Tang Jie, Xiao-bing Liu, Chai Lingyu, Shi Zhaoyao, Rui Li
Visual measurement is one of the important measurement methods for pinion gears. The measurement principle and the systematic structure of a pinion gear visual measuring system were given. Pixel equivalent is the key parameter in the visual measurement system, which needs to be calibrated before dimensions evaluation. A glass dot calibration plate was applied in the system calibration. Pixel equivalent calibration experiment, LED brightness experiment, edge compensation experiment and multiposition edge compensation experiment was carried out. The parameter pixel equivalent is determined by the comparison between the physical size of center distance of adjacent mark circle in the glass dot calibration plate and its pixels number obtained by the visual system. The center distance of adjacent mark circle was chosen to avoid the affection of the brightness of light source and the sub-pixel technology was used. The proper brightness condition of LED light was selected in the LED brightness experiment. Under this condition, the compensation of edge deviation was obtained by analyzing the edge position deviation in the diameter measurement of the mark circle of the calibration plate. The experimental results show that the pixel equivalent is 5.59522μm/Pixel, and the compensation of edge deviation is 0.54μm. 49 diameters of the circular marker were measured in edge compensation experiment, the largest difference between the measured diameter in central vision after compensation and its physical dimensions is 0.3μm, which is 0.2μm in muti-position edge compensation experiment. The calibration methods and the experimental research are important for the designed visual measurement system for pinion gears.
{"title":"Calibration Experiments on a Visual Measurement System for Pinion Gears","authors":"Tang Jie, Xiao-bing Liu, Chai Lingyu, Shi Zhaoyao, Rui Li","doi":"10.1115/detc2019-97147","DOIUrl":"https://doi.org/10.1115/detc2019-97147","url":null,"abstract":"\u0000 Visual measurement is one of the important measurement methods for pinion gears. The measurement principle and the systematic structure of a pinion gear visual measuring system were given. Pixel equivalent is the key parameter in the visual measurement system, which needs to be calibrated before dimensions evaluation. A glass dot calibration plate was applied in the system calibration. Pixel equivalent calibration experiment, LED brightness experiment, edge compensation experiment and multiposition edge compensation experiment was carried out. The parameter pixel equivalent is determined by the comparison between the physical size of center distance of adjacent mark circle in the glass dot calibration plate and its pixels number obtained by the visual system. The center distance of adjacent mark circle was chosen to avoid the affection of the brightness of light source and the sub-pixel technology was used. The proper brightness condition of LED light was selected in the LED brightness experiment. Under this condition, the compensation of edge deviation was obtained by analyzing the edge position deviation in the diameter measurement of the mark circle of the calibration plate. The experimental results show that the pixel equivalent is 5.59522μm/Pixel, and the compensation of edge deviation is 0.54μm. 49 diameters of the circular marker were measured in edge compensation experiment, the largest difference between the measured diameter in central vision after compensation and its physical dimensions is 0.3μm, which is 0.2μm in muti-position edge compensation experiment. The calibration methods and the experimental research are important for the designed visual measurement system for pinion gears.","PeriodicalId":159554,"journal":{"name":"Volume 10: 2019 International Power Transmission and Gearing Conference","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114933858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To investigate the effect of the inlet starvation severity on the flash temperature, which dictates the scuffing failure, a thermal mixed elastohydrodynamic lubrication model is developed for line contacts operating under the starved lubrication condition. The scuffing failure of high speed gearing applications is commonly associated with the very high sliding condition occurring in the vicinity of either the root or the tip, where the shear thinning effect that decreases the lubrication film thickness and increases the contact pressure is significant. Utilizing a generalized Newtonian Reynolds equation, the lubricant viscosity dependence on the shear rate, as well as on the pressure and temperature, is incorporated for the proper and accurate modeling of the tribological behavior under the high sliding condition. A film fraction parameter is employed in the Reynolds equation to include the starvation and cavitation description, eliminating the need for the measured or assumed meniscus location in the inlet zone. Considering different operating and surface roughness conditions, a parametric study is performed to show an asymptotic relationship between the flash temperature and the inlet starvation severity.
{"title":"The Effect of Starvation on a Thermal Mixed EHL Line Contact","authors":"Sheng Li, D. Massé","doi":"10.1115/detc2019-97082","DOIUrl":"https://doi.org/10.1115/detc2019-97082","url":null,"abstract":"\u0000 To investigate the effect of the inlet starvation severity on the flash temperature, which dictates the scuffing failure, a thermal mixed elastohydrodynamic lubrication model is developed for line contacts operating under the starved lubrication condition. The scuffing failure of high speed gearing applications is commonly associated with the very high sliding condition occurring in the vicinity of either the root or the tip, where the shear thinning effect that decreases the lubrication film thickness and increases the contact pressure is significant. Utilizing a generalized Newtonian Reynolds equation, the lubricant viscosity dependence on the shear rate, as well as on the pressure and temperature, is incorporated for the proper and accurate modeling of the tribological behavior under the high sliding condition. A film fraction parameter is employed in the Reynolds equation to include the starvation and cavitation description, eliminating the need for the measured or assumed meniscus location in the inlet zone. Considering different operating and surface roughness conditions, a parametric study is performed to show an asymptotic relationship between the flash temperature and the inlet starvation severity.","PeriodicalId":159554,"journal":{"name":"Volume 10: 2019 International Power Transmission and Gearing Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129202049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yonggang Liu, Wan Yougang, Yang Kunyu, D. Qin, Minghui Hu
In order to improve the fuel economy of vehicles equipped with a dual clutch transmission, this paper proposes a real-time gearshift schedule optimization method based on dynamic programming (DP) and future vehicle speed prediction. The global condition information is necessary for DP algorithm, which makes it difficult to be applied to the real-time control of vehicles. Therefore, BP neural network optimized by genetic algorithm (GA-BP) is utilized to predict future speed information in the research, and the results of speed prediction are introduced into DP problem solving process to realize real-time application of DP optimization in gear decision-making. Simulation results on a fuel vehicle with seven-speed dual clutch transmission using different gear decision-making methods under multiple driving cycles are presented. The results indicate that compared with the case of an empirical economy gearshift strategy, additional fuel can be saved. Furthermore, computational effort for the proposed method is little enough, which guarantees the real-time performance of DP gearshift schedule optimization.
{"title":"Real-Time Optimal Control of the Gearshift Schedule for Dual Clutch Transmissions","authors":"Yonggang Liu, Wan Yougang, Yang Kunyu, D. Qin, Minghui Hu","doi":"10.1115/detc2019-97787","DOIUrl":"https://doi.org/10.1115/detc2019-97787","url":null,"abstract":"\u0000 In order to improve the fuel economy of vehicles equipped with a dual clutch transmission, this paper proposes a real-time gearshift schedule optimization method based on dynamic programming (DP) and future vehicle speed prediction. The global condition information is necessary for DP algorithm, which makes it difficult to be applied to the real-time control of vehicles. Therefore, BP neural network optimized by genetic algorithm (GA-BP) is utilized to predict future speed information in the research, and the results of speed prediction are introduced into DP problem solving process to realize real-time application of DP optimization in gear decision-making. Simulation results on a fuel vehicle with seven-speed dual clutch transmission using different gear decision-making methods under multiple driving cycles are presented. The results indicate that compared with the case of an empirical economy gearshift strategy, additional fuel can be saved. Furthermore, computational effort for the proposed method is little enough, which guarantees the real-time performance of DP gearshift schedule optimization.","PeriodicalId":159554,"journal":{"name":"Volume 10: 2019 International Power Transmission and Gearing Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130772170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The toroidal enveloping cylindrical worm drive, also called the ZC1 worm drive, is grinded by the toroidal grinding wheel. In this paper, the meshing theory for this worm drive is systematically established. According to this meshing theory, the meshing function, the meshing limit function, the equations of the worm helicoid and the worm gear tooth surface are obtained. A method for computing the normal vector of the instantaneous line of the ZC1 worm pair is proposed. Due to this method, the curvature interference limit function and the meshing quality parameters can be more simply and clearly obtained. Based on above results, the methods of the numerical calculation of the instantaneous lines and the conjugate zone are proposed. The initial values of the nonlinear equation systems, computed the conjugate zone and the contact lines, are detected and solved by the method based on the elimination method and geometric construction. The results of numerical example clearly reflect that the conjugate zone can almost cover the whole tooth surface of the worm gear and the effective working length of the worm cannot nearly exceed the half of its thread length. The values of the induced principle curvature and the sliding angle show that the lubrication performance is poor and the stress level is higher, near the meshing limit line and at the dedendum of the worm gear.
{"title":"Meshing Theory of ZC1 Worm Drive","authors":"Yaping Zhao","doi":"10.1115/detc2019-97578","DOIUrl":"https://doi.org/10.1115/detc2019-97578","url":null,"abstract":"\u0000 The toroidal enveloping cylindrical worm drive, also called the ZC1 worm drive, is grinded by the toroidal grinding wheel. In this paper, the meshing theory for this worm drive is systematically established. According to this meshing theory, the meshing function, the meshing limit function, the equations of the worm helicoid and the worm gear tooth surface are obtained. A method for computing the normal vector of the instantaneous line of the ZC1 worm pair is proposed. Due to this method, the curvature interference limit function and the meshing quality parameters can be more simply and clearly obtained. Based on above results, the methods of the numerical calculation of the instantaneous lines and the conjugate zone are proposed. The initial values of the nonlinear equation systems, computed the conjugate zone and the contact lines, are detected and solved by the method based on the elimination method and geometric construction. The results of numerical example clearly reflect that the conjugate zone can almost cover the whole tooth surface of the worm gear and the effective working length of the worm cannot nearly exceed the half of its thread length. The values of the induced principle curvature and the sliding angle show that the lubrication performance is poor and the stress level is higher, near the meshing limit line and at the dedendum of the worm gear.","PeriodicalId":159554,"journal":{"name":"Volume 10: 2019 International Power Transmission and Gearing Conference","volume":"2 4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122415649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Zorko, B. Černe, J. Duhovnik, R. Zavbi, J. Tavčar
The existing models for the conversion and design of polymer gears are only valid for involute gears. This research was focused on S-gears, a specific type of gear profile which has more favorable contact conditions and greater root thickness when compared to involute gears. S-gears design is currently based on tests, experience, and the use of numerical simulations. Due to the lack of a simple calculation model for designing S-gears, there is a limited number of applications in practice. The goal was to set up a model for the evaluation of the root and flank load-carrying capacity of polymer S-gears. The VDI 2736 guideline was taken as the basis of our conversion model for polymer S-gears. With the introduction of new factors for the calculation of root and flank stress, the VDI 2736 model was upgraded to take into account the specific shape of the S-gear profile. In addition, a model for designing steel S-gears was set up.
{"title":"Conversion Model for the Design of Steel and Polymer S-Gears","authors":"D. Zorko, B. Černe, J. Duhovnik, R. Zavbi, J. Tavčar","doi":"10.1115/detc2019-97817","DOIUrl":"https://doi.org/10.1115/detc2019-97817","url":null,"abstract":"\u0000 The existing models for the conversion and design of polymer gears are only valid for involute gears. This research was focused on S-gears, a specific type of gear profile which has more favorable contact conditions and greater root thickness when compared to involute gears. S-gears design is currently based on tests, experience, and the use of numerical simulations. Due to the lack of a simple calculation model for designing S-gears, there is a limited number of applications in practice. The goal was to set up a model for the evaluation of the root and flank load-carrying capacity of polymer S-gears. The VDI 2736 guideline was taken as the basis of our conversion model for polymer S-gears. With the introduction of new factors for the calculation of root and flank stress, the VDI 2736 model was upgraded to take into account the specific shape of the S-gear profile. In addition, a model for designing steel S-gears was set up.","PeriodicalId":159554,"journal":{"name":"Volume 10: 2019 International Power Transmission and Gearing Conference","volume":"183 S486","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132905549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Noise and vibration performance of a gear system is critical in any engineering industry. Excessive vibrational amplitudes originated by the excitations at the gear meshes propagate to the transmission housing to cause noticeable noise, while also increasing gear tooth stresses to degrade durability. As such, gear designers must generate designs that are nominally quiet with low-vibration amplitudes. This implies a gear pair fabricated exactly to the specifications of its blue print will be acceptable for its vibration behavior. Achieving this, however, is not sufficient. As the manufacturing of gears require them to be subject to bands of tolerances afforded by the manufacturing processes employed, the designers must be concerned about variations to the performance of their presumably quite baseline designs within these tolerance bands. This research aims at demonstrating how one type of manufacturing error, random tooth spacing errors, alter the vibratory behavior of a spur gear pair. Two pairs of spur gears are tested for their dynamic transmission error performance. One gear pair with no tooth spacing errors form the baseline. The second gear pair contain an intentionally induced random sequence of spacing errors. The forced vibration responses of both gear pairs are compared within wide ranges of speed and torque. This comparison shows that there is a clear and significant impact of random spacing errors on spur gear dynamics, measurable through examination of their respective transmission error signatures. In the off-resonance regions of speed, vibration amplitudes of the random error pair are higher than the no-error baseline spur gear pair. Meanwhile, at or near resonance peaks, the presence of random spacing errors tends to lower the peak amplitudes slightly as compared to the no-error baseline spur gear pair. The presence of random spacing errors introduces substantial harmonic content that are non-mesh harmonics. This results in a broadband frequency spectrum in addition to an otherwise well-defined frequency spectrum with gear-mesh order components, pointing to an additional concern of noise quality.
{"title":"An Experimental Investigation of the Impact of Random Spacing Errors on the Dynamic Transmission Error of Spur Gear Pairs","authors":"M. Anandika, A. Kahraman, David Talbot","doi":"10.1115/detc2019-98357","DOIUrl":"https://doi.org/10.1115/detc2019-98357","url":null,"abstract":"\u0000 Noise and vibration performance of a gear system is critical in any engineering industry. Excessive vibrational amplitudes originated by the excitations at the gear meshes propagate to the transmission housing to cause noticeable noise, while also increasing gear tooth stresses to degrade durability. As such, gear designers must generate designs that are nominally quiet with low-vibration amplitudes. This implies a gear pair fabricated exactly to the specifications of its blue print will be acceptable for its vibration behavior. Achieving this, however, is not sufficient. As the manufacturing of gears require them to be subject to bands of tolerances afforded by the manufacturing processes employed, the designers must be concerned about variations to the performance of their presumably quite baseline designs within these tolerance bands. This research aims at demonstrating how one type of manufacturing error, random tooth spacing errors, alter the vibratory behavior of a spur gear pair.\u0000 Two pairs of spur gears are tested for their dynamic transmission error performance. One gear pair with no tooth spacing errors form the baseline. The second gear pair contain an intentionally induced random sequence of spacing errors. The forced vibration responses of both gear pairs are compared within wide ranges of speed and torque. This comparison shows that there is a clear and significant impact of random spacing errors on spur gear dynamics, measurable through examination of their respective transmission error signatures. In the off-resonance regions of speed, vibration amplitudes of the random error pair are higher than the no-error baseline spur gear pair. Meanwhile, at or near resonance peaks, the presence of random spacing errors tends to lower the peak amplitudes slightly as compared to the no-error baseline spur gear pair. The presence of random spacing errors introduces substantial harmonic content that are non-mesh harmonics. This results in a broadband frequency spectrum in addition to an otherwise well-defined frequency spectrum with gear-mesh order components, pointing to an additional concern of noise quality.","PeriodicalId":159554,"journal":{"name":"Volume 10: 2019 International Power Transmission and Gearing Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128867676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}