首页 > 最新文献

Journal of Geophysical Research: Earth Surface最新文献

英文 中文
Postfire Sediment Mobilization and Its Downstream Implications Across California, 1984–2021 1984-2021 年加州各地的火后沉积物移动及其对下游的影响
IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-08-27 DOI: 10.1029/2024JF007725
H. W. Dow, A. E. East, J. B. Sankey, J. A. Warrick, J. Kostelnik, D. N. Lindsay, J. W. Kean

Fire facilitates erosion through changes in vegetation and soil, with major postfire erosion commonly occurring even with moderate rainfall. As climate warms, the western United States (U.S.) is experiencing an intensifying fire regime and increasing frequency of extreme rain. We evaluated whether these hydroclimatic changes are evident in patterns of postfire erosion by modeling hillslope erosion following all wildfires larger than 100 km2 in California from 1984 to 2021. Our results show that annual statewide postfire hillslope erosion has increased significantly over time. To supplement the hillslope erosion modeling, we compiled modeled and measured postfire debris-flow volumes. We find that, in northern California, more than 50% of fires triggering the top 20 values of sediment mass and sediment yield occurred in the most recent decade (between 2011 and 2021). In southern California, the postfire sediment budget was dominated by debris flows, which showed no temporal trend. Our analysis reveals that 57% of postfire sediment erosion statewide occurred upstream of reservoirs, indicating potential impacts to reservoir storage capacity and thus increased risk to water-resource security with ongoing climate change.

火灾通过改变植被和土壤促进了水土流失,即使在降雨量适中的情况下,火灾后通常也会发生严重的水土流失。随着气候变暖,美国西部正经历着日益加剧的火灾和日益频繁的极端降雨。我们通过模拟 1984 年至 2021 年加利福尼亚州所有面积大于 100 平方公里的野火后的山坡侵蚀情况,评估了这些水文气候的变化是否明显反映在火后侵蚀模式中。我们的结果表明,随着时间的推移,每年全州范围内的火后山坡侵蚀量都在显著增加。为了补充山坡侵蚀模型,我们汇编了模拟和测量的火灾后泥石流量。我们发现,在北加州,引发沉积物质量和沉积物产量前 20 值的火灾中,有 50% 以上发生在最近十年(2011 年至 2021 年)。在南加州,火灾后的沉积物预算以泥石流为主,没有显示出时间趋势。我们的分析表明,全州 57% 的火后沉积物侵蚀发生在水库上游,这表明随着气候变化的持续,水库的蓄水能力可能会受到影响,从而增加水资源安全的风险。
{"title":"Postfire Sediment Mobilization and Its Downstream Implications Across California, 1984–2021","authors":"H. W. Dow,&nbsp;A. E. East,&nbsp;J. B. Sankey,&nbsp;J. A. Warrick,&nbsp;J. Kostelnik,&nbsp;D. N. Lindsay,&nbsp;J. W. Kean","doi":"10.1029/2024JF007725","DOIUrl":"https://doi.org/10.1029/2024JF007725","url":null,"abstract":"<p>Fire facilitates erosion through changes in vegetation and soil, with major postfire erosion commonly occurring even with moderate rainfall. As climate warms, the western United States (U.S.) is experiencing an intensifying fire regime and increasing frequency of extreme rain. We evaluated whether these hydroclimatic changes are evident in patterns of postfire erosion by modeling hillslope erosion following all wildfires larger than 100 km<sup>2</sup> in California from 1984 to 2021. Our results show that annual statewide postfire hillslope erosion has increased significantly over time. To supplement the hillslope erosion modeling, we compiled modeled and measured postfire debris-flow volumes. We find that, in northern California, more than 50% of fires triggering the top 20 values of sediment mass and sediment yield occurred in the most recent decade (between 2011 and 2021). In southern California, the postfire sediment budget was dominated by debris flows, which showed no temporal trend. Our analysis reveals that 57% of postfire sediment erosion statewide occurred upstream of reservoirs, indicating potential impacts to reservoir storage capacity and thus increased risk to water-resource security with ongoing climate change.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007725","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constraining Mean Landslide Occurrence Rates for Non-Temporal Landslide Inventories Using High-Resolution Elevation Data 利用高分辨率高程数据约束非时空滑坡清单的平均滑坡发生率
IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-08-26 DOI: 10.1029/2024JF007700
J. B. Woodard, S. R. LaHusen, B. B. Mirus, K. R. Barnhart

Constraining landslide occurrence rates can help to generate landslide hazard models that predict the spatial and temporal occurrence of landslides. However, most landslide inventories do not include any temporal data due to the difficulties of dating landslide deposits. Here we introduce a method for estimating the mean landslide occurrence rate of deep-seated rotational and translational slides derived solely from high-resolution (≤3 m) elevation data and globally available estimates of the diffusion coefficient for sediment flux. The method applies a linear diffusion model to the roughest landslide deposits until they reach a representative non-landslide roughness distribution. This estimates the time for a landslide deposit to be unrecognizable in high-resolution digital elevation data, which we term the mean lifetime of the landslide. Using the mean lifetime and number of landslides within an area of interest, we can estimate the mean occurrence rate of landslides over that domain. We validate this approach using a comprehensive temporal inventory of landslides in western Oregon created using age-roughness curves that are calibrated with high-resolution elevation data and radiocarbon data. We find good agreement between our diffusion method and the existing age-roughness-derived estimates, producing mean lifetimes of 4500 and 5200 years (4% difference), respectively. Hazard maps produced using the two methodologies generally agree, with the maximum differences in landslide probability reaching 0.1. Due to the relative abundance of high-resolution elevation data compared with age-dated landslides, our method could help constrain landslide occurrence rates in areas previously considered unfeasible.

限制滑坡发生率有助于生成滑坡危险模型,预测滑坡在空间和时间上的发生率。然而,由于难以确定滑坡沉积物的年代,大多数滑坡清单不包括任何时间数据。在此,我们介绍一种方法,用于估算深层旋转滑坡和平移滑坡的平均发生率,该方法仅从高分辨率(≤3 米)高程数据和全球可用的沉积物通量扩散系数估算值中得出。该方法将线性扩散模型应用于最粗糙的滑坡沉积物,直到它们达到具有代表性的非滑坡粗糙度分布。这样就可以估算出滑坡沉积物在高分辨率数字高程数据中无法识别的时间,我们称之为滑坡的平均寿命。利用平均寿命和相关区域内的滑坡数量,我们可以估算出该区域内滑坡的平均发生率。我们使用俄勒冈州西部的滑坡综合时间清单验证了这种方法,该清单使用年龄-粗糙度曲线创建,并通过高分辨率海拔数据和放射性碳数据进行校准。我们发现,我们的扩散方法与现有的年龄-粗糙度估算结果非常一致,得出的平均寿命分别为 4500 年和 5200 年(相差 4%)。使用两种方法绘制的危害图基本一致,滑坡概率的最大差异达到 0.1。由于高分辨率的海拔数据相对于有年代的滑坡数据较为丰富,我们的方法可以帮助限制以前被认为不可行的地区的滑坡发生率。
{"title":"Constraining Mean Landslide Occurrence Rates for Non-Temporal Landslide Inventories Using High-Resolution Elevation Data","authors":"J. B. Woodard,&nbsp;S. R. LaHusen,&nbsp;B. B. Mirus,&nbsp;K. R. Barnhart","doi":"10.1029/2024JF007700","DOIUrl":"https://doi.org/10.1029/2024JF007700","url":null,"abstract":"<p>Constraining landslide occurrence rates can help to generate landslide hazard models that predict the spatial and temporal occurrence of landslides. However, most landslide inventories do not include any temporal data due to the difficulties of dating landslide deposits. Here we introduce a method for estimating the mean landslide occurrence rate of deep-seated rotational and translational slides derived solely from high-resolution (≤3 m) elevation data and globally available estimates of the diffusion coefficient for sediment flux. The method applies a linear diffusion model to the roughest landslide deposits until they reach a representative non-landslide roughness distribution. This estimates the time for a landslide deposit to be unrecognizable in high-resolution digital elevation data, which we term the mean lifetime of the landslide. Using the mean lifetime and number of landslides within an area of interest, we can estimate the mean occurrence rate of landslides over that domain. We validate this approach using a comprehensive temporal inventory of landslides in western Oregon created using age-roughness curves that are calibrated with high-resolution elevation data and radiocarbon data. We find good agreement between our diffusion method and the existing age-roughness-derived estimates, producing mean lifetimes of 4500 and 5200 years (4% difference), respectively. Hazard maps produced using the two methodologies generally agree, with the maximum differences in landslide probability reaching 0.1. Due to the relative abundance of high-resolution elevation data compared with age-dated landslides, our method could help constrain landslide occurrence rates in areas previously considered unfeasible.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007700","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reconciling Rapid Glacial Erosion and Steady Basin Accumulation Rates in the Late Cenozoic Through the Effect of Glacial Sediment on Fluvial Erosion 通过冰川沉积物对冲积侵蚀的影响来协调晚新生代的快速冰川侵蚀和稳定的盆地积累率
IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-08-24 DOI: 10.1029/2024JF007721
Sarah A. Schanz, Brian J. Yanites

The onset of glaciation in the late Cenozoic caused rapid bedrock erosion above the snowline; however, whether the influx of eroded sediment is recorded in continental weathering and basin accumulation rates is an ongoing debate. We propose that the transport of glacially eroded bedrock through the fluvial system damps the signal of rapid headwater erosion and results in steady basin-integrated sediment flux. Using a numerical model with integrated glacial and fluvial erosion, we find that headwater bedrock erosion rates increase rapidly at the onset of glaciation and continue to fluctuate with climatic oscillation. However, bedrock erosion rates decrease in the downstream fluvial system because larger grain sizes from glaciers result in an increase in sediment cover effect. When erosion and sediment flux rates are averaged, long-term sediment flux is similar to nonglacial flux values, while localized bedrock erosion rates in the glaciated landscape are elevated 2–4 times compared to nonglacial values. Our simulated values are consistent with field measurements of headwater bedrock erosion, and the pattern of sediment flux and fluvial erosion matches paraglacial theory and terrace aggradation records. Thus, we emphasize that the bedload produced from glacial erosion provides a missing link to reconcile late Cenozoic erosion records.

新生代晚期开始的冰川作用造成了雪线以上基岩的快速侵蚀;然而,侵蚀沉积物的涌入是否记录在大陆风化和盆地堆积率中一直是一个争论不休的问题。我们提出,冰川侵蚀的基岩通过河川系统的运移抑制了上游快速侵蚀的信号,并导致稳定的流域综合沉积通量。利用冰川和河川综合侵蚀的数值模型,我们发现在冰川期开始时,上游基岩侵蚀率迅速上升,并随着气候振荡而持续波动。然而,基岩侵蚀率在下游河川系统中却有所下降,因为冰川产生的更大粒径会导致沉积物覆盖效应增加。如果对侵蚀率和沉积通量率进行平均,长期沉积通量与非冰期通量值相似,而冰川地貌的局部基岩侵蚀率则比非冰期值高出 2-4 倍。我们的模拟值与顶水基岩侵蚀的实地测量值一致,沉积通量和河流侵蚀模式与副冰期理论和阶地侵蚀记录相吻合。因此,我们强调,冰川侵蚀产生的基岩负荷为协调晚新生代侵蚀记录提供了一个缺失的环节。
{"title":"Reconciling Rapid Glacial Erosion and Steady Basin Accumulation Rates in the Late Cenozoic Through the Effect of Glacial Sediment on Fluvial Erosion","authors":"Sarah A. Schanz,&nbsp;Brian J. Yanites","doi":"10.1029/2024JF007721","DOIUrl":"https://doi.org/10.1029/2024JF007721","url":null,"abstract":"<p>The onset of glaciation in the late Cenozoic caused rapid bedrock erosion above the snowline; however, whether the influx of eroded sediment is recorded in continental weathering and basin accumulation rates is an ongoing debate. We propose that the transport of glacially eroded bedrock through the fluvial system damps the signal of rapid headwater erosion and results in steady basin-integrated sediment flux. Using a numerical model with integrated glacial and fluvial erosion, we find that headwater bedrock erosion rates increase rapidly at the onset of glaciation and continue to fluctuate with climatic oscillation. However, bedrock erosion rates decrease in the downstream fluvial system because larger grain sizes from glaciers result in an increase in sediment cover effect. When erosion and sediment flux rates are averaged, long-term sediment flux is similar to nonglacial flux values, while localized bedrock erosion rates in the glaciated landscape are elevated 2–4 times compared to nonglacial values. Our simulated values are consistent with field measurements of headwater bedrock erosion, and the pattern of sediment flux and fluvial erosion matches paraglacial theory and terrace aggradation records. Thus, we emphasize that the bedload produced from glacial erosion provides a missing link to reconcile late Cenozoic erosion records.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007721","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142050552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chronology of Sedimentation and Landscape Evolution in the Okavango Rift Zone, a Developing Young Rift in Southern Africa 奥卡万戈大裂谷区沉积和地貌演变年表--南部非洲正在形成的年轻大裂谷
IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-08-19 DOI: 10.1029/2023JF007554
S. Vainer, C. Schmidt, E. Garzanti, Y. Ben Dor, G. Pastore, T. Mokatse, C. Prud'homme, L. Leanni, G. King, ASTER Team, E. P. Verrecchia

The Kalahari Basin in southern Africa, shaped by subsidence and epeirogeny, features the Okavango Rift Zone (ORZ) as a significant structural element characterized by diffused extensional deformation forming a prominent depocenter. This study elucidates the Pleistocene landscape evolution of the ORZ by examining the chronology of sediment formation and filling this incipient rift and its surroundings. Modeling of cosmogenic nuclide concentrations in surficial eolian sand from distinct structural blocks around the ORZ provides insights into sand's residence time on the surface. Sand formation occurred from ∼2.2 to 1.1 Ma, coinciding with regional tectonic events. Notably, provenance analyses of sand within ORZ's lowermost block where large alluvial fans are found indicate different source rocks and depositional environments than those of the eolian sands found at a higher elevation. This suggests that the major phase of rift subsidence and the following incision of alluvial systems into the rift occurred after eolian dune formation. Luminescence dating reveals that deposition in alluvial fan settings in the incised landscape began not later than ∼250 ka, and that a lacustrine environment existed since at least ∼140 ka. The established chronological framework constrains the geomorphological effects of the different tectono-climatic forces that shaped this nascent rifting area. It highlights two pronounced stages of landscape development, with the most recent major deformation event in the evolving rift probably occurring during the middle Pleistocene transition (1.2–0.75 Ma). This event is reflected as a striking change in the depositional environments due to the configurational changes accompanying rift progression.

非洲南部的卡拉哈里盆地是由沉降和扩张作用形成的,其中奥卡万戈裂谷带(Okavango Rift Zone,ORZ)是一个重要的构造元素,其特征是弥散的伸展变形形成了一个突出的沉积中心。本研究通过考察沉积物形成的年代学,并对这一初生裂谷及其周边地区进行填充,从而阐明奥卡万戈裂谷带的更新世地貌演变。通过对ORZ周围不同结构区块表层沉积物中宇宙核素浓度的建模,可以了解沉积物在地表的停留时间。沙子形成于2.2至1.1Ma之间,与区域构造事件相吻合。值得注意的是,对 ORZ 最下层区块(该区块有大型冲积扇)中的沙子进行的来源分析表明,其来源岩石和沉积环境与海拔较高处的风积沙不同。这表明,裂谷下沉的主要阶段以及冲积系统随后向裂谷的切入发生在风化沙丘形成之后。荧光测年显示,切入地貌中冲积扇环境的沉积开始时间不晚于 ∼250 ka,而湖泊环境至少从 ∼140 ka 开始就已经存在。所建立的年代学框架限制了塑造这一新生裂谷地区的不同构造-气候力量对地貌的影响。它突出显示了地貌发展的两个明显阶段,而裂谷演变中最近的一次重大变形事件可能发生在中更新世过渡时期(1.2-0.75 Ma)。这一事件反映了伴随着裂谷发展的构造变化所导致的沉积环境的显著变化。
{"title":"Chronology of Sedimentation and Landscape Evolution in the Okavango Rift Zone, a Developing Young Rift in Southern Africa","authors":"S. Vainer,&nbsp;C. Schmidt,&nbsp;E. Garzanti,&nbsp;Y. Ben Dor,&nbsp;G. Pastore,&nbsp;T. Mokatse,&nbsp;C. Prud'homme,&nbsp;L. Leanni,&nbsp;G. King,&nbsp;ASTER Team,&nbsp;E. P. Verrecchia","doi":"10.1029/2023JF007554","DOIUrl":"https://doi.org/10.1029/2023JF007554","url":null,"abstract":"<p>The Kalahari Basin in southern Africa, shaped by subsidence and epeirogeny, features the Okavango Rift Zone (ORZ) as a significant structural element characterized by diffused extensional deformation forming a prominent depocenter. This study elucidates the Pleistocene landscape evolution of the ORZ by examining the chronology of sediment formation and filling this incipient rift and its surroundings. Modeling of cosmogenic nuclide concentrations in surficial eolian sand from distinct structural blocks around the ORZ provides insights into sand's residence time on the surface. Sand formation occurred from ∼2.2 to 1.1 Ma, coinciding with regional tectonic events. Notably, provenance analyses of sand within ORZ's lowermost block where large alluvial fans are found indicate different source rocks and depositional environments than those of the eolian sands found at a higher elevation. This suggests that the major phase of rift subsidence and the following incision of alluvial systems into the rift occurred after eolian dune formation. Luminescence dating reveals that deposition in alluvial fan settings in the incised landscape began not later than ∼250 ka, and that a lacustrine environment existed since at least ∼140 ka. The established chronological framework constrains the geomorphological effects of the different tectono-climatic forces that shaped this nascent rifting area. It highlights two pronounced stages of landscape development, with the most recent major deformation event in the evolving rift probably occurring during the middle Pleistocene transition (1.2–0.75 Ma). This event is reflected as a striking change in the depositional environments due to the configurational changes accompanying rift progression.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JF007554","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142002562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Barchan-Barchan Dune Repulsion Investigated at the Grain Scale 在晶粒尺度上研究巴尚-巴尚沙丘斥力
IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-08-13 DOI: 10.1029/2024JF007741
N. C. Lima, W. R. Assis, C. A. Alvarez, E. M. Franklin

Barchans are eolian dunes of crescent shape found on Earth, Mars and other celestial bodies. Among the different types of barchan-barchan interaction, there is one, known as chasing, in which the dunes remain close but without touching each other. In this paper, we investigate the origins of this barchan-barchan dune repulsion by carrying out grain-scale numerical computations in which a pair of granular heaps is deformed by the fluid flow into barchan dunes that interact with each other. In our simulations, data such as position, velocity and resultant force are computed for each individual particle at each time step, allowing us to measure details of both the fluid and grains that explain the repulsion. We show the trajectories of grains, time-average resultant forces, and mass balances for each dune, and that the downstream barchan shrinks faster than the upstream one, keeping, thus, a relatively high velocity although in the wake of the upstream barchan. In its turn, this fast shrinkage is caused by the flow disturbance, which induces higher erosion on the downstream barchan and its circumvention by grains leaving the upstream dune. Our results help explaining the mechanisms behind the distribution of barchans in dune fields found on Earth and Mars.

沙丘是地球、火星和其他天体上发现的新月形风化沙丘。在沙丘-沙丘相互作用的不同类型中,有一种被称为 "追逐"(chasing),在这种情况下,沙丘保持接近,但不会相互接触。在本文中,我们通过进行粒度数值计算,将一对颗粒堆在流体的作用下变形为相互影响的沙丘,从而研究了这种沙丘-沙丘排斥的起源。在我们的模拟中,我们计算了每个颗粒在每个时间步的位置、速度和结果力等数据,从而可以测量流体和颗粒的细节,从而解释斥力。我们展示了每个沙丘的沙粒轨迹、时间平均结果力和质量平衡,并发现下游沙丘比上游沙丘收缩得更快,因此,虽然上游沙丘后的沙粒速度相对较高,但沙粒仍保持较高的速度。反过来,这种快速收缩是由水流扰动引起的,水流扰动导致下游沙丘的侵蚀加剧,而上游沙丘的沙粒则绕过了下游沙丘。我们的研究结果有助于解释在地球和火星上发现的沙丘场中沙丘分布背后的机制。
{"title":"Barchan-Barchan Dune Repulsion Investigated at the Grain Scale","authors":"N. C. Lima,&nbsp;W. R. Assis,&nbsp;C. A. Alvarez,&nbsp;E. M. Franklin","doi":"10.1029/2024JF007741","DOIUrl":"https://doi.org/10.1029/2024JF007741","url":null,"abstract":"<p>Barchans are eolian dunes of crescent shape found on Earth, Mars and other celestial bodies. Among the different types of barchan-barchan interaction, there is one, known as chasing, in which the dunes remain close but without touching each other. In this paper, we investigate the origins of this barchan-barchan dune repulsion by carrying out grain-scale numerical computations in which a pair of granular heaps is deformed by the fluid flow into barchan dunes that interact with each other. In our simulations, data such as position, velocity and resultant force are computed for each individual particle at each time step, allowing us to measure details of both the fluid and grains that explain the repulsion. We show the trajectories of grains, time-average resultant forces, and mass balances for each dune, and that the downstream barchan shrinks faster than the upstream one, keeping, thus, a relatively high velocity although in the wake of the upstream barchan. In its turn, this fast shrinkage is caused by the flow disturbance, which induces higher erosion on the downstream barchan and its circumvention by grains leaving the upstream dune. Our results help explaining the mechanisms behind the distribution of barchans in dune fields found on Earth and Mars.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Talus Pile Mobility in Valley Widening Processes and the Development of Wide Bedrock Valleys, Buffalo River, AR 距石桩流动性在山谷拓宽过程和宽基岩山谷发育中的作用,阿肯色州布法罗河
IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-08-10 DOI: 10.1029/2023JF007612
O. H. Groeber, A. L. Langston

Valley width is largely controlled by lithology and upstream drainage area, but little work has focused on identifying the processes through which valleys widen. Bedrock valleys widen by first laterally eroding bedrock valley walls, followed by the collapse of overlying bedrock material that must then be transported away from the valley wall before the valley can continue widening. We hypothesize that talus piles that cannot be transported by the river protect the valley wall and slow valley widening, while talus piles that are rapidly transported allow for uninterrupted valley widening. We used field measurements from 40 locations in both wide and narrow valleys along the Buffalo River, AR to test this hypothesis. Our data show that wide valleys tend to have fewer talus piles and smaller talus grain sizes, whereas talus in narrow valleys is larger in size and more continuous along valley walls. We calculated potential talus block entrainment at each site location and found that talus blocks in wide valleys are potentially entrained and moved away from valley walls during moderate and large flood events, whereas talus blocks in narrow valleys are very rarely moved. Our results show that the potential transport of talus piles protecting bedrock valley walls from widening is controlled by the block size of collapsed bedrock wall material relative to stream competency. Our results also suggest that persistence versus mobility of collapsed talus piles is an important process in the development of wide bedrock valleys.

山谷宽度在很大程度上受岩性和上游排水面积的控制,但很少有人关注山谷拓宽的过程。基岩河谷首先通过横向侵蚀基岩谷壁来拓宽,然后是上覆基岩材料的崩塌,在河谷继续拓宽之前,上覆基岩材料必须被运离谷壁。我们假设,无法被河流搬运的滑石堆积物可以保护谷壁,减缓山谷的拓宽,而快速搬运的滑石堆积物则可以使山谷不间断地拓宽。我们利用对 AR 州布法罗河沿岸宽谷和窄谷 40 个地点的实地测量来验证这一假设。我们的数据显示,宽谷中的距石堆往往较少,距石粒径较小,而窄谷中的距石粒径较大,沿谷壁的连续性较强。我们计算了每个地点的潜在滑石块夹带量,发现在中度和大洪水期间,宽谷中的滑石块有可能被夹带并移离谷壁,而窄谷中的滑石块则很少移动。我们的研究结果表明,保护基岩谷壁不被拓宽的距石堆的潜在迁移能力受基岩谷壁坍塌物质的块体大小和溪流能力的控制。我们的研究结果还表明,坍塌距石堆的持久性与流动性是宽基岩谷发展的一个重要过程。
{"title":"The Role of Talus Pile Mobility in Valley Widening Processes and the Development of Wide Bedrock Valleys, Buffalo River, AR","authors":"O. H. Groeber,&nbsp;A. L. Langston","doi":"10.1029/2023JF007612","DOIUrl":"10.1029/2023JF007612","url":null,"abstract":"<p>Valley width is largely controlled by lithology and upstream drainage area, but little work has focused on identifying the processes through which valleys widen. Bedrock valleys widen by first laterally eroding bedrock valley walls, followed by the collapse of overlying bedrock material that must then be transported away from the valley wall before the valley can continue widening. We hypothesize that talus piles that cannot be transported by the river protect the valley wall and slow valley widening, while talus piles that are rapidly transported allow for uninterrupted valley widening. We used field measurements from 40 locations in both wide and narrow valleys along the Buffalo River, AR to test this hypothesis. Our data show that wide valleys tend to have fewer talus piles and smaller talus grain sizes, whereas talus in narrow valleys is larger in size and more continuous along valley walls. We calculated potential talus block entrainment at each site location and found that talus blocks in wide valleys are potentially entrained and moved away from valley walls during moderate and large flood events, whereas talus blocks in narrow valleys are very rarely moved. Our results show that the potential transport of talus piles protecting bedrock valley walls from widening is controlled by the block size of collapsed bedrock wall material relative to stream competency. Our results also suggest that persistence versus mobility of collapsed talus piles is an important process in the development of wide bedrock valleys.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JF007612","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rates of Evacuation of Bedload Sediment From an Alpine Glacier Control Proglacial Stream Morphodynamics 阿尔卑斯冰川床载沉积物的蒸发率控制冰川溪流形态动力学
IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-08-10 DOI: 10.1029/2024JF007727
D. Mancini, M. Roncoroni, M. Dietze, M. Jenkin, T. Müller, B. Ouvry, F. Miesen, Q. Pythoud, M. Hofmann, F. Lardet, A. P. Nicholas, S. N. Lane

Proglacial forefields commonly include highly dynamic fluvial systems associated with the fundamental instability between topography, flow hydraulics and sediment transport. However, there is limited knowledge of how these systems respond to changing subglacial hydrology and sediment supply. We investigated this relationship using the first continuous field-collected data sets for both suspended and bedload sediment export and proglacial river dynamics for an Alpine glacier forefield, the Glacier d’Otemma, Switzerland. The results show a strong sensitivity of fluvial morphodynamics to the balance between sediment transport capacity and supply. When subglacial bedload export rates exceeded fluvial transport capacity, we found bar construction leading to net forefield aggradation and surficial coarsening, especially on bar heads. This intensified braiding buffered the downstream transport of coarse sediment. When subglacial bedload export rates were lower than transport capacity, incision occurred, with reduced braiding intensity, net erosion and important amounts of bedload leaving the proglacial system. We found a net fining of surficial deposits except for very isolated coarsening patterns on bar heads. Thus, proglacial forefield morphodynamics are strongly conditioned by subglacial hydrology and sediment supply, but this conditioning is also influenced by the response of the forefield itself. Proglacial forefields have an important influence on the longitudinal connectivity of sediment flux in regions sensitive to climate change, such as recently deglaciated high mountain areas. The linkages we report between subglacial processes and river morphodynamics are critical for understanding the development of embryonic forefield ecosystems.

冰川前场通常包括与地形、流动水力学和沉积物运移之间的基本不稳定性有关的高度动态河川系统。然而,人们对这些系统如何应对冰川下水文和沉积物供应变化的了解十分有限。我们利用首次为阿尔卑斯冰川前场--瑞士奥特玛冰川--采集的悬浮和床载沉积物输出以及冰川河流动力学的连续实地数据集,研究了这种关系。结果表明,河流形态动力学对沉积物输送能力和供给之间的平衡非常敏感。当冰川下的床面负荷输出率超过了河道的运输能力时,我们发现条带的形成会导致前场的净扩张和表层的粗化,尤其是在条带头部。这种加剧的辫状结构缓冲了粗沉积物的下游搬运。当冰川下沉积物的输出率低于运输能力时,就会发生切裂,导致辫状强度降低、净侵蚀和大量沉积物离开冰川系统。我们发现,除了极个别的棒头粗化模式外,表层沉积物出现了净细化。因此,冰川前场形态动力学受到冰川下水文和沉积物供应的强烈制约,但这种制约也受到前场本身反应的影响。在对气候变化敏感的地区,如近期冰川消融的高山地区,冰川前场对沉积通量的纵向连通性具有重要影响。我们所报告的冰川下过程与河流形态动力学之间的联系对于了解前场生态系统雏形的发展至关重要。
{"title":"Rates of Evacuation of Bedload Sediment From an Alpine Glacier Control Proglacial Stream Morphodynamics","authors":"D. Mancini,&nbsp;M. Roncoroni,&nbsp;M. Dietze,&nbsp;M. Jenkin,&nbsp;T. Müller,&nbsp;B. Ouvry,&nbsp;F. Miesen,&nbsp;Q. Pythoud,&nbsp;M. Hofmann,&nbsp;F. Lardet,&nbsp;A. P. Nicholas,&nbsp;S. N. Lane","doi":"10.1029/2024JF007727","DOIUrl":"10.1029/2024JF007727","url":null,"abstract":"<p>Proglacial forefields commonly include highly dynamic fluvial systems associated with the fundamental instability between topography, flow hydraulics and sediment transport. However, there is limited knowledge of how these systems respond to changing subglacial hydrology and sediment supply. We investigated this relationship using the first continuous field-collected data sets for both suspended and bedload sediment export and proglacial river dynamics for an Alpine glacier forefield, the Glacier d’Otemma, Switzerland. The results show a strong sensitivity of fluvial morphodynamics to the balance between sediment transport capacity and supply. When subglacial bedload export rates exceeded fluvial transport capacity, we found bar construction leading to net forefield aggradation and surficial coarsening, especially on bar heads. This intensified braiding buffered the downstream transport of coarse sediment. When subglacial bedload export rates were lower than transport capacity, incision occurred, with reduced braiding intensity, net erosion and important amounts of bedload leaving the proglacial system. We found a net fining of surficial deposits except for very isolated coarsening patterns on bar heads. Thus, proglacial forefield morphodynamics are strongly conditioned by subglacial hydrology and sediment supply, but this conditioning is also influenced by the response of the forefield itself. Proglacial forefields have an important influence on the longitudinal connectivity of sediment flux in regions sensitive to climate change, such as recently deglaciated high mountain areas. The linkages we report between subglacial processes and river morphodynamics are critical for understanding the development of embryonic forefield ecosystems.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007727","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulated Slidequakes: Insights From DEM Simulations Into the High-Frequency Seismic Signal Generated by Geophysical Granular Flows 模拟滑动地震:从 DEM 模拟中洞察地球物理颗粒流产生的高频地震信号
IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-08-09 DOI: 10.1029/2023JF007455
M. I. Arran, A. Mangeney, J. De Rosny, R. Toussaint

Geophysical granular flows generate seismic signals known as “slidequakes” or “landquakes”, with low-frequency components whose generation by mean forces is widely used to infer hazard-relevant flow properties. Many more such properties could be inferred by understanding the fluctuating forces that generate slidequakes' higher frequency components and, to do so, we conducted discrete-element simulations that examined the fluctuating forces exerted by steady, downslope-periodic granular flows on fixed, rough bases. Unlike our previous laboratory experiments, our simulations precluded basal slip. We show that, in its absence, simulated basal forces' power spectra have high-frequency components more accurately predicted using mean shear rates than using depth-averaged flow velocities, and can have intermediate-frequency components which we relate to chains of prolonged interparticle contacts. We develop a “minimal model”, which uses a flow's collisional properties to even more accurately predict the high-frequency components, and empirically parametrize this model in terms of mean flow properties, for practical application. Finally, we demonstrate that the bulk inertial number determines not only the magnitude ratio of rapidly fluctuating and mean forces on a unit basal area, consistent with previous experimental results, but also the relative magnitudes of the high and intermediate-frequency force components.

地球物理颗粒流产生的地震信号被称为 "滑动地震 "或 "陆震",其低频成分由平均力产生,被广泛用于推断与危害相关的流动特性。通过了解产生滑动地震高频成分的波动力,我们可以推断出更多此类特性。为此,我们进行了离散元素模拟,研究了固定粗糙基底上稳定、下坡周期性颗粒流动所产生的波动力。与之前的实验室实验不同,我们的模拟排除了基底滑移。我们的研究表明,在没有基底滑移的情况下,模拟基底力的功率谱具有高频成分,使用平均剪切率比使用深度平均流速更能准确地预测这些成分,而且可能具有中频成分,我们将其与颗粒间的长时间接触链联系起来。我们建立了一个 "最小模型",利用流动的碰撞特性来更准确地预测高频成分,并根据平均流动特性对该模型进行了经验参数化,以便实际应用。最后,我们证明了体惯性数不仅决定了单位基底面积上快速波动力和平均力的大小比(与之前的实验结果一致),还决定了高频和中频力分量的相对大小。
{"title":"Simulated Slidequakes: Insights From DEM Simulations Into the High-Frequency Seismic Signal Generated by Geophysical Granular Flows","authors":"M. I. Arran,&nbsp;A. Mangeney,&nbsp;J. De Rosny,&nbsp;R. Toussaint","doi":"10.1029/2023JF007455","DOIUrl":"https://doi.org/10.1029/2023JF007455","url":null,"abstract":"<p>Geophysical granular flows generate seismic signals known as “slidequakes” or “landquakes”, with low-frequency components whose generation by mean forces is widely used to infer hazard-relevant flow properties. Many more such properties could be inferred by understanding the fluctuating forces that generate slidequakes' higher frequency components and, to do so, we conducted discrete-element simulations that examined the fluctuating forces exerted by steady, downslope-periodic granular flows on fixed, rough bases. Unlike our previous laboratory experiments, our simulations precluded basal slip. We show that, in its absence, simulated basal forces' power spectra have high-frequency components more accurately predicted using mean shear rates than using depth-averaged flow velocities, and can have intermediate-frequency components which we relate to chains of prolonged interparticle contacts. We develop a “minimal model”, which uses a flow's collisional properties to even more accurately predict the high-frequency components, and empirically parametrize this model in terms of mean flow properties, for practical application. Finally, we demonstrate that the bulk inertial number determines not only the magnitude ratio of rapidly fluctuating and mean forces on a unit basal area, consistent with previous experimental results, but also the relative magnitudes of the high and intermediate-frequency force components.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JF007455","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Influence of Coral Reef Spur and Groove Morphology on Wave Energy Dissipation in Contrasting Reef Environments 珊瑚礁棘刺和沟槽形态对不同珊瑚礁环境中波浪能量消耗的影响
IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-08-08 DOI: 10.1029/2023JF007424
Lachlan Perris, Tristan Salles, Thomas E. Fellowes, Stephanie Duce, Jody Webster, Ana Vila-Concejo

Coral reefs protect coastlines from inundation and flooding and serve over 200 million people globally. Wave transformation has previously been studied on coral reef flats with limited focus on forereef zones where wave transformation is greatest during high-energy conditions. This study investigates the role of forereef spur and groove (SaG) morphology in wave energy dissipation and transmission at the reef crest. Using XBeach on LiDAR-derived bathymetry from One Tree Island in the southern Great Barrier Reef, we reproduced dissipation rates comparable to SaG field studies. We examined how wave energy dissipation differs between realistic bathymetry and those with SaG features removed, demonstrating an up to 40% decrease in dissipation when SaG features are absent. We then investigated changes to wave energy dissipation and wave transmission at the reef crest based on IPCC AR5 emission scenarios (RCP2.6 and RCP8.5) and a total disaster scenario (TD) for the year 2100. For RCP2.6, an increase in wave heights of 0.8 m and an increase in water level of 0.3 m resulted in a two-fold increase in dissipation rates. For RCP8.5 and TD, with no increase in incident wave height, dissipation rates were 29% and 395% lower than RCP2.6. This resulted in increased wave transmission at the reef crest by 1.8 and 2.7 m for the RCP8.5- and TD based models, respectively, when compared to the RCP2.6-based model. The results from our novel modeling approach of using long-shore varying accurate bathymetry on forereefs show increased wave energy dissipation rates with implications for reducing coastal flooding and island inundation on reef-lined coasts.

珊瑚礁保护海岸线免受淹没和洪水侵袭,为全球 2 亿多人提供服务。以前曾对珊瑚礁平地的波浪转化进行过研究,但对前礁区的关注有限,因为在高能量条件下,前礁区的波浪转化最大。本研究调查了前礁刺和凹槽(SaG)形态在礁顶波浪能量消散和传播中的作用。我们使用 XBeach 对大堡礁南部一棵树岛的 LiDAR 水深测量进行了分析,再现了与 SaG 实地研究相当的消散率。我们研究了现实水深测量与去除 SaG 特征的水深测量之间的波浪能量耗散有何不同,结果表明,当没有 SaG 特征时,波浪能量耗散最多会减少 40%。然后,我们根据 IPCC AR5 排放情景(RCP2.6 和 RCP8.5)以及 2100 年的全面灾难情景(TD),研究了波浪能量耗散和波浪在礁石峰顶传播的变化。对于 RCP2.6,波高增加 0.8 米和水位增加 0.3 米会导致消散率增加两倍。对于 RCP8.5 和 TD,在入射波高不增加的情况下,消散率分别比 RCP2.6 低 29% 和 395%。与基于 RCP2.6 的模型相比,基于 RCP8.5 和 TD 的模型在礁石波峰处的波浪传播分别增加了 1.8 米和 2.7 米。我们采用新颖的建模方法,在前礁上使用长海岸线变化的精确水深测量,结果表明波浪能量消散率提高了,这对减少沿海洪水和岛屿淹没礁石海岸具有重要意义。
{"title":"The Influence of Coral Reef Spur and Groove Morphology on Wave Energy Dissipation in Contrasting Reef Environments","authors":"Lachlan Perris,&nbsp;Tristan Salles,&nbsp;Thomas E. Fellowes,&nbsp;Stephanie Duce,&nbsp;Jody Webster,&nbsp;Ana Vila-Concejo","doi":"10.1029/2023JF007424","DOIUrl":"10.1029/2023JF007424","url":null,"abstract":"<p>Coral reefs protect coastlines from inundation and flooding and serve over 200 million people globally. Wave transformation has previously been studied on coral reef flats with limited focus on forereef zones where wave transformation is greatest during high-energy conditions. This study investigates the role of forereef spur and groove (SaG) morphology in wave energy dissipation and transmission at the reef crest. Using XBeach on LiDAR-derived bathymetry from One Tree Island in the southern Great Barrier Reef, we reproduced dissipation rates comparable to SaG field studies. We examined how wave energy dissipation differs between realistic bathymetry and those with SaG features removed, demonstrating an up to 40% decrease in dissipation when SaG features are absent. We then investigated changes to wave energy dissipation and wave transmission at the reef crest based on IPCC AR5 emission scenarios (RCP2.6 and RCP8.5) and a total disaster scenario (TD) for the year 2100. For RCP2.6, an increase in wave heights of 0.8 m and an increase in water level of 0.3 m resulted in a two-fold increase in dissipation rates. For RCP8.5 and TD, with no increase in incident wave height, dissipation rates were 29% and 395% lower than RCP2.6. This resulted in increased wave transmission at the reef crest by 1.8 and 2.7 m for the RCP8.5- and TD based models, respectively, when compared to the RCP2.6-based model. The results from our novel modeling approach of using long-shore varying accurate bathymetry on forereefs show increased wave energy dissipation rates with implications for reducing coastal flooding and island inundation on reef-lined coasts.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JF007424","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating Grain Stress and Distinguishing Between Mobility and Transportability Improves Bedload Transport Estimates in Coarse-Bedded Mountain Rivers 估算颗粒应力并区分流动性和可迁移性可改进山区粗河床床面负荷迁移估算结果
IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-08-07 DOI: 10.1029/2024JF007662
Jordan Gilbert, Andrew C. Wilcox

Estimating sediment transport in mountain rivers is challenging because of sediment supply limitation, broad grain size distributions, complex flow hydraulics, and large form drag. Consequently, sediment transport equations are lacking for application in rivers where the bed is coarse and largely immobile, but small fractions of finer, transportable sized material contribute disproportionately to bedload transport. We introduce a framework for estimating sediment transport in mountain rivers that addresses two limitations: estimating the shear stress acting on mobile grains, and accounting for the difference between mobility of size fractions, that is, whether or not a specific grain size can move at a given flow, and transportability, which we define as how much of that size present in the bed will be recruited into transport. We use two bedload data sets to develop equations for predicting incipient motion and transport rates of each grain size fraction present in the bed. We tested the new equations against incipient motion and sediment transport data we collected from streams in the Rocky Mountains, USA, and against published regional sediment yield data. Using this method results in transport estimates where the finer fractions, despite being a small fraction of the bed surface, make up a large part of the total yield. Fractions greater than the median bed grain size are mobile only during peak flood flows, consistent with the existing mountain river bedload data sets. The approach is parsimonious, requiring only data that are often readily available or obtainable: a bed grain size distribution, hydraulic geometry measurements, and discharge.

由于沉积物供应限制、粒径分布广泛、水流水力学复杂以及形态阻力大,估算山区河流的沉积物输运具有挑战性。因此,在河床较粗且基本不流动,但小部分较细且可运输的物质对河床负荷运输的贡献不成比例的河流中,缺乏适用的泥沙输运方程。我们引入了一个用于估算山区河流泥沙输运的框架,该框架解决了两个局限性问题:估算作用于移动颗粒的剪应力,以及考虑粒度分部的移动性(即特定粒度是否能在给定流量下移动)和可输运性(我们将其定义为河床中该粒度有多少会被输运)之间的差异。我们利用两组床面负荷数据,建立了预测床面中每种粒径部分的初始运动和迁移率的方程。我们根据从美国落基山脉的溪流中收集的萌动和泥沙输运数据,以及已公布的区域泥沙产量数据,对新方程进行了测试。使用这种方法得出的输运估算结果是,尽管较细的部分只占河床表面的一小部分,但却占总产量的很大一部分。大于河床粒径中值的部分仅在洪峰流量期间流动,这与现有的山区河流河床负荷数据集一致。这种方法非常简单,只需要通常容易获得的数据:河床粒径分布、水力几何测量和排水量。
{"title":"Estimating Grain Stress and Distinguishing Between Mobility and Transportability Improves Bedload Transport Estimates in Coarse-Bedded Mountain Rivers","authors":"Jordan Gilbert,&nbsp;Andrew C. Wilcox","doi":"10.1029/2024JF007662","DOIUrl":"10.1029/2024JF007662","url":null,"abstract":"<p>Estimating sediment transport in mountain rivers is challenging because of sediment supply limitation, broad grain size distributions, complex flow hydraulics, and large form drag. Consequently, sediment transport equations are lacking for application in rivers where the bed is coarse and largely immobile, but small fractions of finer, transportable sized material contribute disproportionately to bedload transport. We introduce a framework for estimating sediment transport in mountain rivers that addresses two limitations: estimating the shear stress acting on mobile grains, and accounting for the difference between mobility of size fractions, that is, whether or not a specific grain size can move at a given flow, and transportability, which we define as how <i>much</i> of that size present in the bed will be recruited into transport. We use two bedload data sets to develop equations for predicting incipient motion and transport rates of each grain size fraction present in the bed. We tested the new equations against incipient motion and sediment transport data we collected from streams in the Rocky Mountains, USA, and against published regional sediment yield data. Using this method results in transport estimates where the finer fractions, despite being a small fraction of the bed surface, make up a large part of the total yield. Fractions greater than the median bed grain size are mobile only during peak flood flows, consistent with the existing mountain river bedload data sets. The approach is parsimonious, requiring only data that are often readily available or obtainable: a bed grain size distribution, hydraulic geometry measurements, and discharge.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Geophysical Research: Earth Surface
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1