of landslides within an area of interest, we can estimate the mean occurrence rate of landslides over that domain. We validate this approach using a comprehensive temporal inventory of landslides in western Oregon created using age-roughness curves that are calibrated with high-resolution elevation data and radiocarbon data. We find good agreement between our diffusion method and the existing age-roughness-derived estimates, producing mean lifetimes of 4500 and 5200 years (4% difference), respectively. Hazard maps produced using the two methodologies generally agree, with the maximum differences in landslide probability reaching 0.1. Due to the relative abundance of high-resolution elevation data compared with age-dated landslides, our method could help constrain landslide occurrence rates in areas previously considered unfeasible.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 8","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007700","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The onset of glaciation in the late Cenozoic caused rapid bedrock erosion above the snowline; however, whether the influx of eroded sediment is recorded in continental weathering and basin accumulation rates is an ongoing debate. We propose that the transport of glacially eroded bedrock through the fluvial system damps the signal of rapid headwater erosion and results in steady basin-integrated sediment flux. Using a numerical model with integrated glacial and fluvial erosion, we find that headwater bedrock erosion rates increase rapidly at the onset of glaciation and continue to fluctuate with climatic oscillation. However, bedrock erosion rates decrease in the downstream fluvial system because larger grain sizes from glaciers result in an increase in sediment cover effect. When erosion and sediment flux rates are averaged, long-term sediment flux is similar to nonglacial flux values, while localized bedrock erosion rates in the glaciated landscape are elevated 2–4 times compared to nonglacial values. Our simulated values are consistent with field measurements of headwater bedrock erosion, and the pattern of sediment flux and fluvial erosion matches paraglacial theory and terrace aggradation records. Thus, we emphasize that the bedload produced from glacial erosion provides a missing link to reconcile late Cenozoic erosion records.
{"title":"Reconciling Rapid Glacial Erosion and Steady Basin Accumulation Rates in the Late Cenozoic Through the Effect of Glacial Sediment on Fluvial Erosion","authors":"Sarah A. Schanz, Brian J. Yanites","doi":"10.1029/2024JF007721","DOIUrl":"https://doi.org/10.1029/2024JF007721","url":null,"abstract":"<p>The onset of glaciation in the late Cenozoic caused rapid bedrock erosion above the snowline; however, whether the influx of eroded sediment is recorded in continental weathering and basin accumulation rates is an ongoing debate. We propose that the transport of glacially eroded bedrock through the fluvial system damps the signal of rapid headwater erosion and results in steady basin-integrated sediment flux. Using a numerical model with integrated glacial and fluvial erosion, we find that headwater bedrock erosion rates increase rapidly at the onset of glaciation and continue to fluctuate with climatic oscillation. However, bedrock erosion rates decrease in the downstream fluvial system because larger grain sizes from glaciers result in an increase in sediment cover effect. When erosion and sediment flux rates are averaged, long-term sediment flux is similar to nonglacial flux values, while localized bedrock erosion rates in the glaciated landscape are elevated 2–4 times compared to nonglacial values. Our simulated values are consistent with field measurements of headwater bedrock erosion, and the pattern of sediment flux and fluvial erosion matches paraglacial theory and terrace aggradation records. Thus, we emphasize that the bedload produced from glacial erosion provides a missing link to reconcile late Cenozoic erosion records.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 8","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007721","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142050552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Vainer, C. Schmidt, E. Garzanti, Y. Ben Dor, G. Pastore, T. Mokatse, C. Prud'homme, L. Leanni, G. King, ASTER Team, E. P. Verrecchia
The Kalahari Basin in southern Africa, shaped by subsidence and epeirogeny, features the Okavango Rift Zone (ORZ) as a significant structural element characterized by diffused extensional deformation forming a prominent depocenter. This study elucidates the Pleistocene landscape evolution of the ORZ by examining the chronology of sediment formation and filling this incipient rift and its surroundings. Modeling of cosmogenic nuclide concentrations in surficial eolian sand from distinct structural blocks around the ORZ provides insights into sand's residence time on the surface. Sand formation occurred from ∼2.2 to 1.1 Ma, coinciding with regional tectonic events. Notably, provenance analyses of sand within ORZ's lowermost block where large alluvial fans are found indicate different source rocks and depositional environments than those of the eolian sands found at a higher elevation. This suggests that the major phase of rift subsidence and the following incision of alluvial systems into the rift occurred after eolian dune formation. Luminescence dating reveals that deposition in alluvial fan settings in the incised landscape began not later than ∼250 ka, and that a lacustrine environment existed since at least ∼140 ka. The established chronological framework constrains the geomorphological effects of the different tectono-climatic forces that shaped this nascent rifting area. It highlights two pronounced stages of landscape development, with the most recent major deformation event in the evolving rift probably occurring during the middle Pleistocene transition (1.2–0.75 Ma). This event is reflected as a striking change in the depositional environments due to the configurational changes accompanying rift progression.
{"title":"Chronology of Sedimentation and Landscape Evolution in the Okavango Rift Zone, a Developing Young Rift in Southern Africa","authors":"S. Vainer, C. Schmidt, E. Garzanti, Y. Ben Dor, G. Pastore, T. Mokatse, C. Prud'homme, L. Leanni, G. King, ASTER Team, E. P. Verrecchia","doi":"10.1029/2023JF007554","DOIUrl":"https://doi.org/10.1029/2023JF007554","url":null,"abstract":"<p>The Kalahari Basin in southern Africa, shaped by subsidence and epeirogeny, features the Okavango Rift Zone (ORZ) as a significant structural element characterized by diffused extensional deformation forming a prominent depocenter. This study elucidates the Pleistocene landscape evolution of the ORZ by examining the chronology of sediment formation and filling this incipient rift and its surroundings. Modeling of cosmogenic nuclide concentrations in surficial eolian sand from distinct structural blocks around the ORZ provides insights into sand's residence time on the surface. Sand formation occurred from ∼2.2 to 1.1 Ma, coinciding with regional tectonic events. Notably, provenance analyses of sand within ORZ's lowermost block where large alluvial fans are found indicate different source rocks and depositional environments than those of the eolian sands found at a higher elevation. This suggests that the major phase of rift subsidence and the following incision of alluvial systems into the rift occurred after eolian dune formation. Luminescence dating reveals that deposition in alluvial fan settings in the incised landscape began not later than ∼250 ka, and that a lacustrine environment existed since at least ∼140 ka. The established chronological framework constrains the geomorphological effects of the different tectono-climatic forces that shaped this nascent rifting area. It highlights two pronounced stages of landscape development, with the most recent major deformation event in the evolving rift probably occurring during the middle Pleistocene transition (1.2–0.75 Ma). This event is reflected as a striking change in the depositional environments due to the configurational changes accompanying rift progression.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 8","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JF007554","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142002562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. C. Lima, W. R. Assis, C. A. Alvarez, E. M. Franklin
Barchans are eolian dunes of crescent shape found on Earth, Mars and other celestial bodies. Among the different types of barchan-barchan interaction, there is one, known as chasing, in which the dunes remain close but without touching each other. In this paper, we investigate the origins of this barchan-barchan dune repulsion by carrying out grain-scale numerical computations in which a pair of granular heaps is deformed by the fluid flow into barchan dunes that interact with each other. In our simulations, data such as position, velocity and resultant force are computed for each individual particle at each time step, allowing us to measure details of both the fluid and grains that explain the repulsion. We show the trajectories of grains, time-average resultant forces, and mass balances for each dune, and that the downstream barchan shrinks faster than the upstream one, keeping, thus, a relatively high velocity although in the wake of the upstream barchan. In its turn, this fast shrinkage is caused by the flow disturbance, which induces higher erosion on the downstream barchan and its circumvention by grains leaving the upstream dune. Our results help explaining the mechanisms behind the distribution of barchans in dune fields found on Earth and Mars.
{"title":"Barchan-Barchan Dune Repulsion Investigated at the Grain Scale","authors":"N. C. Lima, W. R. Assis, C. A. Alvarez, E. M. Franklin","doi":"10.1029/2024JF007741","DOIUrl":"https://doi.org/10.1029/2024JF007741","url":null,"abstract":"<p>Barchans are eolian dunes of crescent shape found on Earth, Mars and other celestial bodies. Among the different types of barchan-barchan interaction, there is one, known as chasing, in which the dunes remain close but without touching each other. In this paper, we investigate the origins of this barchan-barchan dune repulsion by carrying out grain-scale numerical computations in which a pair of granular heaps is deformed by the fluid flow into barchan dunes that interact with each other. In our simulations, data such as position, velocity and resultant force are computed for each individual particle at each time step, allowing us to measure details of both the fluid and grains that explain the repulsion. We show the trajectories of grains, time-average resultant forces, and mass balances for each dune, and that the downstream barchan shrinks faster than the upstream one, keeping, thus, a relatively high velocity although in the wake of the upstream barchan. In its turn, this fast shrinkage is caused by the flow disturbance, which induces higher erosion on the downstream barchan and its circumvention by grains leaving the upstream dune. Our results help explaining the mechanisms behind the distribution of barchans in dune fields found on Earth and Mars.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 8","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Valley width is largely controlled by lithology and upstream drainage area, but little work has focused on identifying the processes through which valleys widen. Bedrock valleys widen by first laterally eroding bedrock valley walls, followed by the collapse of overlying bedrock material that must then be transported away from the valley wall before the valley can continue widening. We hypothesize that talus piles that cannot be transported by the river protect the valley wall and slow valley widening, while talus piles that are rapidly transported allow for uninterrupted valley widening. We used field measurements from 40 locations in both wide and narrow valleys along the Buffalo River, AR to test this hypothesis. Our data show that wide valleys tend to have fewer talus piles and smaller talus grain sizes, whereas talus in narrow valleys is larger in size and more continuous along valley walls. We calculated potential talus block entrainment at each site location and found that talus blocks in wide valleys are potentially entrained and moved away from valley walls during moderate and large flood events, whereas talus blocks in narrow valleys are very rarely moved. Our results show that the potential transport of talus piles protecting bedrock valley walls from widening is controlled by the block size of collapsed bedrock wall material relative to stream competency. Our results also suggest that persistence versus mobility of collapsed talus piles is an important process in the development of wide bedrock valleys.
山谷宽度在很大程度上受岩性和上游排水面积的控制,但很少有人关注山谷拓宽的过程。基岩河谷首先通过横向侵蚀基岩谷壁来拓宽,然后是上覆基岩材料的崩塌,在河谷继续拓宽之前,上覆基岩材料必须被运离谷壁。我们假设,无法被河流搬运的滑石堆积物可以保护谷壁,减缓山谷的拓宽,而快速搬运的滑石堆积物则可以使山谷不间断地拓宽。我们利用对 AR 州布法罗河沿岸宽谷和窄谷 40 个地点的实地测量来验证这一假设。我们的数据显示,宽谷中的距石堆往往较少,距石粒径较小,而窄谷中的距石粒径较大,沿谷壁的连续性较强。我们计算了每个地点的潜在滑石块夹带量,发现在中度和大洪水期间,宽谷中的滑石块有可能被夹带并移离谷壁,而窄谷中的滑石块则很少移动。我们的研究结果表明,保护基岩谷壁不被拓宽的距石堆的潜在迁移能力受基岩谷壁坍塌物质的块体大小和溪流能力的控制。我们的研究结果还表明,坍塌距石堆的持久性与流动性是宽基岩谷发展的一个重要过程。
{"title":"The Role of Talus Pile Mobility in Valley Widening Processes and the Development of Wide Bedrock Valleys, Buffalo River, AR","authors":"O. H. Groeber, A. L. Langston","doi":"10.1029/2023JF007612","DOIUrl":"10.1029/2023JF007612","url":null,"abstract":"<p>Valley width is largely controlled by lithology and upstream drainage area, but little work has focused on identifying the processes through which valleys widen. Bedrock valleys widen by first laterally eroding bedrock valley walls, followed by the collapse of overlying bedrock material that must then be transported away from the valley wall before the valley can continue widening. We hypothesize that talus piles that cannot be transported by the river protect the valley wall and slow valley widening, while talus piles that are rapidly transported allow for uninterrupted valley widening. We used field measurements from 40 locations in both wide and narrow valleys along the Buffalo River, AR to test this hypothesis. Our data show that wide valleys tend to have fewer talus piles and smaller talus grain sizes, whereas talus in narrow valleys is larger in size and more continuous along valley walls. We calculated potential talus block entrainment at each site location and found that talus blocks in wide valleys are potentially entrained and moved away from valley walls during moderate and large flood events, whereas talus blocks in narrow valleys are very rarely moved. Our results show that the potential transport of talus piles protecting bedrock valley walls from widening is controlled by the block size of collapsed bedrock wall material relative to stream competency. Our results also suggest that persistence versus mobility of collapsed talus piles is an important process in the development of wide bedrock valleys.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 8","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JF007612","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Mancini, M. Roncoroni, M. Dietze, M. Jenkin, T. Müller, B. Ouvry, F. Miesen, Q. Pythoud, M. Hofmann, F. Lardet, A. P. Nicholas, S. N. Lane
Proglacial forefields commonly include highly dynamic fluvial systems associated with the fundamental instability between topography, flow hydraulics and sediment transport. However, there is limited knowledge of how these systems respond to changing subglacial hydrology and sediment supply. We investigated this relationship using the first continuous field-collected data sets for both suspended and bedload sediment export and proglacial river dynamics for an Alpine glacier forefield, the Glacier d’Otemma, Switzerland. The results show a strong sensitivity of fluvial morphodynamics to the balance between sediment transport capacity and supply. When subglacial bedload export rates exceeded fluvial transport capacity, we found bar construction leading to net forefield aggradation and surficial coarsening, especially on bar heads. This intensified braiding buffered the downstream transport of coarse sediment. When subglacial bedload export rates were lower than transport capacity, incision occurred, with reduced braiding intensity, net erosion and important amounts of bedload leaving the proglacial system. We found a net fining of surficial deposits except for very isolated coarsening patterns on bar heads. Thus, proglacial forefield morphodynamics are strongly conditioned by subglacial hydrology and sediment supply, but this conditioning is also influenced by the response of the forefield itself. Proglacial forefields have an important influence on the longitudinal connectivity of sediment flux in regions sensitive to climate change, such as recently deglaciated high mountain areas. The linkages we report between subglacial processes and river morphodynamics are critical for understanding the development of embryonic forefield ecosystems.
{"title":"Rates of Evacuation of Bedload Sediment From an Alpine Glacier Control Proglacial Stream Morphodynamics","authors":"D. Mancini, M. Roncoroni, M. Dietze, M. Jenkin, T. Müller, B. Ouvry, F. Miesen, Q. Pythoud, M. Hofmann, F. Lardet, A. P. Nicholas, S. N. Lane","doi":"10.1029/2024JF007727","DOIUrl":"10.1029/2024JF007727","url":null,"abstract":"<p>Proglacial forefields commonly include highly dynamic fluvial systems associated with the fundamental instability between topography, flow hydraulics and sediment transport. However, there is limited knowledge of how these systems respond to changing subglacial hydrology and sediment supply. We investigated this relationship using the first continuous field-collected data sets for both suspended and bedload sediment export and proglacial river dynamics for an Alpine glacier forefield, the Glacier d’Otemma, Switzerland. The results show a strong sensitivity of fluvial morphodynamics to the balance between sediment transport capacity and supply. When subglacial bedload export rates exceeded fluvial transport capacity, we found bar construction leading to net forefield aggradation and surficial coarsening, especially on bar heads. This intensified braiding buffered the downstream transport of coarse sediment. When subglacial bedload export rates were lower than transport capacity, incision occurred, with reduced braiding intensity, net erosion and important amounts of bedload leaving the proglacial system. We found a net fining of surficial deposits except for very isolated coarsening patterns on bar heads. Thus, proglacial forefield morphodynamics are strongly conditioned by subglacial hydrology and sediment supply, but this conditioning is also influenced by the response of the forefield itself. Proglacial forefields have an important influence on the longitudinal connectivity of sediment flux in regions sensitive to climate change, such as recently deglaciated high mountain areas. The linkages we report between subglacial processes and river morphodynamics are critical for understanding the development of embryonic forefield ecosystems.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 8","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007727","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. I. Arran, A. Mangeney, J. De Rosny, R. Toussaint
Geophysical granular flows generate seismic signals known as “slidequakes” or “landquakes”, with low-frequency components whose generation by mean forces is widely used to infer hazard-relevant flow properties. Many more such properties could be inferred by understanding the fluctuating forces that generate slidequakes' higher frequency components and, to do so, we conducted discrete-element simulations that examined the fluctuating forces exerted by steady, downslope-periodic granular flows on fixed, rough bases. Unlike our previous laboratory experiments, our simulations precluded basal slip. We show that, in its absence, simulated basal forces' power spectra have high-frequency components more accurately predicted using mean shear rates than using depth-averaged flow velocities, and can have intermediate-frequency components which we relate to chains of prolonged interparticle contacts. We develop a “minimal model”, which uses a flow's collisional properties to even more accurately predict the high-frequency components, and empirically parametrize this model in terms of mean flow properties, for practical application. Finally, we demonstrate that the bulk inertial number determines not only the magnitude ratio of rapidly fluctuating and mean forces on a unit basal area, consistent with previous experimental results, but also the relative magnitudes of the high and intermediate-frequency force components.
{"title":"Simulated Slidequakes: Insights From DEM Simulations Into the High-Frequency Seismic Signal Generated by Geophysical Granular Flows","authors":"M. I. Arran, A. Mangeney, J. De Rosny, R. Toussaint","doi":"10.1029/2023JF007455","DOIUrl":"https://doi.org/10.1029/2023JF007455","url":null,"abstract":"<p>Geophysical granular flows generate seismic signals known as “slidequakes” or “landquakes”, with low-frequency components whose generation by mean forces is widely used to infer hazard-relevant flow properties. Many more such properties could be inferred by understanding the fluctuating forces that generate slidequakes' higher frequency components and, to do so, we conducted discrete-element simulations that examined the fluctuating forces exerted by steady, downslope-periodic granular flows on fixed, rough bases. Unlike our previous laboratory experiments, our simulations precluded basal slip. We show that, in its absence, simulated basal forces' power spectra have high-frequency components more accurately predicted using mean shear rates than using depth-averaged flow velocities, and can have intermediate-frequency components which we relate to chains of prolonged interparticle contacts. We develop a “minimal model”, which uses a flow's collisional properties to even more accurately predict the high-frequency components, and empirically parametrize this model in terms of mean flow properties, for practical application. Finally, we demonstrate that the bulk inertial number determines not only the magnitude ratio of rapidly fluctuating and mean forces on a unit basal area, consistent with previous experimental results, but also the relative magnitudes of the high and intermediate-frequency force components.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 8","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JF007455","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lachlan Perris, Tristan Salles, Thomas E. Fellowes, Stephanie Duce, Jody Webster, Ana Vila-Concejo
Coral reefs protect coastlines from inundation and flooding and serve over 200 million people globally. Wave transformation has previously been studied on coral reef flats with limited focus on forereef zones where wave transformation is greatest during high-energy conditions. This study investigates the role of forereef spur and groove (SaG) morphology in wave energy dissipation and transmission at the reef crest. Using XBeach on LiDAR-derived bathymetry from One Tree Island in the southern Great Barrier Reef, we reproduced dissipation rates comparable to SaG field studies. We examined how wave energy dissipation differs between realistic bathymetry and those with SaG features removed, demonstrating an up to 40% decrease in dissipation when SaG features are absent. We then investigated changes to wave energy dissipation and wave transmission at the reef crest based on IPCC AR5 emission scenarios (RCP2.6 and RCP8.5) and a total disaster scenario (TD) for the year 2100. For RCP2.6, an increase in wave heights of 0.8 m and an increase in water level of 0.3 m resulted in a two-fold increase in dissipation rates. For RCP8.5 and TD, with no increase in incident wave height, dissipation rates were 29% and 395% lower than RCP2.6. This resulted in increased wave transmission at the reef crest by 1.8 and 2.7 m for the RCP8.5- and TD based models, respectively, when compared to the RCP2.6-based model. The results from our novel modeling approach of using long-shore varying accurate bathymetry on forereefs show increased wave energy dissipation rates with implications for reducing coastal flooding and island inundation on reef-lined coasts.
{"title":"The Influence of Coral Reef Spur and Groove Morphology on Wave Energy Dissipation in Contrasting Reef Environments","authors":"Lachlan Perris, Tristan Salles, Thomas E. Fellowes, Stephanie Duce, Jody Webster, Ana Vila-Concejo","doi":"10.1029/2023JF007424","DOIUrl":"10.1029/2023JF007424","url":null,"abstract":"<p>Coral reefs protect coastlines from inundation and flooding and serve over 200 million people globally. Wave transformation has previously been studied on coral reef flats with limited focus on forereef zones where wave transformation is greatest during high-energy conditions. This study investigates the role of forereef spur and groove (SaG) morphology in wave energy dissipation and transmission at the reef crest. Using XBeach on LiDAR-derived bathymetry from One Tree Island in the southern Great Barrier Reef, we reproduced dissipation rates comparable to SaG field studies. We examined how wave energy dissipation differs between realistic bathymetry and those with SaG features removed, demonstrating an up to 40% decrease in dissipation when SaG features are absent. We then investigated changes to wave energy dissipation and wave transmission at the reef crest based on IPCC AR5 emission scenarios (RCP2.6 and RCP8.5) and a total disaster scenario (TD) for the year 2100. For RCP2.6, an increase in wave heights of 0.8 m and an increase in water level of 0.3 m resulted in a two-fold increase in dissipation rates. For RCP8.5 and TD, with no increase in incident wave height, dissipation rates were 29% and 395% lower than RCP2.6. This resulted in increased wave transmission at the reef crest by 1.8 and 2.7 m for the RCP8.5- and TD based models, respectively, when compared to the RCP2.6-based model. The results from our novel modeling approach of using long-shore varying accurate bathymetry on forereefs show increased wave energy dissipation rates with implications for reducing coastal flooding and island inundation on reef-lined coasts.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 8","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JF007424","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}