Abstract From 2017 to 2020, three significant calving events took place on Pine Island Glacier, West Antarctica. Ice-shelf velocities changed over this period and the calving events have been suggested as possible drivers. However, satellite observations also show significant changes in the areal extent of fracture zones, especially in the marginal areas responsible for providing lateral support to the ice shelf. Here, we conduct a model study to identify and quantify drivers of recent ice-flow changes of the Pine Island Ice Shelf. In agreement with recent studies, we find that the calving events caused significant velocity changes over the ice shelf. However, calving alone cannot explain observed velocity changes. Changes in the structural rigidity, i.e. ice damage, further significantly impacted ice flow. We suggest that ice damage evolution of the ice-shelf margins may have influenced recent calving events, and these two processes are linked.
{"title":"The speedup of Pine Island Ice Shelf between 2017 and 2020: revaluating the importance of ice damage","authors":"Sainan Sun, G. Hilmar Gudmundsson","doi":"10.1017/jog.2023.76","DOIUrl":"https://doi.org/10.1017/jog.2023.76","url":null,"abstract":"Abstract From 2017 to 2020, three significant calving events took place on Pine Island Glacier, West Antarctica. Ice-shelf velocities changed over this period and the calving events have been suggested as possible drivers. However, satellite observations also show significant changes in the areal extent of fracture zones, especially in the marginal areas responsible for providing lateral support to the ice shelf. Here, we conduct a model study to identify and quantify drivers of recent ice-flow changes of the Pine Island Ice Shelf. In agreement with recent studies, we find that the calving events caused significant velocity changes over the ice shelf. However, calving alone cannot explain observed velocity changes. Changes in the structural rigidity, i.e. ice damage, further significantly impacted ice flow. We suggest that ice damage evolution of the ice-shelf margins may have influenced recent calving events, and these two processes are linked.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135095671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan Antonio Aguilar, Patrick Allison, Dave Besson, Abby Bishop, Olga Botner, Sjoerd Bouma, Stijn Buitink, Maddalena Cataldo, Brian A. Clark, Kenny Couberly, Zach Curtis-Ginsberg, Paramita Dasgupta, Simon de Kockere, Krijn D. de Vries, Cosmin Deaconu, Michael A. DuVernois, Anna Eimer, Christian Glaser, Allan Hallgren, Steffen Hallmann, Jordan Christian Hanson, Bryan Hendricks, Jakob Henrichs, Nils Heyer, Christian Hornhuber, Kaeli Hughes, Timo Karg, Albrecht Karle, John L. Kelley, Michael Korntheuer, Marek Kowalski, Ilya Kravchenko, Ryan Krebs, Robert Lahmann, Uzair Latif, Joseph Mammo, Matthew J. Marsee, Zachary S. Meyers, Kelli Michaels, Katharine Mulrey, Marco Muzio, Anna Nelles, Alexander Novikov, Alisa Nozdrina, Eric Oberla, Bob Oeyen, Ilse Plaisier, Noppadol Punsuebsay, Lilly Pyras, Dirk Ryckbosch, Olaf Scholten, David Seckel, Mohammad Ful Hossain Seikh, Daniel Smith, Jethro Stoffels, Daniel Southall, Karen Terveer, Simona Toscano, Delia Tosi, Dieder J. Van Den Broeck, Nick van Eijndhoven, Abigail G. Vieregg, Janna Z. Vischer, Christoph Welling, Dawn R. Williams, Stephanie Wissel, Robert Young, Adrian Zink
Abstract We recently reported on the radio-frequency attenuation length of cold polar ice at Summit Station, Greenland, based on bi-static radar measurements of radio-frequency bedrock echo strengths taken during the summer of 2021. Those data also allow studies of (a) the relative contributions of coherent (such as discrete internal conducting layers with sub-centimeter transverse scale) vs incoherent (e.g. bulk volumetric) scattering, (b) the magnitude of internal layer reflection coefficients, (c) limits on signal propagation velocity asymmetries (‘birefringence’) and (d) limits on signal dispersion in-ice over a bandwidth of ~100 MHz. We find that (1) attenuation lengths approach 1 km in our band, (2) after averaging 10 000 echo triggers, reflected signals observable over the thermal floor (to depths of ~1500 m) are consistent with being entirely coherent, (3) internal layer reflectivities are ≈–60 $to$ –70 dB, (4) birefringent effects for vertically propagating signals are smaller by an order of magnitude relative to South Pole and (5) within our experimental limits, glacial ice is non-dispersive over the frequency band relevant for neutrino detection experiments.
{"title":"Radiofrequency ice dielectric measurements at Summit Station, Greenland","authors":"Juan Antonio Aguilar, Patrick Allison, Dave Besson, Abby Bishop, Olga Botner, Sjoerd Bouma, Stijn Buitink, Maddalena Cataldo, Brian A. Clark, Kenny Couberly, Zach Curtis-Ginsberg, Paramita Dasgupta, Simon de Kockere, Krijn D. de Vries, Cosmin Deaconu, Michael A. DuVernois, Anna Eimer, Christian Glaser, Allan Hallgren, Steffen Hallmann, Jordan Christian Hanson, Bryan Hendricks, Jakob Henrichs, Nils Heyer, Christian Hornhuber, Kaeli Hughes, Timo Karg, Albrecht Karle, John L. Kelley, Michael Korntheuer, Marek Kowalski, Ilya Kravchenko, Ryan Krebs, Robert Lahmann, Uzair Latif, Joseph Mammo, Matthew J. Marsee, Zachary S. Meyers, Kelli Michaels, Katharine Mulrey, Marco Muzio, Anna Nelles, Alexander Novikov, Alisa Nozdrina, Eric Oberla, Bob Oeyen, Ilse Plaisier, Noppadol Punsuebsay, Lilly Pyras, Dirk Ryckbosch, Olaf Scholten, David Seckel, Mohammad Ful Hossain Seikh, Daniel Smith, Jethro Stoffels, Daniel Southall, Karen Terveer, Simona Toscano, Delia Tosi, Dieder J. Van Den Broeck, Nick van Eijndhoven, Abigail G. Vieregg, Janna Z. Vischer, Christoph Welling, Dawn R. Williams, Stephanie Wissel, Robert Young, Adrian Zink","doi":"10.1017/jog.2023.72","DOIUrl":"https://doi.org/10.1017/jog.2023.72","url":null,"abstract":"Abstract We recently reported on the radio-frequency attenuation length of cold polar ice at Summit Station, Greenland, based on bi-static radar measurements of radio-frequency bedrock echo strengths taken during the summer of 2021. Those data also allow studies of (a) the relative contributions of coherent (such as discrete internal conducting layers with sub-centimeter transverse scale) vs incoherent (e.g. bulk volumetric) scattering, (b) the magnitude of internal layer reflection coefficients, (c) limits on signal propagation velocity asymmetries (‘birefringence’) and (d) limits on signal dispersion in-ice over a bandwidth of ~100 MHz. We find that (1) attenuation lengths approach 1 km in our band, (2) after averaging 10 000 echo triggers, reflected signals observable over the thermal floor (to depths of ~1500 m) are consistent with being entirely coherent, (3) internal layer reflectivities are ≈–60 $to$ –70 dB, (4) birefringent effects for vertically propagating signals are smaller by an order of magnitude relative to South Pole and (5) within our experimental limits, glacial ice is non-dispersive over the frequency band relevant for neutrino detection experiments.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135094130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guillaume Jouvet, Denis Cohen, Emmanuele Russo, Jonathan Buzan, Christoph C. Raible, Wilfried Haeberli, Sarah Kamleitner, Susan Ivy-Ochs, Michael A. Imhof, Jens K. Becker, Angela Landgraf, Urs H. Fischer
Abstract Our limited knowledge of the climate prevailing over Europe during former glaciations is the main obstacle to reconstruct the past evolution of the ice coverage over the Alps by numerical modelling. To address this challenge, we perform a two-step modelling approach: First, a regional climate model is used to downscale the time slice simulations of a global earth system model in high resolution, leading to climate snapshots during the Last Glacial Maximum (LGM) and the Marine Isotope Stage 4 (MIS4). Second, we combine these snapshots and a climate signal proxy to build a transient climate over the last glacial period and force the Parallel Ice Sheet Model to simulate the dynamical evolution of glaciers in the Alps. The results show that the extent of modelled glaciers during the LGM agrees with several independent key geological imprints, including moraine-based maximal reconstructed glacial extents, known ice transfluences and trajectories of erratic boulders of known origin and deposition. Our results highlight the benefit of multiphysical coupled climate and glacier transient modelling over simpler approaches to help reconstruct paleo glacier fluctuations in agreement with traces they have left on the landscape.
{"title":"Coupled climate-glacier modelling of the last glaciation in the Alps","authors":"Guillaume Jouvet, Denis Cohen, Emmanuele Russo, Jonathan Buzan, Christoph C. Raible, Wilfried Haeberli, Sarah Kamleitner, Susan Ivy-Ochs, Michael A. Imhof, Jens K. Becker, Angela Landgraf, Urs H. Fischer","doi":"10.1017/jog.2023.74","DOIUrl":"https://doi.org/10.1017/jog.2023.74","url":null,"abstract":"Abstract Our limited knowledge of the climate prevailing over Europe during former glaciations is the main obstacle to reconstruct the past evolution of the ice coverage over the Alps by numerical modelling. To address this challenge, we perform a two-step modelling approach: First, a regional climate model is used to downscale the time slice simulations of a global earth system model in high resolution, leading to climate snapshots during the Last Glacial Maximum (LGM) and the Marine Isotope Stage 4 (MIS4). Second, we combine these snapshots and a climate signal proxy to build a transient climate over the last glacial period and force the Parallel Ice Sheet Model to simulate the dynamical evolution of glaciers in the Alps. The results show that the extent of modelled glaciers during the LGM agrees with several independent key geological imprints, including moraine-based maximal reconstructed glacial extents, known ice transfluences and trajectories of erratic boulders of known origin and deposition. Our results highlight the benefit of multiphysical coupled climate and glacier transient modelling over simpler approaches to help reconstruct paleo glacier fluctuations in agreement with traces they have left on the landscape.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135350828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
{"title":"JOG volume 69 issue 277 Cover and Back matter","authors":"","doi":"10.1017/jog.2023.85","DOIUrl":"https://doi.org/10.1017/jog.2023.85","url":null,"abstract":"An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136056112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-03-29DOI: 10.1017/jog.2023.3
Maximillian Van Wyk de Vries, James M Lea, David W Ashmore
Mass loss from iceberg calving at marine-terminating glaciers is one of the largest and most poorly constrained contributors to sea-level rise. However, our understanding of the processes controlling ice fracturing and crevasse evolution is incomplete. Here, we use Gabor filter banks to automatically map crevasse density and orientation through time on a ~150 km2 terminus region of Narsap Sermia, an outlet glacier of the southwest Greenland ice sheet. We find that Narsap Sermia is dominated by transverse (flow-perpendicular) crevasses near the ice front and longitudinal (flow-aligned) crevasses across its central region. Measured crevasse orientation varies on sub-annual timescales by more than 45 in response to seasonal velocity changes, and also on multi-annual timescales in response to broader dynamic changes and glacier retreat. Our results show a gradual up-glacier propagation of the zone of flow-transverse crevassing coincident with frontal retreat and acceleration occurring in 2020/21, in addition to sub-annual crevasse changes primarily in transition zones between longitudinal to transverse crevasse orientation. This provides new insight into the dynamics of crevassing at large marine-terminating glaciers and a potential approach for the rapid identification of glacier dynamic change from a single pair of satellite images.
{"title":"Crevasse density, orientation and temporal variability at Narsap Sermia, Greenland.","authors":"Maximillian Van Wyk de Vries, James M Lea, David W Ashmore","doi":"10.1017/jog.2023.3","DOIUrl":"10.1017/jog.2023.3","url":null,"abstract":"<p><p>Mass loss from iceberg calving at marine-terminating glaciers is one of the largest and most poorly constrained contributors to sea-level rise. However, our understanding of the processes controlling ice fracturing and crevasse evolution is incomplete. Here, we use Gabor filter banks to automatically map crevasse density and orientation through time on a ~150 km<sup>2</sup> terminus region of Narsap Sermia, an outlet glacier of the southwest Greenland ice sheet. We find that Narsap Sermia is dominated by transverse (flow-perpendicular) crevasses near the ice front and longitudinal (flow-aligned) crevasses across its central region. Measured crevasse orientation varies on sub-annual timescales by more than 45 in response to seasonal velocity changes, and also on multi-annual timescales in response to broader dynamic changes and glacier retreat. Our results show a gradual up-glacier propagation of the zone of flow-transverse crevassing coincident with frontal retreat and acceleration occurring in 2020/21, in addition to sub-annual crevasse changes primarily in transition zones between longitudinal to transverse crevasse orientation. This provides new insight into the dynamics of crevassing at large marine-terminating glaciers and a potential approach for the rapid identification of glacier dynamic change from a single pair of satellite images.</p>","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443167/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43996931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
{"title":"JOG volume 69 issue 277 Cover and Front matter","authors":"","doi":"10.1017/jog.2023.84","DOIUrl":"https://doi.org/10.1017/jog.2023.84","url":null,"abstract":"An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136056821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The hypothesis that ice-sheet evolution is only controlled by the long-term non-Newtonian viscous behavior of ice has been challenged by observations indicating that effects like brittle failure, stick-slip sliding, tides and wave action may affect ice-sheet evolution on sub-daily timescales. Over these timescales, the quasi-static-creep approximation is no longer appropriate and elastic effects become important. Simulating elastic effects in ice-sheet models over relevant timescales, however, remains challenging. Here, we show that by including a visco-elastic rheology and reintroducing the oft neglected acceleration term back into the ice-sheet stress balance, we can create a visco-elastic system where the velocity is locally determined and information propagates at the elastic wave speed. Crucially, the elastic wave speed can be treated like an adjustable parameter and set to any value to reproduce a range of phenomena, provided the wave speed is large compared to the viscous velocity. We illustrate the system using three examples. The first two examples demonstrate that the system converges to the steady-state viscous and elastic limits. The third example examines ice-shelf rifting and iceberg calving. This final example hints at the utility of the visco-elastic formulation in treating both long-term evolution and short-term environmental effects.
{"title":"Beyond the Stokes approximation: shallow visco-elastic ice-sheet models","authors":"Jeremy N. Bassis, Samuel B. Kachuck","doi":"10.1017/jog.2023.75","DOIUrl":"https://doi.org/10.1017/jog.2023.75","url":null,"abstract":"Abstract The hypothesis that ice-sheet evolution is only controlled by the long-term non-Newtonian viscous behavior of ice has been challenged by observations indicating that effects like brittle failure, stick-slip sliding, tides and wave action may affect ice-sheet evolution on sub-daily timescales. Over these timescales, the quasi-static-creep approximation is no longer appropriate and elastic effects become important. Simulating elastic effects in ice-sheet models over relevant timescales, however, remains challenging. Here, we show that by including a visco-elastic rheology and reintroducing the oft neglected acceleration term back into the ice-sheet stress balance, we can create a visco-elastic system where the velocity is locally determined and information propagates at the elastic wave speed. Crucially, the elastic wave speed can be treated like an adjustable parameter and set to any value to reproduce a range of phenomena, provided the wave speed is large compared to the viscous velocity. We illustrate the system using three examples. The first two examples demonstrate that the system converges to the steady-state viscous and elastic limits. The third example examines ice-shelf rifting and iceberg calving. This final example hints at the utility of the visco-elastic formulation in treating both long-term evolution and short-term environmental effects.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135386967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
George Malczyk, Noel Gourmelen, Mauro Werder, Martin Wearing, Dan Goldberg
Abstract Active subglacial lakes provide a rare glimpse of the subglacial environment and hydrological processes at play. Several studies contributed to establishing active subglacial lake inventories and document lake drainage and connection, but few focused on the period between lake drainage when the melt production and transport contribute to the refilling of these lakes. In this study, we employ high-resolution CryoSat-2 altimetry data from 2010 to 2021 to compile an inventory of recharging lakes across Antarctica. We extract recharge rates from these lakes, which serve as a lower limit on subglacial melt production. These recharge rates are compared against predictions obtained by routing modelled subglacial meltwater at the ice-sheet's base. Our findings indicate that modelled recharge rates are consistent with observations in all but one of the investigated lakes, providing a lower bound on geothermal heat fluxes. Lake Cook E2 displays recharge rates far exceeding predictions, indicating that processes are taking place that are currently unaccounted for. Considering recharge in hydrologically connected lake networks instead of individually provides a stricter constraint on melt production. Recharge rates extracted from the Thwaites Lake system suggest that subglacial melt production has been underestimated.
{"title":"Constraints on subglacial melt fluxes from observations of active subglacial lake recharge","authors":"George Malczyk, Noel Gourmelen, Mauro Werder, Martin Wearing, Dan Goldberg","doi":"10.1017/jog.2023.70","DOIUrl":"https://doi.org/10.1017/jog.2023.70","url":null,"abstract":"Abstract Active subglacial lakes provide a rare glimpse of the subglacial environment and hydrological processes at play. Several studies contributed to establishing active subglacial lake inventories and document lake drainage and connection, but few focused on the period between lake drainage when the melt production and transport contribute to the refilling of these lakes. In this study, we employ high-resolution CryoSat-2 altimetry data from 2010 to 2021 to compile an inventory of recharging lakes across Antarctica. We extract recharge rates from these lakes, which serve as a lower limit on subglacial melt production. These recharge rates are compared against predictions obtained by routing modelled subglacial meltwater at the ice-sheet's base. Our findings indicate that modelled recharge rates are consistent with observations in all but one of the investigated lakes, providing a lower bound on geothermal heat fluxes. Lake Cook E2 displays recharge rates far exceeding predictions, indicating that processes are taking place that are currently unaccounted for. Considering recharge in hydrologically connected lake networks instead of individually provides a stricter constraint on melt production. Recharge rates extracted from the Thwaites Lake system suggest that subglacial melt production has been underestimated.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134960933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Convolutional neural networks (CNN) trained from high-order ice-flow model realisations have proven to be outstanding emulators in terms of fidelity and computational performance. However, the dependence on an ensemble of realisations of an instructor model renders this strategy difficult to generalise to a variety of ice-flow regimes found in the nature. To overcome this issue, we adopt the approach of physics-informed deep learning, which fuses traditional numerical solutions by finite differences/elements and deep-learning approaches. Here, we train a CNN to minimise the energy associated with high-order ice-flow equations within the time iterations of a glacier evolution model. As a result, our emulator is a promising alternative to traditional solvers thanks to its high computational efficiency (especially on GPU), its high fidelity to the original model, its simplified training (without requiring any data), its capability to handle a variety of ice-flow regimes and memorise previous solutions, and its relatively simple implementation. Embedded into the ‘Instructed Glacier Model’ (IGM) framework, the potential of the emulator is illustrated with three applications including a large-scale high-resolution (2400x4000) forward glacier evolution model, an inverse modelling case for data assimilation, and an ice shelf.
{"title":"Ice-flow model emulator based on physics-informed deep learning","authors":"Guillaume Jouvet, Guillaume Cordonnier","doi":"10.1017/jog.2023.73","DOIUrl":"https://doi.org/10.1017/jog.2023.73","url":null,"abstract":"Abstract Convolutional neural networks (CNN) trained from high-order ice-flow model realisations have proven to be outstanding emulators in terms of fidelity and computational performance. However, the dependence on an ensemble of realisations of an instructor model renders this strategy difficult to generalise to a variety of ice-flow regimes found in the nature. To overcome this issue, we adopt the approach of physics-informed deep learning, which fuses traditional numerical solutions by finite differences/elements and deep-learning approaches. Here, we train a CNN to minimise the energy associated with high-order ice-flow equations within the time iterations of a glacier evolution model. As a result, our emulator is a promising alternative to traditional solvers thanks to its high computational efficiency (especially on GPU), its high fidelity to the original model, its simplified training (without requiring any data), its capability to handle a variety of ice-flow regimes and memorise previous solutions, and its relatively simple implementation. Embedded into the ‘Instructed Glacier Model’ (IGM) framework, the potential of the emulator is illustrated with three applications including a large-scale high-resolution (2400x4000) forward glacier evolution model, an inverse modelling case for data assimilation, and an ice shelf.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134904239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michał Ciepły, Dariusz Ignatiuk, Mateusz Moskalik, Jacek Jania, Bartłomiej Luks, Oskar Głowacki, Kacper Wojtysiak
Abstract We describe the annual pattern of frontal ablation driven by submarine melting mechanisms at the Hansbreen terminus: these are reflected in the intensity and spatial distribution of calving events. Analysis of time-lapse images of the Hansbreen front in conjunction with oceanographic and meteorological data shows that calving intensity is driven primarily by seawater temperature. Regression analysis also highlights the importance of air temperature, which we take to be a proxy for surface ablation and subglacial discharge. This, combined with seasonal changes in ice cliff tortuosity and the increasing significance of wave motion outside the ablation season, enabled us to determine seasonal changes in the mechanisms of ice cliff undercutting by submarine melting. While submarine melting controlled by estuarine circulation primarily drives frontal ablation in summer, wave-driven melting at the waterline is more important outside the ablation season. During winter, ice cliff undercutting by melting is suspended by low seawater temperature, negligible subglacial water discharge and sea-ice cover. The most intense frontal ablation, recorded in summer, was related to higher sea temperature and vigorous estuarine circulation.
{"title":"Seasonal changes in submarine melting mechanisms controlling frontal ablation of Hansbreen, Svalbard","authors":"Michał Ciepły, Dariusz Ignatiuk, Mateusz Moskalik, Jacek Jania, Bartłomiej Luks, Oskar Głowacki, Kacper Wojtysiak","doi":"10.1017/jog.2023.69","DOIUrl":"https://doi.org/10.1017/jog.2023.69","url":null,"abstract":"Abstract We describe the annual pattern of frontal ablation driven by submarine melting mechanisms at the Hansbreen terminus: these are reflected in the intensity and spatial distribution of calving events. Analysis of time-lapse images of the Hansbreen front in conjunction with oceanographic and meteorological data shows that calving intensity is driven primarily by seawater temperature. Regression analysis also highlights the importance of air temperature, which we take to be a proxy for surface ablation and subglacial discharge. This, combined with seasonal changes in ice cliff tortuosity and the increasing significance of wave motion outside the ablation season, enabled us to determine seasonal changes in the mechanisms of ice cliff undercutting by submarine melting. While submarine melting controlled by estuarine circulation primarily drives frontal ablation in summer, wave-driven melting at the waterline is more important outside the ablation season. During winter, ice cliff undercutting by melting is suspended by low seawater temperature, negligible subglacial water discharge and sea-ice cover. The most intense frontal ablation, recorded in summer, was related to higher sea temperature and vigorous estuarine circulation.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134958164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}