首页 > 最新文献

Journal of Geophysical Research: Earth Surface最新文献

英文 中文
Sediment Storage and Fluvial Sediment Transport Linkages Across an Experimental Flood Sequence 试验性洪水序列中的沉积物存储和冲积物迁移联系
IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-09-01 DOI: 10.1029/2024JF007772
Marwan A. Hassan, J. Kevin Pierce, Shawn M. Chartrand

River channels are maintained by coordination between flow hydraulics, sediment supply, riparian vegetation, and sediment transport. This coordination is challenging to understand in natural flow regimes, where climatic and environmental drivers produce episodic flood and sediment supply events. To better understand the response of channels to flood sequences, we have undertaken laboratory flume experiments on sediment storage and export across a sequence of alternating hydrographs. Our experiments indicate that accumulated sediment storage before floods predicts sediment transport during floods, with sediment storage depletion during floods causing a nonlinear variation of sediment-transport rates through time. Likewise, sediment storage between floods follows a growth-to-saturation pattern, whereby the sediment transport gradually increases toward the sediment feed rate depending on the occupation of available sediment storage zones. To describe these non-linear variations, we developed a mathematical model which represents sediment transport and storage as a coupled dynamical system. This work highlights the crucial role that within-channel sediment storage and its history play in determining sediment export in rivers.

河道是通过水流水力学、泥沙供应、河岸植被和泥沙输运之间的协调来维持的。在自然水流系统中,这种协调很难理解,因为在自然水流系统中,气候和环境因素会产生偶发性洪水和泥沙供应事件。为了更好地了解河道对洪水序列的响应,我们在实验室水槽中进行了一系列交替水文过程中的沉积物存储和输出实验。我们的实验表明,洪水前的累积沉积物储量可预测洪水期间的沉积物运移,洪水期间的沉积物储量耗竭会导致沉积物运移速率随时间发生非线性变化。同样,洪水间歇期的沉积物储量也遵循增长到饱和的模式,即根据可用沉积物储量区的占用情况,沉积物运移率逐渐向沉积物进给率方向增长。为了描述这些非线性变化,我们建立了一个数学模型,将泥沙输运和储存作为一个耦合动力系统来表示。这项工作强调了河道内泥沙存储及其历史在决定河流泥沙输出中的关键作用。
{"title":"Sediment Storage and Fluvial Sediment Transport Linkages Across an Experimental Flood Sequence","authors":"Marwan A. Hassan,&nbsp;J. Kevin Pierce,&nbsp;Shawn M. Chartrand","doi":"10.1029/2024JF007772","DOIUrl":"https://doi.org/10.1029/2024JF007772","url":null,"abstract":"<p>River channels are maintained by coordination between flow hydraulics, sediment supply, riparian vegetation, and sediment transport. This coordination is challenging to understand in natural flow regimes, where climatic and environmental drivers produce episodic flood and sediment supply events. To better understand the response of channels to flood sequences, we have undertaken laboratory flume experiments on sediment storage and export across a sequence of alternating hydrographs. Our experiments indicate that accumulated sediment storage before floods predicts sediment transport during floods, with sediment storage depletion during floods causing a nonlinear variation of sediment-transport rates through time. Likewise, sediment storage between floods follows a growth-to-saturation pattern, whereby the sediment transport gradually increases toward the sediment feed rate depending on the occupation of available sediment storage zones. To describe these non-linear variations, we developed a mathematical model which represents sediment transport and storage as a coupled dynamical system. This work highlights the crucial role that within-channel sediment storage and its history play in determining sediment export in rivers.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 9","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using Disorder Metrics to Distinguish Discharge-Driven From Drainage Area-Driven Incision and Quantify Deviations in Channel Steepness 利用失序度量法区分排水量驱动型和排水面积驱动型切变,并量化河道陡度偏差
IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-08-31 DOI: 10.1029/2023JF007553
Marina Ruiz Sánchez-Oro, Simon M. Mudd, Boris Gailleton

The rate of channel incision in bedrock rivers is often described using a power law relationship that scales erosion with drainage area. However, erosion in landscapes that experience strong rainfall gradients may be better described by discharge instead of drainage area. In this study, we test if these two end member scenarios result in identifiable topographic signatures in both idealized numerical simulations and in natural landscapes. We find that in simulations using homogeneous lithology, we can differentiate a posteriori between drainage area and discharge-driven incision scenarios by quantifying the relative disorder of channel profiles, as measured by how well tributary profiles mimic both the main stem channel and each other. The more heterogeneous the landscape becomes, the harder it proves to identify the disorder signatures of the end member incision rules. We then apply these indicators to natural landscapes, and find, among eight test areas, no clear topographic signal that allows us to conclude a discharge or area-driven incision rule is more appropriate. We then quantify the distortion in the channel steepness index induced by changing the incision rule. Distortion in the channel steepness index can also be driven by changes to the assumed reference concavity index, and we find that distortions in the normalized channel steepness index, frequently used as a proxy for erosion rates, is more sensitive to changes in the concavity index than to changes in the assumed incision rule. This makes it a priority to optimize the concavity index even under an unknown incision mechanism.

基岩河流的河道内切速率通常采用幂律关系来描述,即侵蚀程度与排水面积成比例关系。然而,在降雨梯度较大的地貌中,用排水量而不是排水面积来描述侵蚀可能会更好。在本研究中,我们测试了这两种最终结果是否会在理想化的数值模拟和自然景观中产生可识别的地形特征。我们发现,在使用均质岩性的模拟中,我们可以通过量化河道剖面的相对无序程度(即支流剖面对主干河道和彼此剖面的模仿程度)来区分排水面积方案和排水驱动的切入方案。景观的异质性越强,就越难识别末端侵蚀规则的无序特征。然后,我们将这些指标应用到自然景观中,发现在八个测试区域中,没有明显的地形信号能让我们得出结论,认为排水或面积驱动的切割规则更合适。然后,我们对改变切割规则所引起的河道陡度指数失真进行了量化。假定的参考凹度指数的变化也会导致河道陡度指数失真,而且我们发现,经常被用作侵蚀率替代指标的归一化河道陡度指数对凹度指数变化的敏感度要高于假定的切入规则的变化。因此,即使在切入机制未知的情况下,优化凹度指数也是当务之急。
{"title":"Using Disorder Metrics to Distinguish Discharge-Driven From Drainage Area-Driven Incision and Quantify Deviations in Channel Steepness","authors":"Marina Ruiz Sánchez-Oro,&nbsp;Simon M. Mudd,&nbsp;Boris Gailleton","doi":"10.1029/2023JF007553","DOIUrl":"https://doi.org/10.1029/2023JF007553","url":null,"abstract":"<p>The rate of channel incision in bedrock rivers is often described using a power law relationship that scales erosion with drainage area. However, erosion in landscapes that experience strong rainfall gradients may be better described by discharge instead of drainage area. In this study, we test if these two end member scenarios result in identifiable topographic signatures in both idealized numerical simulations and in natural landscapes. We find that in simulations using homogeneous lithology, we can differentiate <i>a posteriori</i> between drainage area and discharge-driven incision scenarios by quantifying the relative disorder of channel profiles, as measured by how well tributary profiles mimic both the main stem channel and each other. The more heterogeneous the landscape becomes, the harder it proves to identify the disorder signatures of the end member incision rules. We then apply these indicators to natural landscapes, and find, among eight test areas, no clear topographic signal that allows us to conclude a discharge or area-driven incision rule is more appropriate. We then quantify the distortion in the channel steepness index induced by changing the incision rule. Distortion in the channel steepness index can also be driven by changes to the assumed reference concavity index, and we find that distortions in the normalized channel steepness index, frequently used as a proxy for erosion rates, is more sensitive to changes in the concavity index than to changes in the assumed incision rule. This makes it a priority to optimize the concavity index even under an unknown incision mechanism.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 9","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JF007553","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RegionGrow3D: A Deterministic Analysis for Characterizing Discrete Three-Dimensional Landslide Source Areas on a Regional Scale RegionGrow3D:用于描述区域范围内离散三维滑坡源区的确定性分析方法
IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-08-31 DOI: 10.1029/2024JF007815
Nicolas W. Mathews, Ben A. Leshchinsky, Benjamin B. Mirus, Michael J. Olsen, Adam M. Booth

Regional-scale characterization of shallow landslide hazards is important for reducing their destructive impact on society. These hazards are commonly characterized by (a) their location and likelihood using susceptibility maps, (b) landslide size and frequency using geomorphic scaling laws, and (c) the magnitude of disturbance required to cause landslides using initiation thresholds. Typically, this is accomplished through the use of inventories documenting the locations and triggering conditions of previous landslides. In the absence of comprehensive landslide inventories, physics-based slope stability models can be used to estimate landslide initiation potential and provide plausible distributions of landslide characteristics for a range of environmental and forcing conditions. However, these models are sometimes limited in their ability to capture key mechanisms tied to discrete three-dimensional (3D) landslide mechanics while possessing the computational efficiency required for broad-scale application. In this study, the RegionGrow3D (RG3D) model is developed to broadly simulate the area, volume, and location of landslides on a regional scale (≥1,000 km2) using 3D, limit-equilibrium (LE)-based slope stability modeling. Furthermore, RG3D is incorporated into a susceptibility framework that quantifies landsliding uncertainty using a distribution of soil shear strengths and their associated probabilities, back-calculated from inventoried landslides using 3D LE-based landslide forensics. This framework is used to evaluate the influence of uncertainty tied to shear strength, rainfall scenarios, and antecedent soil moisture on potential landsliding and rainfall thresholds over a large region of the Oregon Coast Range, USA.

浅层滑坡危害的区域尺度特征对于减少其对社会的破坏性影响非常重要。这些灾害的特征通常包括:(a) 使用易发性地图确定其位置和可能性;(b) 使用地貌比例法则确定滑坡规模和频率;(c) 使用引发阈值确定引发滑坡所需的扰动程度。通常情况下,通过使用记录以前滑坡地点和触发条件的清单来实现这一目标。在缺乏全面的滑坡清单的情况下,可以使用基于物理学的斜坡稳定性模型来估算滑坡发生的可能性,并提供一系列环境和触发条件下滑坡特征的合理分布。然而,这些模型有时在捕捉与离散三维(3D)滑坡力学相关的关键机制方面能力有限,同时也不具备大范围应用所需的计算效率。在本研究中,开发了 RegionGrow3D(RG3D)模型,利用基于极限平衡(LE)的三维边坡稳定性建模,在区域范围内(≥1,000 平方公里)广泛模拟滑坡的面积、体积和位置。此外,RG3D 还被纳入一个易损性框架,该框架使用土壤剪切强度分布及其相关概率来量化滑坡的不确定性,这些概率是使用基于三维极限平衡的滑坡鉴证法从已清查的滑坡中反向计算得出的。该框架用于评估与剪切强度、降雨情景和前土壤湿度相关的不确定性对美国俄勒冈海岸山脉一大片区域潜在滑坡和降雨阈值的影响。
{"title":"RegionGrow3D: A Deterministic Analysis for Characterizing Discrete Three-Dimensional Landslide Source Areas on a Regional Scale","authors":"Nicolas W. Mathews,&nbsp;Ben A. Leshchinsky,&nbsp;Benjamin B. Mirus,&nbsp;Michael J. Olsen,&nbsp;Adam M. Booth","doi":"10.1029/2024JF007815","DOIUrl":"https://doi.org/10.1029/2024JF007815","url":null,"abstract":"<p>Regional-scale characterization of shallow landslide hazards is important for reducing their destructive impact on society. These hazards are commonly characterized by (a) their location and likelihood using susceptibility maps, (b) landslide size and frequency using geomorphic scaling laws, and (c) the magnitude of disturbance required to cause landslides using initiation thresholds. Typically, this is accomplished through the use of inventories documenting the locations and triggering conditions of previous landslides. In the absence of comprehensive landslide inventories, physics-based slope stability models can be used to estimate landslide initiation potential and provide plausible distributions of landslide characteristics for a range of environmental and forcing conditions. However, these models are sometimes limited in their ability to capture key mechanisms tied to discrete three-dimensional (3D) landslide mechanics while possessing the computational efficiency required for broad-scale application. In this study, the RegionGrow3D (RG3D) model is developed to broadly simulate the area, volume, and location of landslides on a regional scale (≥1,000 km<sup>2</sup>) using 3D, limit-equilibrium (LE)-based slope stability modeling. Furthermore, RG3D is incorporated into a susceptibility framework that quantifies landsliding uncertainty using a distribution of soil shear strengths and their associated probabilities, back-calculated from inventoried landslides using 3D LE-based landslide forensics. This framework is used to evaluate the influence of uncertainty tied to shear strength, rainfall scenarios, and antecedent soil moisture on potential landsliding and rainfall thresholds over a large region of the Oregon Coast Range, USA.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 9","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007815","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seasonal Temperature and Circulation Patterns in a Hybrid Polar Lake, Great Bear Lake, Canada 加拿大大熊湖混合极地湖的季节性温度和环流模式
IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-08-29 DOI: 10.1029/2024JF007650
Eddy Carmack, Svein Vagle, Homa Kheyrollah Pour

Great Bear Lake (GBL) is the largest lake entirely within Canada and the largest polar-type lake in the world. It holds cultural and sustenance value to the Délı˛ne Got'ine. However, its baseline physical limnology and how this may be altered by climate warming and anthropogenic stressors have received little attention. To explore the roles that surface heat exchange, wind, seasonal ice cover, and thermodynamic constraints play in the seasonal progression of ventilation and stratification of GBL, we report data from two 2008-09 moorings, satellite-derived lake surface temperatures, and observations made in 1964. Three spatially constrained processes regulate seasonal patterns of ventilation and stratification. Mid-lake temperatures remain below the temperature of maximum density (TMDsurf = 3.98°C) throughout the year. In this area, solar radiation drives vertical convection while cooling develops stratification. Waters along the perimeter of the lake and within its five major arms do rise above TMDsurf in summer and stratify. It follows that mixing between the inner and outer domains form water at TMDsurf to create a convergent sinking zone or thermal bar. Because TMD decreases with increasing pressure, ventilation in the deepest region of the lake (McTavish Arm, Zmax = 446 m) requires wind-aided downwelling to force cold surface water to a depth where it lies closer to the local TMD, triggering thermobaric instability, which then drives full-depth ventilation. These patterns of ventilation and stratification constrain the availability of light and nutrients, therefore setting rates of biogeochemical processes, and regulating the lake's overall response to climate change.

大熊湖(GBL)是加拿大境内最大的湖泊,也是世界上最大的极地型湖泊。大熊湖对于德勒˛ne Got'ine(德勒˛ne Got'ine)人来说具有文化和生计价值。然而,它的物理湖泊学基线以及气候变暖和人为压力因素可能如何改变这一基线却很少受到关注。为了探索湖面热交换、风、季节性冰盖和热力学约束在 GBL 通风和分层的季节性进展中所起的作用,我们报告了来自 2008-09 年两次系泊的数据、卫星得出的湖面温度以及 1964 年的观测数据。三个空间受限过程调节着通风和分层的季节性模式。湖中温度全年保持在最大密度温度(TMDsurf = 3.98°C)以下。在这一区域,太阳辐射推动垂直对流,而冷却则形成分层。沿湖周边和五大臂内的水域在夏季确实会升至高于 TMDsurf 的温度,并出现分层现象。因此,内域和外域之间的混合会在 TMDsurf 处形成水域,从而形成汇聚下沉区或热压带。由于 TMD 随压力增大而减小,湖泊最深处(麦克塔维什臂,Zmax = 446 米)的通风需要风力辅助下沉,迫使表层冷水下沉到更接近当地 TMD 的深度,从而引发热压不稳定性,进而推动全深度通风。这些通风和分层模式限制了光照和营养物质的供应,从而确定了生物地球化学过程的速率,并调节着湖泊对气候变化的整体反应。
{"title":"Seasonal Temperature and Circulation Patterns in a Hybrid Polar Lake, Great Bear Lake, Canada","authors":"Eddy Carmack,&nbsp;Svein Vagle,&nbsp;Homa Kheyrollah Pour","doi":"10.1029/2024JF007650","DOIUrl":"https://doi.org/10.1029/2024JF007650","url":null,"abstract":"<p>Great Bear Lake (GBL) is the largest lake entirely within Canada and the largest polar-type lake in the world. It holds cultural and sustenance value to the Délı˛ne Got'ine. However, its baseline physical limnology and how this may be altered by climate warming and anthropogenic stressors have received little attention. To explore the roles that surface heat exchange, wind, seasonal ice cover, and thermodynamic constraints play in the seasonal progression of ventilation and stratification of GBL, we report data from two 2008-09 moorings, satellite-derived lake surface temperatures, and observations made in 1964. Three spatially constrained processes regulate seasonal patterns of ventilation and stratification. Mid-lake temperatures remain below the temperature of maximum density (TMD<sub>surf</sub> = 3.98°C) throughout the year. In this area, solar radiation drives vertical convection while cooling develops stratification. Waters along the perimeter of the lake and within its five major arms do rise above TMD<sub>surf</sub> in summer and stratify. It follows that mixing between the inner and outer domains form water at TMD<sub>surf</sub> to create a convergent sinking zone or thermal bar. Because TMD decreases with increasing pressure, ventilation in the deepest region of the lake (McTavish Arm, <i>Z</i><sub>max</sub> = 446 m) requires wind-aided downwelling to force cold surface water to a depth where it lies closer to the local TMD, triggering thermobaric instability, which then drives full-depth ventilation. These patterns of ventilation and stratification constrain the availability of light and nutrients, therefore setting rates of biogeochemical processes, and regulating the lake's overall response to climate change.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 9","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007650","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scale-Dependent Processes and Runout in Bidisperse Granular Flows: Insights From Laboratory Experiments and Implications for Rock/Debris Avalanches 双分散粒状流中与尺度有关的过程和冲出:实验室实验的启示及对岩石/碎石崩塌的影响
IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-08-28 DOI: 10.1029/2023JF007469
S. Makris, I. Manzella, A. Sgarabotto

The bidispersity observed in the particle-size distribution of rock avalanches and volcanic debris avalanches (rock/debris avalanches) has been proposed as a factor contributing to their long runout. This has been supported by small-scale analog experimental studies, which observe that a small proportion of fine particles mixed with coarser particles enhances granular avalanche runout. However, the mechanisms enabling this phenomenon and their resemblance to rock/debris avalanches have not been directly evaluated. Here, binary mixture granular avalanche experiments are employed to constrain the processes and conditions under which bidispersity enhances the runout of granular avalanches in experiments. Structure-from-motion photogrammetry is used to measure center of mass displacement and assess energy dissipation. Subsequently, this study evaluates the dynamic scaling and flow regimes in the lab and field to assess whether the runout-enhancing mechanism is applicable to rock/debris avalanches. In small-scale experiments, the granular mass propagates under a collisional regime, enabling kinetic sieving and size segregation. Fine particles migrate to the base where they reduce frictional areas between coarse particles and the substrate and encourage rolling. The reduced energy dissipation increases the kinetic energy conversion and avalanche mobility. However, rock/debris avalanches are unlikely to acquire a purely collisional regime; instead, they propagate under a frictional regime. The size segregation which is essential for the process observed at the lab-scale is prohibited by the frictional regime, as evident by the sedimentology of rock/debris avalanche deposits. The proposal of bidispersity as a runout-enhancing mechanism overlooks that scale-dependent behaviors of natural events are often omitted in small-scale experiments.

岩石雪崩和火山碎屑雪崩(岩石/碎屑雪崩)的颗粒大小分布具有双分散性,这被认为是造成雪崩长期失控的一个因素。小规模模拟实验研究证实了这一点,这些研究观察到,小部分细颗粒与较粗颗粒混合在一起会增强颗粒雪崩的冲出力。然而,这种现象的产生机制及其与岩石/碎屑雪崩的相似性尚未得到直接评估。在此,我们利用二元混合物颗粒雪崩实验来确定双分散性在实验中增强颗粒雪崩冲出的过程和条件。结构运动摄影测量法用于测量质心位移和评估能量耗散。随后,本研究评估了实验室和野外的动态缩放和流动机制,以评估失控增强机制是否适用于岩石/碎屑崩落。在小规模实验中,颗粒质量在碰撞机制下传播,实现了动力学筛分和尺寸分离。细颗粒迁移到基底,减少了粗颗粒与基底之间的摩擦面积,促进了滚动。能量耗散的减少增加了动能转换和雪崩流动性。然而,岩石/碎屑雪崩不太可能获得纯粹的碰撞机制;相反,它们会在摩擦机制下传播。从岩石/碎屑雪崩沉积物的沉积学中可以明显看出,在实验室尺度下观察到的过程所必需的尺寸分离被摩擦机制所禁止。将双分散性作为一种流出增强机制的建议忽略了自然事件的规模依赖行为在小规模实验中往往被忽略。
{"title":"Scale-Dependent Processes and Runout in Bidisperse Granular Flows: Insights From Laboratory Experiments and Implications for Rock/Debris Avalanches","authors":"S. Makris,&nbsp;I. Manzella,&nbsp;A. Sgarabotto","doi":"10.1029/2023JF007469","DOIUrl":"https://doi.org/10.1029/2023JF007469","url":null,"abstract":"<p>The bidispersity observed in the particle-size distribution of rock avalanches and volcanic debris avalanches (rock/debris avalanches) has been proposed as a factor contributing to their long runout. This has been supported by small-scale analog experimental studies, which observe that a small proportion of fine particles mixed with coarser particles enhances granular avalanche runout. However, the mechanisms enabling this phenomenon and their resemblance to rock/debris avalanches have not been directly evaluated. Here, binary mixture granular avalanche experiments are employed to constrain the processes and conditions under which bidispersity enhances the runout of granular avalanches in experiments. Structure-from-motion photogrammetry is used to measure center of mass displacement and assess energy dissipation. Subsequently, this study evaluates the dynamic scaling and flow regimes in the lab and field to assess whether the runout-enhancing mechanism is applicable to rock/debris avalanches. In small-scale experiments, the granular mass propagates under a collisional regime, enabling kinetic sieving and size segregation. Fine particles migrate to the base where they reduce frictional areas between coarse particles and the substrate and encourage rolling. The reduced energy dissipation increases the kinetic energy conversion and avalanche mobility. However, rock/debris avalanches are unlikely to acquire a purely collisional regime; instead, they propagate under a frictional regime. The size segregation which is essential for the process observed at the lab-scale is prohibited by the frictional regime, as evident by the sedimentology of rock/debris avalanche deposits. The proposal of bidispersity as a runout-enhancing mechanism overlooks that scale-dependent behaviors of natural events are often omitted in small-scale experiments.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 9","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JF007469","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Postfire Sediment Mobilization and Its Downstream Implications Across California, 1984–2021 1984-2021 年加州各地的火后沉积物移动及其对下游的影响
IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-08-27 DOI: 10.1029/2024JF007725
H. W. Dow, A. E. East, J. B. Sankey, J. A. Warrick, J. Kostelnik, D. N. Lindsay, J. W. Kean

Fire facilitates erosion through changes in vegetation and soil, with major postfire erosion commonly occurring even with moderate rainfall. As climate warms, the western United States (U.S.) is experiencing an intensifying fire regime and increasing frequency of extreme rain. We evaluated whether these hydroclimatic changes are evident in patterns of postfire erosion by modeling hillslope erosion following all wildfires larger than 100 km2 in California from 1984 to 2021. Our results show that annual statewide postfire hillslope erosion has increased significantly over time. To supplement the hillslope erosion modeling, we compiled modeled and measured postfire debris-flow volumes. We find that, in northern California, more than 50% of fires triggering the top 20 values of sediment mass and sediment yield occurred in the most recent decade (between 2011 and 2021). In southern California, the postfire sediment budget was dominated by debris flows, which showed no temporal trend. Our analysis reveals that 57% of postfire sediment erosion statewide occurred upstream of reservoirs, indicating potential impacts to reservoir storage capacity and thus increased risk to water-resource security with ongoing climate change.

火灾通过改变植被和土壤促进了水土流失,即使在降雨量适中的情况下,火灾后通常也会发生严重的水土流失。随着气候变暖,美国西部正经历着日益加剧的火灾和日益频繁的极端降雨。我们通过模拟 1984 年至 2021 年加利福尼亚州所有面积大于 100 平方公里的野火后的山坡侵蚀情况,评估了这些水文气候的变化是否明显反映在火后侵蚀模式中。我们的结果表明,随着时间的推移,每年全州范围内的火后山坡侵蚀量都在显著增加。为了补充山坡侵蚀模型,我们汇编了模拟和测量的火灾后泥石流量。我们发现,在北加州,引发沉积物质量和沉积物产量前 20 值的火灾中,有 50% 以上发生在最近十年(2011 年至 2021 年)。在南加州,火灾后的沉积物预算以泥石流为主,没有显示出时间趋势。我们的分析表明,全州 57% 的火后沉积物侵蚀发生在水库上游,这表明随着气候变化的持续,水库的蓄水能力可能会受到影响,从而增加水资源安全的风险。
{"title":"Postfire Sediment Mobilization and Its Downstream Implications Across California, 1984–2021","authors":"H. W. Dow,&nbsp;A. E. East,&nbsp;J. B. Sankey,&nbsp;J. A. Warrick,&nbsp;J. Kostelnik,&nbsp;D. N. Lindsay,&nbsp;J. W. Kean","doi":"10.1029/2024JF007725","DOIUrl":"https://doi.org/10.1029/2024JF007725","url":null,"abstract":"<p>Fire facilitates erosion through changes in vegetation and soil, with major postfire erosion commonly occurring even with moderate rainfall. As climate warms, the western United States (U.S.) is experiencing an intensifying fire regime and increasing frequency of extreme rain. We evaluated whether these hydroclimatic changes are evident in patterns of postfire erosion by modeling hillslope erosion following all wildfires larger than 100 km<sup>2</sup> in California from 1984 to 2021. Our results show that annual statewide postfire hillslope erosion has increased significantly over time. To supplement the hillslope erosion modeling, we compiled modeled and measured postfire debris-flow volumes. We find that, in northern California, more than 50% of fires triggering the top 20 values of sediment mass and sediment yield occurred in the most recent decade (between 2011 and 2021). In southern California, the postfire sediment budget was dominated by debris flows, which showed no temporal trend. Our analysis reveals that 57% of postfire sediment erosion statewide occurred upstream of reservoirs, indicating potential impacts to reservoir storage capacity and thus increased risk to water-resource security with ongoing climate change.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 8","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007725","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constraining Mean Landslide Occurrence Rates for Non-Temporal Landslide Inventories Using High-Resolution Elevation Data 利用高分辨率高程数据约束非时空滑坡清单的平均滑坡发生率
IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-08-26 DOI: 10.1029/2024JF007700
J. B. Woodard, S. R. LaHusen, B. B. Mirus, K. R. Barnhart

Constraining landslide occurrence rates can help to generate landslide hazard models that predict the spatial and temporal occurrence of landslides. However, most landslide inventories do not include any temporal data due to the difficulties of dating landslide deposits. Here we introduce a method for estimating the mean landslide occurrence rate of deep-seated rotational and translational slides derived solely from high-resolution (≤3 m) elevation data and globally available estimates of the diffusion coefficient for sediment flux. The method applies a linear diffusion model to the roughest landslide deposits until they reach a representative non-landslide roughness distribution. This estimates the time for a landslide deposit to be unrecognizable in high-resolution digital elevation data, which we term the mean lifetime of the landslide. Using the mean lifetime and number of landslides within an area of interest, we can estimate the mean occurrence rate of landslides over that domain. We validate this approach using a comprehensive temporal inventory of landslides in western Oregon created using age-roughness curves that are calibrated with high-resolution elevation data and radiocarbon data. We find good agreement between our diffusion method and the existing age-roughness-derived estimates, producing mean lifetimes of 4500 and 5200 years (4% difference), respectively. Hazard maps produced using the two methodologies generally agree, with the maximum differences in landslide probability reaching 0.1. Due to the relative abundance of high-resolution elevation data compared with age-dated landslides, our method could help constrain landslide occurrence rates in areas previously considered unfeasible.

限制滑坡发生率有助于生成滑坡危险模型,预测滑坡在空间和时间上的发生率。然而,由于难以确定滑坡沉积物的年代,大多数滑坡清单不包括任何时间数据。在此,我们介绍一种方法,用于估算深层旋转滑坡和平移滑坡的平均发生率,该方法仅从高分辨率(≤3 米)高程数据和全球可用的沉积物通量扩散系数估算值中得出。该方法将线性扩散模型应用于最粗糙的滑坡沉积物,直到它们达到具有代表性的非滑坡粗糙度分布。这样就可以估算出滑坡沉积物在高分辨率数字高程数据中无法识别的时间,我们称之为滑坡的平均寿命。利用平均寿命和相关区域内的滑坡数量,我们可以估算出该区域内滑坡的平均发生率。我们使用俄勒冈州西部的滑坡综合时间清单验证了这种方法,该清单使用年龄-粗糙度曲线创建,并通过高分辨率海拔数据和放射性碳数据进行校准。我们发现,我们的扩散方法与现有的年龄-粗糙度估算结果非常一致,得出的平均寿命分别为 4500 年和 5200 年(相差 4%)。使用两种方法绘制的危害图基本一致,滑坡概率的最大差异达到 0.1。由于高分辨率的海拔数据相对于有年代的滑坡数据较为丰富,我们的方法可以帮助限制以前被认为不可行的地区的滑坡发生率。
{"title":"Constraining Mean Landslide Occurrence Rates for Non-Temporal Landslide Inventories Using High-Resolution Elevation Data","authors":"J. B. Woodard,&nbsp;S. R. LaHusen,&nbsp;B. B. Mirus,&nbsp;K. R. Barnhart","doi":"10.1029/2024JF007700","DOIUrl":"https://doi.org/10.1029/2024JF007700","url":null,"abstract":"<p>Constraining landslide occurrence rates can help to generate landslide hazard models that predict the spatial and temporal occurrence of landslides. However, most landslide inventories do not include any temporal data due to the difficulties of dating landslide deposits. Here we introduce a method for estimating the mean landslide occurrence rate of deep-seated rotational and translational slides derived solely from high-resolution (≤3 m) elevation data and globally available estimates of the diffusion coefficient for sediment flux. The method applies a linear diffusion model to the roughest landslide deposits until they reach a representative non-landslide roughness distribution. This estimates the time for a landslide deposit to be unrecognizable in high-resolution digital elevation data, which we term the mean lifetime of the landslide. Using the mean lifetime and number of landslides within an area of interest, we can estimate the mean occurrence rate of landslides over that domain. We validate this approach using a comprehensive temporal inventory of landslides in western Oregon created using age-roughness curves that are calibrated with high-resolution elevation data and radiocarbon data. We find good agreement between our diffusion method and the existing age-roughness-derived estimates, producing mean lifetimes of 4500 and 5200 years (4% difference), respectively. Hazard maps produced using the two methodologies generally agree, with the maximum differences in landslide probability reaching 0.1. Due to the relative abundance of high-resolution elevation data compared with age-dated landslides, our method could help constrain landslide occurrence rates in areas previously considered unfeasible.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 8","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007700","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reconciling Rapid Glacial Erosion and Steady Basin Accumulation Rates in the Late Cenozoic Through the Effect of Glacial Sediment on Fluvial Erosion 通过冰川沉积物对冲积侵蚀的影响来协调晚新生代的快速冰川侵蚀和稳定的盆地积累率
IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-08-24 DOI: 10.1029/2024JF007721
Sarah A. Schanz, Brian J. Yanites

The onset of glaciation in the late Cenozoic caused rapid bedrock erosion above the snowline; however, whether the influx of eroded sediment is recorded in continental weathering and basin accumulation rates is an ongoing debate. We propose that the transport of glacially eroded bedrock through the fluvial system damps the signal of rapid headwater erosion and results in steady basin-integrated sediment flux. Using a numerical model with integrated glacial and fluvial erosion, we find that headwater bedrock erosion rates increase rapidly at the onset of glaciation and continue to fluctuate with climatic oscillation. However, bedrock erosion rates decrease in the downstream fluvial system because larger grain sizes from glaciers result in an increase in sediment cover effect. When erosion and sediment flux rates are averaged, long-term sediment flux is similar to nonglacial flux values, while localized bedrock erosion rates in the glaciated landscape are elevated 2–4 times compared to nonglacial values. Our simulated values are consistent with field measurements of headwater bedrock erosion, and the pattern of sediment flux and fluvial erosion matches paraglacial theory and terrace aggradation records. Thus, we emphasize that the bedload produced from glacial erosion provides a missing link to reconcile late Cenozoic erosion records.

新生代晚期开始的冰川作用造成了雪线以上基岩的快速侵蚀;然而,侵蚀沉积物的涌入是否记录在大陆风化和盆地堆积率中一直是一个争论不休的问题。我们提出,冰川侵蚀的基岩通过河川系统的运移抑制了上游快速侵蚀的信号,并导致稳定的流域综合沉积通量。利用冰川和河川综合侵蚀的数值模型,我们发现在冰川期开始时,上游基岩侵蚀率迅速上升,并随着气候振荡而持续波动。然而,基岩侵蚀率在下游河川系统中却有所下降,因为冰川产生的更大粒径会导致沉积物覆盖效应增加。如果对侵蚀率和沉积通量率进行平均,长期沉积通量与非冰期通量值相似,而冰川地貌的局部基岩侵蚀率则比非冰期值高出 2-4 倍。我们的模拟值与顶水基岩侵蚀的实地测量值一致,沉积通量和河流侵蚀模式与副冰期理论和阶地侵蚀记录相吻合。因此,我们强调,冰川侵蚀产生的基岩负荷为协调晚新生代侵蚀记录提供了一个缺失的环节。
{"title":"Reconciling Rapid Glacial Erosion and Steady Basin Accumulation Rates in the Late Cenozoic Through the Effect of Glacial Sediment on Fluvial Erosion","authors":"Sarah A. Schanz,&nbsp;Brian J. Yanites","doi":"10.1029/2024JF007721","DOIUrl":"https://doi.org/10.1029/2024JF007721","url":null,"abstract":"<p>The onset of glaciation in the late Cenozoic caused rapid bedrock erosion above the snowline; however, whether the influx of eroded sediment is recorded in continental weathering and basin accumulation rates is an ongoing debate. We propose that the transport of glacially eroded bedrock through the fluvial system damps the signal of rapid headwater erosion and results in steady basin-integrated sediment flux. Using a numerical model with integrated glacial and fluvial erosion, we find that headwater bedrock erosion rates increase rapidly at the onset of glaciation and continue to fluctuate with climatic oscillation. However, bedrock erosion rates decrease in the downstream fluvial system because larger grain sizes from glaciers result in an increase in sediment cover effect. When erosion and sediment flux rates are averaged, long-term sediment flux is similar to nonglacial flux values, while localized bedrock erosion rates in the glaciated landscape are elevated 2–4 times compared to nonglacial values. Our simulated values are consistent with field measurements of headwater bedrock erosion, and the pattern of sediment flux and fluvial erosion matches paraglacial theory and terrace aggradation records. Thus, we emphasize that the bedload produced from glacial erosion provides a missing link to reconcile late Cenozoic erosion records.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 8","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007721","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142050552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chronology of Sedimentation and Landscape Evolution in the Okavango Rift Zone, a Developing Young Rift in Southern Africa 奥卡万戈大裂谷区沉积和地貌演变年表--南部非洲正在形成的年轻大裂谷
IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-08-19 DOI: 10.1029/2023JF007554
S. Vainer, C. Schmidt, E. Garzanti, Y. Ben Dor, G. Pastore, T. Mokatse, C. Prud'homme, L. Leanni, G. King, ASTER Team, E. P. Verrecchia

The Kalahari Basin in southern Africa, shaped by subsidence and epeirogeny, features the Okavango Rift Zone (ORZ) as a significant structural element characterized by diffused extensional deformation forming a prominent depocenter. This study elucidates the Pleistocene landscape evolution of the ORZ by examining the chronology of sediment formation and filling this incipient rift and its surroundings. Modeling of cosmogenic nuclide concentrations in surficial eolian sand from distinct structural blocks around the ORZ provides insights into sand's residence time on the surface. Sand formation occurred from ∼2.2 to 1.1 Ma, coinciding with regional tectonic events. Notably, provenance analyses of sand within ORZ's lowermost block where large alluvial fans are found indicate different source rocks and depositional environments than those of the eolian sands found at a higher elevation. This suggests that the major phase of rift subsidence and the following incision of alluvial systems into the rift occurred after eolian dune formation. Luminescence dating reveals that deposition in alluvial fan settings in the incised landscape began not later than ∼250 ka, and that a lacustrine environment existed since at least ∼140 ka. The established chronological framework constrains the geomorphological effects of the different tectono-climatic forces that shaped this nascent rifting area. It highlights two pronounced stages of landscape development, with the most recent major deformation event in the evolving rift probably occurring during the middle Pleistocene transition (1.2–0.75 Ma). This event is reflected as a striking change in the depositional environments due to the configurational changes accompanying rift progression.

非洲南部的卡拉哈里盆地是由沉降和扩张作用形成的,其中奥卡万戈裂谷带(Okavango Rift Zone,ORZ)是一个重要的构造元素,其特征是弥散的伸展变形形成了一个突出的沉积中心。本研究通过考察沉积物形成的年代学,并对这一初生裂谷及其周边地区进行填充,从而阐明奥卡万戈裂谷带的更新世地貌演变。通过对ORZ周围不同结构区块表层沉积物中宇宙核素浓度的建模,可以了解沉积物在地表的停留时间。沙子形成于2.2至1.1Ma之间,与区域构造事件相吻合。值得注意的是,对 ORZ 最下层区块(该区块有大型冲积扇)中的沙子进行的来源分析表明,其来源岩石和沉积环境与海拔较高处的风积沙不同。这表明,裂谷下沉的主要阶段以及冲积系统随后向裂谷的切入发生在风化沙丘形成之后。荧光测年显示,切入地貌中冲积扇环境的沉积开始时间不晚于 ∼250 ka,而湖泊环境至少从 ∼140 ka 开始就已经存在。所建立的年代学框架限制了塑造这一新生裂谷地区的不同构造-气候力量对地貌的影响。它突出显示了地貌发展的两个明显阶段,而裂谷演变中最近的一次重大变形事件可能发生在中更新世过渡时期(1.2-0.75 Ma)。这一事件反映了伴随着裂谷发展的构造变化所导致的沉积环境的显著变化。
{"title":"Chronology of Sedimentation and Landscape Evolution in the Okavango Rift Zone, a Developing Young Rift in Southern Africa","authors":"S. Vainer,&nbsp;C. Schmidt,&nbsp;E. Garzanti,&nbsp;Y. Ben Dor,&nbsp;G. Pastore,&nbsp;T. Mokatse,&nbsp;C. Prud'homme,&nbsp;L. Leanni,&nbsp;G. King,&nbsp;ASTER Team,&nbsp;E. P. Verrecchia","doi":"10.1029/2023JF007554","DOIUrl":"https://doi.org/10.1029/2023JF007554","url":null,"abstract":"<p>The Kalahari Basin in southern Africa, shaped by subsidence and epeirogeny, features the Okavango Rift Zone (ORZ) as a significant structural element characterized by diffused extensional deformation forming a prominent depocenter. This study elucidates the Pleistocene landscape evolution of the ORZ by examining the chronology of sediment formation and filling this incipient rift and its surroundings. Modeling of cosmogenic nuclide concentrations in surficial eolian sand from distinct structural blocks around the ORZ provides insights into sand's residence time on the surface. Sand formation occurred from ∼2.2 to 1.1 Ma, coinciding with regional tectonic events. Notably, provenance analyses of sand within ORZ's lowermost block where large alluvial fans are found indicate different source rocks and depositional environments than those of the eolian sands found at a higher elevation. This suggests that the major phase of rift subsidence and the following incision of alluvial systems into the rift occurred after eolian dune formation. Luminescence dating reveals that deposition in alluvial fan settings in the incised landscape began not later than ∼250 ka, and that a lacustrine environment existed since at least ∼140 ka. The established chronological framework constrains the geomorphological effects of the different tectono-climatic forces that shaped this nascent rifting area. It highlights two pronounced stages of landscape development, with the most recent major deformation event in the evolving rift probably occurring during the middle Pleistocene transition (1.2–0.75 Ma). This event is reflected as a striking change in the depositional environments due to the configurational changes accompanying rift progression.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 8","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JF007554","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142002562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Barchan-Barchan Dune Repulsion Investigated at the Grain Scale 在晶粒尺度上研究巴尚-巴尚沙丘斥力
IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2024-08-13 DOI: 10.1029/2024JF007741
N. C. Lima, W. R. Assis, C. A. Alvarez, E. M. Franklin

Barchans are eolian dunes of crescent shape found on Earth, Mars and other celestial bodies. Among the different types of barchan-barchan interaction, there is one, known as chasing, in which the dunes remain close but without touching each other. In this paper, we investigate the origins of this barchan-barchan dune repulsion by carrying out grain-scale numerical computations in which a pair of granular heaps is deformed by the fluid flow into barchan dunes that interact with each other. In our simulations, data such as position, velocity and resultant force are computed for each individual particle at each time step, allowing us to measure details of both the fluid and grains that explain the repulsion. We show the trajectories of grains, time-average resultant forces, and mass balances for each dune, and that the downstream barchan shrinks faster than the upstream one, keeping, thus, a relatively high velocity although in the wake of the upstream barchan. In its turn, this fast shrinkage is caused by the flow disturbance, which induces higher erosion on the downstream barchan and its circumvention by grains leaving the upstream dune. Our results help explaining the mechanisms behind the distribution of barchans in dune fields found on Earth and Mars.

沙丘是地球、火星和其他天体上发现的新月形风化沙丘。在沙丘-沙丘相互作用的不同类型中,有一种被称为 "追逐"(chasing),在这种情况下,沙丘保持接近,但不会相互接触。在本文中,我们通过进行粒度数值计算,将一对颗粒堆在流体的作用下变形为相互影响的沙丘,从而研究了这种沙丘-沙丘排斥的起源。在我们的模拟中,我们计算了每个颗粒在每个时间步的位置、速度和结果力等数据,从而可以测量流体和颗粒的细节,从而解释斥力。我们展示了每个沙丘的沙粒轨迹、时间平均结果力和质量平衡,并发现下游沙丘比上游沙丘收缩得更快,因此,虽然上游沙丘后的沙粒速度相对较高,但沙粒仍保持较高的速度。反过来,这种快速收缩是由水流扰动引起的,水流扰动导致下游沙丘的侵蚀加剧,而上游沙丘的沙粒则绕过了下游沙丘。我们的研究结果有助于解释在地球和火星上发现的沙丘场中沙丘分布背后的机制。
{"title":"Barchan-Barchan Dune Repulsion Investigated at the Grain Scale","authors":"N. C. Lima,&nbsp;W. R. Assis,&nbsp;C. A. Alvarez,&nbsp;E. M. Franklin","doi":"10.1029/2024JF007741","DOIUrl":"https://doi.org/10.1029/2024JF007741","url":null,"abstract":"<p>Barchans are eolian dunes of crescent shape found on Earth, Mars and other celestial bodies. Among the different types of barchan-barchan interaction, there is one, known as chasing, in which the dunes remain close but without touching each other. In this paper, we investigate the origins of this barchan-barchan dune repulsion by carrying out grain-scale numerical computations in which a pair of granular heaps is deformed by the fluid flow into barchan dunes that interact with each other. In our simulations, data such as position, velocity and resultant force are computed for each individual particle at each time step, allowing us to measure details of both the fluid and grains that explain the repulsion. We show the trajectories of grains, time-average resultant forces, and mass balances for each dune, and that the downstream barchan shrinks faster than the upstream one, keeping, thus, a relatively high velocity although in the wake of the upstream barchan. In its turn, this fast shrinkage is caused by the flow disturbance, which induces higher erosion on the downstream barchan and its circumvention by grains leaving the upstream dune. Our results help explaining the mechanisms behind the distribution of barchans in dune fields found on Earth and Mars.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 8","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Geophysical Research: Earth Surface
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1