R. V. Palermo, A. D. Ashton, H. Nepf, M. Kule, T. Swanson
Segmented barrier islands can be found in regions with small tidal ranges. In contrast to tidally dominated barriers, where inlet dynamics are thought to control island length scales, the controls on barrier island length scales in wave-dominated environments have not been quantified. These microtidal barriers typically have a curved shoreline, suggesting the influence of wave-driven alongshore sediment transport. Microtidal barriers are also typically hydrodynamically isolated from one another, as weak tidal flows limit interactions between adjoining barriers. To better understand the controls on and scales of barrier segmentation in the relative absence of tides, here we develop a theoretical framework to estimate the alongshore length scales at which a barrier will either breach or heal following a disturbance in the barrier morphology. The non-dimensional framework compares the timescales of overwash (advective) and alongshore sediment transport (diffusive) processes along barrier island chains. We then apply this framework to modern barrier islands in the microtidal Gulf of Mexico using wave hindcast data and the lengths, widths, heights, and lagoon depths measured from remotely sensed geospatial data and topobathymetric data. We find that most of these barriers are currently longer than their critical length scale, often as a result of coastal restoration efforts. Our critical length scale analysis suggests that most of the Gulf of Mexico barriers are vulnerable to segmentation despite coastal restoration efforts intended to protect fisheries and the mainland coasts.
{"title":"Predicting Characteristic Length Scales of Barrier Island Segmentation in Microtidal Environments","authors":"R. V. Palermo, A. D. Ashton, H. Nepf, M. Kule, T. Swanson","doi":"10.1029/2023JF007437","DOIUrl":"https://doi.org/10.1029/2023JF007437","url":null,"abstract":"<p>Segmented barrier islands can be found in regions with small tidal ranges. In contrast to tidally dominated barriers, where inlet dynamics are thought to control island length scales, the controls on barrier island length scales in wave-dominated environments have not been quantified. These microtidal barriers typically have a curved shoreline, suggesting the influence of wave-driven alongshore sediment transport. Microtidal barriers are also typically hydrodynamically isolated from one another, as weak tidal flows limit interactions between adjoining barriers. To better understand the controls on and scales of barrier segmentation in the relative absence of tides, here we develop a theoretical framework to estimate the alongshore length scales at which a barrier will either breach or heal following a disturbance in the barrier morphology. The non-dimensional framework compares the timescales of overwash (advective) and alongshore sediment transport (diffusive) processes along barrier island chains. We then apply this framework to modern barrier islands in the microtidal Gulf of Mexico using wave hindcast data and the lengths, widths, heights, and lagoon depths measured from remotely sensed geospatial data and topobathymetric data. We find that most of these barriers are currently longer than their critical length scale, often as a result of coastal restoration efforts. Our critical length scale analysis suggests that most of the Gulf of Mexico barriers are vulnerable to segmentation despite coastal restoration efforts intended to protect fisheries and the mainland coasts.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JF007437","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. P. J. van Wiechen, R. Mieras, M. F. S. Tissier, S. de Vries
This paper studies hydrodynamic and morphodynamic field measurements of two storms with dune erosion in the swash-dune collision regime. It analyses (a) the behavior and change of the total dune profile over the course of both storms (b) the erosion rate at the dune base, (c) the slumping frequency, and (d) the volumes of individual slumps. The erosion rate at the dune base shows a strong positive correlation with the square of the total water levels that were exceeded for 2% of the time, recorded approximately 5–6 m in front of the dune face (r = 0.91). Individual slumping events occurred when nearly all sediments from previous slumps at the dune base were transported away from the dune. A strong positive correlation was found between the time between two consecutive slumps, and the volume of the first slump divided by the mean erosion rate between the two slumps (r = 0.90). As a consequence, smaller slumps were followed more rapidly by a new slump than larger slumps, under identical erosion rates. The majority of the slumping events occurred after the last wave impact before a slumping event, when the instantaneous water level in front of the dune was still retreating. No clear process based on the incident hydrodynamics could be identified that determined the size of individual slumps. Overall, the results of this study suggest that the morphodynamic behavior of the upper dune face and dune crest is primarily steered by the erosion at the dune base.
{"title":"Coastal Dune Erosion and Slumping Processes in the Swash-Dune Collision Regime Based on Field Measurements","authors":"P. P. J. van Wiechen, R. Mieras, M. F. S. Tissier, S. de Vries","doi":"10.1029/2024JF007711","DOIUrl":"https://doi.org/10.1029/2024JF007711","url":null,"abstract":"<p>This paper studies hydrodynamic and morphodynamic field measurements of two storms with dune erosion in the swash-dune collision regime. It analyses (a) the behavior and change of the total dune profile over the course of both storms (b) the erosion rate at the dune base, (c) the slumping frequency, and (d) the volumes of individual slumps. The erosion rate at the dune base shows a strong positive correlation with the square of the total water levels that were exceeded for 2% of the time, recorded approximately 5–6 m in front of the dune face (<i>r</i> = 0.91). Individual slumping events occurred when nearly all sediments from previous slumps at the dune base were transported away from the dune. A strong positive correlation was found between the time between two consecutive slumps, and the volume of the first slump divided by the mean erosion rate between the two slumps (<i>r</i> = 0.90). As a consequence, smaller slumps were followed more rapidly by a new slump than larger slumps, under identical erosion rates. The majority of the slumping events occurred after the last wave impact before a slumping event, when the instantaneous water level in front of the dune was still retreating. No clear process based on the incident hydrodynamics could be identified that determined the size of individual slumps. Overall, the results of this study suggest that the morphodynamic behavior of the upper dune face and dune crest is primarily steered by the erosion at the dune base.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007711","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Danghan Xie, Zoe Hughes, Duncan FitzGerald, Silke Tas, Tansir Zaman Asik, Sergio Fagherazzi
Longshore sediment transport (LST) is essential for shaping sandy shorelines. Many shorelines are complex and indented, containing headlands, offshore islands and tombolos. Tombolos often form between islands and the mainland; however, the conditions for LST across tombolos are unclear. This question is important because tombolos are often reinforced with anthropogenic infrastructure, potentially causing sediment starvation of downdrift beaches. Along many shorelines, the return to a tombolo's natural condition has been proposed to promote sediment connectivity and counteract erosion. Nevertheless, the implications of such restorations remain uncertain. In this study, we employ the Delft3D wave-current model to investigate hydrodynamics and sediment dynamics across a tombolo, examining its role as a connector between adjacent beaches. Contrary to expectations, our simulations show only diminutive longshore currents from the updrift beach across the tombolo unless offshore wave heights exceed 8 m. Instead, predominant currents crossing the tombolo originate from offshore of the island, driven by storm-induced water level differences and circulation cells on both sides of the tombolo. The offshore island shelters the downdrift domain, resulting in higher wave energy and dissipation updrift of the tombolo. Further, increasing wave height or wave approach angle not only intensifies water level differences but also relocates circulation cells, enhancing total sediment transport from the updrift beach across the tombolo. However, in general, the deposition of sediment from the updrift side of the domain does not compensate for the sediment loss on the downdrift beach. We conclude that LST across tombolos is limited and occurs only under extreme wave conditions.
{"title":"Longshore Sediment Transport Across a Tombolo Determined by Two Adjacent Circulation Cells","authors":"Danghan Xie, Zoe Hughes, Duncan FitzGerald, Silke Tas, Tansir Zaman Asik, Sergio Fagherazzi","doi":"10.1029/2024JF007709","DOIUrl":"https://doi.org/10.1029/2024JF007709","url":null,"abstract":"<p>Longshore sediment transport (LST) is essential for shaping sandy shorelines. Many shorelines are complex and indented, containing headlands, offshore islands and tombolos. Tombolos often form between islands and the mainland; however, the conditions for LST across tombolos are unclear. This question is important because tombolos are often reinforced with anthropogenic infrastructure, potentially causing sediment starvation of downdrift beaches. Along many shorelines, the return to a tombolo's natural condition has been proposed to promote sediment connectivity and counteract erosion. Nevertheless, the implications of such restorations remain uncertain. In this study, we employ the Delft3D wave-current model to investigate hydrodynamics and sediment dynamics across a tombolo, examining its role as a connector between adjacent beaches. Contrary to expectations, our simulations show only diminutive longshore currents from the updrift beach across the tombolo unless offshore wave heights exceed 8 m. Instead, predominant currents crossing the tombolo originate from offshore of the island, driven by storm-induced water level differences and circulation cells on both sides of the tombolo. The offshore island shelters the downdrift domain, resulting in higher wave energy and dissipation updrift of the tombolo. Further, increasing wave height or wave approach angle not only intensifies water level differences but also relocates circulation cells, enhancing total sediment transport from the updrift beach across the tombolo. However, in general, the deposition of sediment from the updrift side of the domain does not compensate for the sediment loss on the downdrift beach. We conclude that LST across tombolos is limited and occurs only under extreme wave conditions.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The formation age of the middle Yellow River and the existence of a northward-flowing river have been fiercely debated. The age distribution of detrital zircon varied spatiotemporally and produced contradictory provenance interpretations. The Jinshaan Gorge, the main part of the middle Yellow River and key to studying fluvial evolution and clarifying disputes, developed its topography during the late Cenozoic. In this study, we systematically review the Cenozoic tectonic evolution of the North China Craton, perform detrital zircon U–Pb dating in the Neogene−Quaternary sediments and investigate the topography along the Jinshaan Gorge, and the sedimentology and chronological framework of these sediments. We propose that the Gorge of the middle Yellow River could have developed since the Neogene, controlled by the tectono-geomorphologic evolution of the North China Craton in a dominantly extensional environment. No evidence supports a northward-flowing river during the Early Pleistocene or even earlier in the Jinshaan Gorge. We attribute the provenance variations of the Cenozoic sediments to detrital mixing of diverse geological units, local and distant, and especially highlight the systematic provenance shift between the Neogene and Quaternary sediments caused by bedrock downcutting and recycling aeolian sediments. The increased 1.5−0.33 Ga component of the lower Yellow River during the Early Pleistocene was likely caused by enhanced loess accumulation and should not be individually used as a proxy for the Yellow River formation. We emphasize the significance of a comprehensive study of river evolution.
关于黄河中游的形成年代和是否存在北流河的问题一直存在激烈的争论。碎屑锆石的年龄分布在时空上存在差异,并产生了相互矛盾的产地解释。金沙江峡谷是黄河中游的主要部分,也是研究河流演变和澄清争议的关键,其地形发育于新生代晚期。本研究系统回顾了华北克拉通新生代构造演化,对新元古代-第四纪沉积物进行了锆英石U-Pb测年,研究了金沙江峡谷沿岸的地形地貌,以及沉积物的沉积学和年代学框架。我们提出,黄河中游峡谷可能自新近纪开始发育,受华北克拉通构造-地貌演化的控制,处于以伸展为主的环境中。没有证据表明金沙江峡谷在早更新世甚至更早时期就有北流的河流。我们将新生代沉积物的产状变化归因于当地和远处不同地质单元的碎屑混合,并特别强调了基岩下切和风化沉积物循环造成的新近纪沉积物和第四纪沉积物之间的系统性产状转变。早更新世期间黄河下游 1.5-0.33 Ga 分量的增加很可能是由于黄土堆积增强所致,不应单独作为黄河形成的代表。我们强调对河流演变进行全面研究的重要性。
{"title":"Neogene–Quaternary Channel Evolution and Provenance Shift of the Middle Yellow River","authors":"Jianguo Xiong, Peizhen Zhang, Chenglong Deng, Vincenzo Picotti, Hao Liang, Zhikun Ren, Weitao Wang, Huan Kang, Qingri Liu, Xudong Zhao, Xiuli Zhang, Yihui Zhang, Youli Li, Huiping Zhang, Xitao Zhao","doi":"10.1029/2023JF007532","DOIUrl":"https://doi.org/10.1029/2023JF007532","url":null,"abstract":"<p>The formation age of the middle Yellow River and the existence of a northward-flowing river have been fiercely debated. The age distribution of detrital zircon varied spatiotemporally and produced contradictory provenance interpretations. The Jinshaan Gorge, the main part of the middle Yellow River and key to studying fluvial evolution and clarifying disputes, developed its topography during the late Cenozoic. In this study, we systematically review the Cenozoic tectonic evolution of the North China Craton, perform detrital zircon U–Pb dating in the Neogene−Quaternary sediments and investigate the topography along the Jinshaan Gorge, and the sedimentology and chronological framework of these sediments. We propose that the Gorge of the middle Yellow River could have developed since the Neogene, controlled by the tectono-geomorphologic evolution of the North China Craton in a dominantly extensional environment. No evidence supports a northward-flowing river during the Early Pleistocene or even earlier in the Jinshaan Gorge. We attribute the provenance variations of the Cenozoic sediments to detrital mixing of diverse geological units, local and distant, and especially highlight the systematic provenance shift between the Neogene and Quaternary sediments caused by bedrock downcutting and recycling aeolian sediments. The increased 1.5−0.33 Ga component of the lower Yellow River during the Early Pleistocene was likely caused by enhanced loess accumulation and should not be individually used as a proxy for the Yellow River formation. We emphasize the significance of a comprehensive study of river evolution.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z. C. Zhang, Z. B. Dong, K. J. Pan, Y. Zhang, L. Y. Han
Gobi’s (gravel deserts) are one of the largest dust sources in northern China. Previous studies indicated that sand transport processes above the surface differed between Gobi and sand surfaces. However, the sand transport rate and related dust emission processes above Gobi (gravel) surfaces are still poorly understood. In this field study, we quantified this transport to provide important support for parameterizing Aeolian sediment transport models and clarifying the relationship between dust emission and transport. Threshold wind velocity can reach 0.38 ± 0.04 (mean ± SD) m s−1 above Gobi surfaces. Compared to the most commonly used sand-transport models, we found that the Lettau and Lettau sediment transport model can be used to calculate horizontal sediment transport above a Gobi surface. The relationship between the vertical sediment transport (Fs) and shear velocity could be expressed using a power function. Although the horizontal sand transport and vertical flux (Q and Fs, respectively) above Gobi surfaces can be expressed similarly to previous results (i.e., using similar equation forms), the equation coefficients were much larger for the Gobi surface than for a shifting sand surface; that is, sediment transport was higher above the Gobi surface. This difference resulted from the larger sand transport rate and saltation height above the Gobi surface, and the larger transport and higher saltation height were related to the larger sand transport height and higher content of coarse sand transported above the Gobi surface.
{"title":"Characteristics of the Aeolian Sediments Transported Above a Gobi Surface","authors":"Z. C. Zhang, Z. B. Dong, K. J. Pan, Y. Zhang, L. Y. Han","doi":"10.1029/2024JF007736","DOIUrl":"https://doi.org/10.1029/2024JF007736","url":null,"abstract":"<p>Gobi’s (gravel deserts) are one of the largest dust sources in northern China. Previous studies indicated that sand transport processes above the surface differed between Gobi and sand surfaces. However, the sand transport rate and related dust emission processes above Gobi (gravel) surfaces are still poorly understood. In this field study, we quantified this transport to provide important support for parameterizing Aeolian sediment transport models and clarifying the relationship between dust emission and transport. Threshold wind velocity can reach 0.38 ± 0.04 (mean ± SD) m s<sup>−1</sup> above Gobi surfaces. Compared to the most commonly used sand-transport models, we found that the Lettau and Lettau sediment transport model can be used to calculate horizontal sediment transport above a Gobi surface. The relationship between the vertical sediment transport (<i>F</i><sub>s</sub>) and shear velocity could be expressed using a power function. Although the horizontal sand transport and vertical flux (<i>Q</i> and <i>F</i><sub>s</sub>, respectively) above Gobi surfaces can be expressed similarly to previous results (i.e., using similar equation forms), the equation coefficients were much larger for the Gobi surface than for a shifting sand surface; that is, sediment transport was higher above the Gobi surface. This difference resulted from the larger sand transport rate and saltation height above the Gobi surface, and the larger transport and higher saltation height were related to the larger sand transport height and higher content of coarse sand transported above the Gobi surface.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael Krautblatter, Michael Angelopoulos, Wayne H. Pollard, Hugues Lantuit, Josefine Lenz, Michael Fritz, Nicole Couture, Saskia Eppinger
Mega retrogressive thaw slumps (MRTS, >106 m3) are a major threat to Arctic infrastructure, alter regional biogeochemistry, and impact Arctic carbon budgets. However, processes initiating and reactivating MRTS are insufficiently understood. We hypothesize that MRTS preferentially develop a polycyclic behavior because the material is thermally and mechanically prepared for subsequent generation failure. In contrast to remote sensing, geophysical reconnaissance reveals the inner structure and relative thermal state of MRTS decameters beneath slump surfaces, potentially controlling polycyclicity. Based on their life cycle development, five (M)RTS were studied on Herschel Island, an MRTS hotspot on the Canadian Beaufort coast. We combine >2 km of electrical resistivity tomography (ERT), 500 m of ground-penetrating radar (GPR) and annual monitoring of headwall retreat from 2004 to 2013 to reveal the thermal state, internal structure, and volume loss of slumps. ERT data were calibrated with unfrozen-frozen transitions from frost probing of active layer thickness and shallow boreholes. In initial stage MRTS, ERT displays surficial thermal perturbations a few meters deep, coincident with recent mud pool and mud flow development. In early stage polycyclic MRTS, ERT shows decameter deep-reaching thermal perturbations persisting even 300 years after the last activation. In peak-stage polycyclic MRTS, 3D-ERT highlights actively extending deep-reaching thermal perturbations caused by gully incisions, mud slides and mud flows. GPR and headwall monitoring reveal structural disturbance by historical mud flows, ice-rich permafrost, and a decadal quantification of headwall retreat and slump floor erosion. We show that geophysical signatures identify long-lasting thermal and mechanical disturbances in MRTS predefining their susceptibility to polycyclic reactivation.
{"title":"Life Cycles and Polycyclicity of Mega Retrogressive Thaw Slumps in Arctic Permafrost Revealed by 2D/3D Geophysics and Long-Term Retreat Monitoring","authors":"Michael Krautblatter, Michael Angelopoulos, Wayne H. Pollard, Hugues Lantuit, Josefine Lenz, Michael Fritz, Nicole Couture, Saskia Eppinger","doi":"10.1029/2023JF007556","DOIUrl":"https://doi.org/10.1029/2023JF007556","url":null,"abstract":"<p>Mega retrogressive thaw slumps (MRTS, >10<sup>6</sup> m<sup>3</sup>) are a major threat to Arctic infrastructure, alter regional biogeochemistry, and impact Arctic carbon budgets. However, processes initiating and reactivating MRTS are insufficiently understood. We hypothesize that MRTS preferentially develop a polycyclic behavior because the material is thermally and mechanically prepared for subsequent generation failure. In contrast to remote sensing, geophysical reconnaissance reveals the inner structure and relative thermal state of MRTS decameters beneath slump surfaces, potentially controlling polycyclicity. Based on their life cycle development, five (M)RTS were studied on Herschel Island, an MRTS hotspot on the Canadian Beaufort coast. We combine >2 km of electrical resistivity tomography (ERT), 500 m of ground-penetrating radar (GPR) and annual monitoring of headwall retreat from 2004 to 2013 to reveal the thermal state, internal structure, and volume loss of slumps. ERT data were calibrated with unfrozen-frozen transitions from frost probing of active layer thickness and shallow boreholes. In initial stage MRTS, ERT displays surficial thermal perturbations a few meters deep, coincident with recent mud pool and mud flow development. In early stage polycyclic MRTS, ERT shows decameter deep-reaching thermal perturbations persisting even 300 years after the last activation. In peak-stage polycyclic MRTS, 3D-ERT highlights actively extending deep-reaching thermal perturbations caused by gully incisions, mud slides and mud flows. GPR and headwall monitoring reveal structural disturbance by historical mud flows, ice-rich permafrost, and a decadal quantification of headwall retreat and slump floor erosion. We show that geophysical signatures identify long-lasting thermal and mechanical disturbances in MRTS predefining their susceptibility to polycyclic reactivation.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JF007556","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charles K. Paull, Jong Kuk Hong, David W. Caress, Roberto Gwiazda, Ji-Hoon Kim, Eve Lundsten, Jennifer B. Paduan, Young Keun Jin, Mathieu J. Duchesne, Tae Siek Rhee, Virginia Brake, Jeffrey Obelcz, Maureen A. L. Walton
Substantial seafloor morphological changes are rapidly occurring along the Canadian Arctic shelf edge. Five multibeam bathymetric mapping surveys, each partially covering a 15 km2 study area between 120- and 200-m water depth, were conducted over a 12-year time period. These surveys reveal that 65 new craters have developed between 2010 and 2022, averaging 6.5 m and reaching up to 30 m deep. Remotely operated vehicle investigations revealed massive ice outcrops exposed on two newly formed crater flanks. This ice is not relict subaerially formed Pleistocene permafrost because it is hosted in sediments which were deposited in a submarine setting post-deglaciation. Low salinity porewater and sediment core ice samples with depleted oxygen isotopic compositions indicate waters with a meteoric signature are discharging and freezing in this area. These ascending brackish groundwaters are likely derived in part from thawed relict permafrost hundreds of meters under the continental shelf. They refreeze as they approach the −1.4°C seafloor, leading to the development of widespread, near seafloor, sub-bottom ice layers. Conditions appropriate for ice melting also exist nearby where ice is exposed to seawater or warmed by ascending groundwater. Small variations in temperature and salinity lead to shifts between freezing of ascending brackish groundwater or melting of near seafloor ice layers. These conditions have produced a dramatic submarine thermokarst morphology riddled with multi-aged depressions. Thermokarst geohazards may exist, unmapped, on other Arctic margins with groundwater channeled toward the shelf edge by a relict permafrost cap, and sufficiently cold shelf edge bottom water temperatures.
{"title":"Massive Ice Outcrops and Thermokarst Along the Arctic Shelf Edge: By-Products of Ongoing Groundwater Freezing and Thawing in the Sub-Surface","authors":"Charles K. Paull, Jong Kuk Hong, David W. Caress, Roberto Gwiazda, Ji-Hoon Kim, Eve Lundsten, Jennifer B. Paduan, Young Keun Jin, Mathieu J. Duchesne, Tae Siek Rhee, Virginia Brake, Jeffrey Obelcz, Maureen A. L. Walton","doi":"10.1029/2024JF007719","DOIUrl":"https://doi.org/10.1029/2024JF007719","url":null,"abstract":"<p>Substantial seafloor morphological changes are rapidly occurring along the Canadian Arctic shelf edge. Five multibeam bathymetric mapping surveys, each partially covering a 15 km<sup>2</sup> study area between 120- and 200-m water depth, were conducted over a 12-year time period. These surveys reveal that 65 new craters have developed between 2010 and 2022, averaging 6.5 m and reaching up to 30 m deep. Remotely operated vehicle investigations revealed massive ice outcrops exposed on two newly formed crater flanks. This ice is not relict subaerially formed Pleistocene permafrost because it is hosted in sediments which were deposited in a submarine setting post-deglaciation. Low salinity porewater and sediment core ice samples with depleted oxygen isotopic compositions indicate waters with a meteoric signature are discharging and freezing in this area. These ascending brackish groundwaters are likely derived in part from thawed relict permafrost hundreds of meters under the continental shelf. They refreeze as they approach the −1.4°C seafloor, leading to the development of widespread, near seafloor, sub-bottom ice layers. Conditions appropriate for ice melting also exist nearby where ice is exposed to seawater or warmed by ascending groundwater. Small variations in temperature and salinity lead to shifts between freezing of ascending brackish groundwater or melting of near seafloor ice layers. These conditions have produced a dramatic submarine thermokarst morphology riddled with multi-aged depressions. Thermokarst geohazards may exist, unmapped, on other Arctic margins with groundwater channeled toward the shelf edge by a relict permafrost cap, and sufficiently cold shelf edge bottom water temperatures.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007719","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kjetil Thøgersen, Adrien Gilbert, Coline Bouchayer, Thomas Vikhamar Schuler
The flow of glaciers and ice sheets is largely influenced by friction at the ice-bed interface that can trigger rapid changes in glacier motion ranging from seasonal velocity variations to cyclic surge instabilities or even devastating glacier collapse. This wide range of transient glacier dynamics is currently not captured by models, and its implications for long-term glacier evolution are uncertain. This highlights the need of developing improved descriptions for processes that occur at the glacier bed. Here, we present a model that describes the evolution of basal friction inspired by a “rate and state” approach, coupled to models of subglacial drainage and glacier flow, and investigate how these couplings affect the dynamics of glaciers. We show that a wide range of sliding behavior results from a feedback loop between subglacial drainage efficiency and friction which depends on the evolution of a frictional state that can be interpreted as the degree of cavitation or till porosity for hard and soft beds, respectively. In our simulations, we find that glaciers are susceptible to surging if they exhibit a transition to velocity weakening friction associated with a poor sensitivity of the drainage capacity to the frictional state. This potential materializes if the local topography and mass balance create the conditions for high water pressure to build up in an area sufficiently large to exceed a critical length. We advocate accounting for feedback loops between friction and drainage as a promising avenue for better understanding dynamical instabilities of glaciers and ice sheets.
{"title":"Glacier Surges Controlled by the Close Interplay Between Subglacial Friction and Drainage","authors":"Kjetil Thøgersen, Adrien Gilbert, Coline Bouchayer, Thomas Vikhamar Schuler","doi":"10.1029/2023JF007441","DOIUrl":"https://doi.org/10.1029/2023JF007441","url":null,"abstract":"<p>The flow of glaciers and ice sheets is largely influenced by friction at the ice-bed interface that can trigger rapid changes in glacier motion ranging from seasonal velocity variations to cyclic surge instabilities or even devastating glacier collapse. This wide range of transient glacier dynamics is currently not captured by models, and its implications for long-term glacier evolution are uncertain. This highlights the need of developing improved descriptions for processes that occur at the glacier bed. Here, we present a model that describes the evolution of basal friction inspired by a “rate and state” approach, coupled to models of subglacial drainage and glacier flow, and investigate how these couplings affect the dynamics of glaciers. We show that a wide range of sliding behavior results from a feedback loop between subglacial drainage efficiency and friction which depends on the evolution of a frictional state that can be interpreted as the degree of cavitation or till porosity for hard and soft beds, respectively. In our simulations, we find that glaciers are susceptible to surging if they exhibit a transition to velocity weakening friction associated with a poor sensitivity of the drainage capacity to the frictional state. This potential materializes if the local topography and mass balance create the conditions for high water pressure to build up in an area sufficiently large to exceed a critical length. We advocate accounting for feedback loops between friction and drainage as a promising avenue for better understanding dynamical instabilities of glaciers and ice sheets.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JF007441","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Loc Luong, Daniel Cadol, Susan Bilek, J. Mitchell McLaughlin, Jonathan B. Laronne, Jens M. Turowski
Recent theoretical models and field observations suggest that fluvial bedload flux can be estimated from seismic energy measured within appropriate frequency bands. We present an application of the Tsai et al. (2012, https://doi.org/10.1029/2011gl050255) bedload seismic model to an ephemeral channel located in the semi-arid southwestern US and incorporate modifications to better estimate bedload flux in this environment. To test the model, we collected streambank seismic signals and directly measured bedload flux during four flash-floods. Bedload predictions calculated by inversion from the Tsai model underestimated bedload flux observations by one-to-two orders of magnitude at low stages. However, model predictions were better for moderate flow depths (>50 cm), where saltation is expected to dominate bedload transport. We explored three differences between the model assumptions and our field conditions: (a) rolling and sliding particles have different impact frequencies than saltating particles; (b) the velocity and angle of impact of rolling particles onto the riverbed differ; and (c) the fine-grained alluvial character of this and similar riverbeds leads to inelastic impacts, as opposed to the originally conceptualized elastic impacts onto rigid bedrock. We modified the original model to assume inelastic bed impacts and to incorporate rolling and sliding by adjusting the statistical distributions of bedload impact frequency, velocity, and angle. Our modified “multiple-transport-mode bedload seismic model” decreased error relative to observations to less than one order of magnitude across all measured flow conditions. Further investigations in other environmental settings are required to demonstrate the robustness and general applicability of the model.
{"title":"Seismic Modeling of Bedload Transport in a Gravel-Bed Alluvial Channel","authors":"Loc Luong, Daniel Cadol, Susan Bilek, J. Mitchell McLaughlin, Jonathan B. Laronne, Jens M. Turowski","doi":"10.1029/2024JF007761","DOIUrl":"https://doi.org/10.1029/2024JF007761","url":null,"abstract":"<p>Recent theoretical models and field observations suggest that fluvial bedload flux can be estimated from seismic energy measured within appropriate frequency bands. We present an application of the Tsai et al. (2012, https://doi.org/10.1029/2011gl050255) bedload seismic model to an ephemeral channel located in the semi-arid southwestern US and incorporate modifications to better estimate bedload flux in this environment. To test the model, we collected streambank seismic signals and directly measured bedload flux during four flash-floods. Bedload predictions calculated by inversion from the Tsai model underestimated bedload flux observations by one-to-two orders of magnitude at low stages. However, model predictions were better for moderate flow depths (>50 cm), where saltation is expected to dominate bedload transport. We explored three differences between the model assumptions and our field conditions: (a) rolling and sliding particles have different impact frequencies than saltating particles; (b) the velocity and angle of impact of rolling particles onto the riverbed differ; and (c) the fine-grained alluvial character of this and similar riverbeds leads to inelastic impacts, as opposed to the originally conceptualized elastic impacts onto rigid bedrock. We modified the original model to assume inelastic bed impacts and to incorporate rolling and sliding by adjusting the statistical distributions of bedload impact frequency, velocity, and angle. Our modified “multiple-transport-mode bedload seismic model” decreased error relative to observations to less than one order of magnitude across all measured flow conditions. Further investigations in other environmental settings are required to demonstrate the robustness and general applicability of the model.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 9","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gordon G. D. Zhou, Kahlil F. E. Cui, Lu Jing, Anne Mangeney, Yifei Cui, Yu Huang, Xiaoqing Chen
Global climate change has been intensifying the scale and frequency of rock-ice avalanches and similar catastrophic mass movements in high-mountain regions. The difference in the physical characteristics of rock and ice particles leads to mixing and segregation during flow. Although, both particle segregation and the presence of ice fundamentally alter flow behavior, the joint influence and feedback of these two aspects are overlooked in state-of-the-art rock-ice avalanche models. Using discrete element simulations, we show that by controlling the distribution of inter-particle frictional interactions within the mixture, segregation patterns resulting from the size, density, concentration, and surface friction differences of rock and ice phases can induce sharp velocity gradients along the flowing thickness. Flowing layers where low friction contacts with ice are abundant tend to flow faster and can induce slow creeping motion in an otherwise static basal layer dominated by more frictional rocks. Based on these observations, we find that the effective friction of rock-ice flows for various mixture concentrations and size ratios can be obtained as a sum of the single-phase rheologies of rocks and ice weighted according to their microscopic contact probabilities. This effective friction for rock-ice mixtures allows us to extend a recent non-local granular fluidity framework that captures the complex segregation-flow feedback mechanism in rock-ice flows. The findings provide a deeper micromechanical understanding of how particle interactions influence rock-ice avalanche mobility, which ultimately improves flow models needed for hazard assessment and mitigation.
{"title":"Segregation-Induced Flow Transitions in Rock-Ice Mixtures: Implications for Rock-Ice Avalanche Dynamics","authors":"Gordon G. D. Zhou, Kahlil F. E. Cui, Lu Jing, Anne Mangeney, Yifei Cui, Yu Huang, Xiaoqing Chen","doi":"10.1029/2024JF007831","DOIUrl":"https://doi.org/10.1029/2024JF007831","url":null,"abstract":"<p>Global climate change has been intensifying the scale and frequency of rock-ice avalanches and similar catastrophic mass movements in high-mountain regions. The difference in the physical characteristics of rock and ice particles leads to mixing and segregation during flow. Although, both particle segregation and the presence of ice fundamentally alter flow behavior, the joint influence and feedback of these two aspects are overlooked in state-of-the-art rock-ice avalanche models. Using discrete element simulations, we show that by controlling the distribution of inter-particle frictional interactions within the mixture, segregation patterns resulting from the size, density, concentration, and surface friction differences of rock and ice phases can induce sharp velocity gradients along the flowing thickness. Flowing layers where low friction contacts with ice are abundant tend to flow faster and can induce slow creeping motion in an otherwise static basal layer dominated by more frictional rocks. Based on these observations, we find that the effective friction of rock-ice flows for various mixture concentrations and size ratios can be obtained as a sum of the single-phase rheologies of rocks and ice weighted according to their microscopic contact probabilities. This effective friction for rock-ice mixtures allows us to extend a recent non-local granular fluidity framework that captures the complex segregation-flow feedback mechanism in rock-ice flows. The findings provide a deeper micromechanical understanding of how particle interactions influence rock-ice avalanche mobility, which ultimately improves flow models needed for hazard assessment and mitigation.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 9","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}