Abstract Hydrologic pathways beneath ice sheets and glaciers play an important role in regulating ice flow. Antarctica has experienced, and will continue to experience, changes in ice dynamics and geometry, but the associated changes in subglacial hydrology have received less attention. Here, we use the GlaDS subglacial hydrology model to examine drainage evolution beneath an idealised Antarctic glacier in response to steepening ice surface slopes, accelerating ice velocities and subglacial lake drainages. Ice surface slope changes exerted a dominant influence, redirecting basal water to different outlet locations and substantially increasing channelised discharge crossing the grounding line. Faster ice velocities had comparatively negligible effects. Subglacial lake drainage results indicated that lake refilling times play a key role in drainage system evolution, with lake flux more readily accommodated following shorter refilling times. Our findings are significant for vulnerable Antarctic regions currently experiencing dynamic thinning since subglacial water re-routing could destabilise ice shelves through enhanced sub-shelf melting, potentially hastening irreversible retreat. These changes could also affect subglacial lake activity. We, therefore, emphasise that including a nuanced and complex representation of subglacial hydrology in ice-sheet models could provide critical information on the timing and magnitude of sea-level change contributions from Antarctica.
{"title":"Examining the effect of ice dynamic changes on subglacial hydrology through modelling of a synthetic Antarctic glacier","authors":"Anna-Mireilla Hayden, Christine F. Dow","doi":"10.1017/jog.2023.65","DOIUrl":"https://doi.org/10.1017/jog.2023.65","url":null,"abstract":"Abstract Hydrologic pathways beneath ice sheets and glaciers play an important role in regulating ice flow. Antarctica has experienced, and will continue to experience, changes in ice dynamics and geometry, but the associated changes in subglacial hydrology have received less attention. Here, we use the GlaDS subglacial hydrology model to examine drainage evolution beneath an idealised Antarctic glacier in response to steepening ice surface slopes, accelerating ice velocities and subglacial lake drainages. Ice surface slope changes exerted a dominant influence, redirecting basal water to different outlet locations and substantially increasing channelised discharge crossing the grounding line. Faster ice velocities had comparatively negligible effects. Subglacial lake drainage results indicated that lake refilling times play a key role in drainage system evolution, with lake flux more readily accommodated following shorter refilling times. Our findings are significant for vulnerable Antarctic regions currently experiencing dynamic thinning since subglacial water re-routing could destabilise ice shelves through enhanced sub-shelf melting, potentially hastening irreversible retreat. These changes could also affect subglacial lake activity. We, therefore, emphasise that including a nuanced and complex representation of subglacial hydrology in ice-sheet models could provide critical information on the timing and magnitude of sea-level change contributions from Antarctica.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136235761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alex Huth, Ravindra Duddu, Benjamin Smith, Olga Sergienko
Abstract Rifts are full-thickness fractures that propagate laterally across an ice shelf. They cause ice-shelf weakening and calving of tabular icebergs, and control the initial size of calved icebergs. Here, we present a joint inverse and forward computational modeling framework to capture rifting by combining the vertically integrated momentum balance and anisotropic continuum damage mechanics formulations. We incorporate rift–flank boundary processes to investigate how the rift path is influenced by the pressure on rift–flank walls from seawater, contact between flanks, and ice mélange that may also transmit stress between flanks. To illustrate the viability of the framework, we simulate the final 2 years of rift propagation associated with the calving of tabular iceberg A68 in 2017. We find that the rift path can change with varying ice mélange conditions and the extent of contact between rift flanks. Combinations of parameters associated with slower rift widening rates yield simulated rift paths that best match observations. Our modeling framework lays the foundation for robust simulation of rifting and tabular calving processes, which can enable future studies on ice-sheet–climate interactions, and the effects of ice-shelf buttressing on land ice flow.
{"title":"Simulating the processes controlling ice-shelf rift paths using damage mechanics","authors":"Alex Huth, Ravindra Duddu, Benjamin Smith, Olga Sergienko","doi":"10.1017/jog.2023.71","DOIUrl":"https://doi.org/10.1017/jog.2023.71","url":null,"abstract":"Abstract Rifts are full-thickness fractures that propagate laterally across an ice shelf. They cause ice-shelf weakening and calving of tabular icebergs, and control the initial size of calved icebergs. Here, we present a joint inverse and forward computational modeling framework to capture rifting by combining the vertically integrated momentum balance and anisotropic continuum damage mechanics formulations. We incorporate rift–flank boundary processes to investigate how the rift path is influenced by the pressure on rift–flank walls from seawater, contact between flanks, and ice mélange that may also transmit stress between flanks. To illustrate the viability of the framework, we simulate the final 2 years of rift propagation associated with the calving of tabular iceberg A68 in 2017. We find that the rift path can change with varying ice mélange conditions and the extent of contact between rift flanks. Combinations of parameters associated with slower rift widening rates yield simulated rift paths that best match observations. Our modeling framework lays the foundation for robust simulation of rifting and tabular calving processes, which can enable future studies on ice-sheet–climate interactions, and the effects of ice-shelf buttressing on land ice flow.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136155238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christophe Ogier, Dirk-Jan van Manen, Hansruedi Maurer, Ludovic Räss, Marian Hertrich, Andreas Bauder, Daniel Farinotti
Abstract Ground penetrating radar (GPR) has been extensively used in glaciology to infer glacier's ice thickness, liquid water content, water drainage pathways, and other properties. The interpretation of such GPR data is not always straightforward and for temperate glaciers, the signal is often affected by strong scattering and attenuation. It has often been suggested that such effects originate from englacial water inclusions, since water and ice have a large contrast in their di-electric permittivity. To investigate such effects quantitatively, we perform an extensive numerical modeling study of GPR signals. By exploring how different liquid water contents (LWC) and water-inclusions size affect the GPR signal, we show that their effects are much larger than the potential presence of a wet snowpack or a heterogeneous distribution of ice permittivity. In particularly, we show that the presence of such water inclusions is a necessary and sufficient condition for reproducing the typical characteristics of GPR data acquired in the field. Further, we find that for 25 MHz GPR antennas, a bulk LWC $gtrsim$ 0.2%, associated with decimeters-scale water inclusions already limits bedrock detectability for ice thicknesses $gtrsim 100$ m. Since these values are typical for Alpine glaciers, they clarify why the quality of GPR data is often poor in such environments.
{"title":"Ground penetrating radar in temperate ice: englacial water inclusions as limiting factor for data interpretation","authors":"Christophe Ogier, Dirk-Jan van Manen, Hansruedi Maurer, Ludovic Räss, Marian Hertrich, Andreas Bauder, Daniel Farinotti","doi":"10.1017/jog.2023.68","DOIUrl":"https://doi.org/10.1017/jog.2023.68","url":null,"abstract":"Abstract Ground penetrating radar (GPR) has been extensively used in glaciology to infer glacier's ice thickness, liquid water content, water drainage pathways, and other properties. The interpretation of such GPR data is not always straightforward and for temperate glaciers, the signal is often affected by strong scattering and attenuation. It has often been suggested that such effects originate from englacial water inclusions, since water and ice have a large contrast in their di-electric permittivity. To investigate such effects quantitatively, we perform an extensive numerical modeling study of GPR signals. By exploring how different liquid water contents (LWC) and water-inclusions size affect the GPR signal, we show that their effects are much larger than the potential presence of a wet snowpack or a heterogeneous distribution of ice permittivity. In particularly, we show that the presence of such water inclusions is a necessary and sufficient condition for reproducing the typical characteristics of GPR data acquired in the field. Further, we find that for 25 MHz GPR antennas, a bulk LWC $gtrsim$ 0.2%, associated with decimeters-scale water inclusions already limits bedrock detectability for ice thicknesses $gtrsim 100$ m. Since these values are typical for Alpine glaciers, they clarify why the quality of GPR data is often poor in such environments.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136235637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract We developed a novel laser melting sampler (LMS) for ice cores to measure the stable water isotope ratios (δ 18 O and δD) as temperature proxies at sub-centimeter depth resolutions. In this LMS system, a 2 mm diameter movable evacuation nozzle holds an optical fiber through which a laser beam irradiates the ice core. The movable nozzle intrudes into the ice core, the laser radiation meanwhile melts the ice cylindrically, and the meltwater is pumped away simultaneously through the same nozzle and transferred to a vial for analysis. To avoid isotopic fractionation of the ice through vaporization, the laser power is adjusted to ensure that the temperature of the meltwater is always kept well below its boiling point. A segment of a Dome Fuji shallow ice core (Antarctica), using the LMS, was then demonstrated to have been discretely sampled with a depth resolution as small as 3 mm: subsequent analysis of δ 18 O, δD, and deuterium excess ( d ) was consistent with results obtained by hand segmentation within measurement uncertainties. With system software to control sampling resolution, the LMS will enable us to identify temperature variations that may be detectable only at sub-centimeter resolutions in ice cores.
{"title":"A novel laser melting sampler for discrete, sub-centimeter depth-resolved analyses of stable water isotopes in ice cores","authors":"Yuko Motizuki, Yoichi Nakai, Kazuya Takahashi, Junya Hirose, Yu Vin Sahoo, Masaki Yumoto, Masayuki Maruyama, Michio Sakashita, Kiwamu Kase, Satoshi Wada, Hideaki Motoyama, Yasushige Yano","doi":"10.1017/jog.2023.52","DOIUrl":"https://doi.org/10.1017/jog.2023.52","url":null,"abstract":"Abstract We developed a novel laser melting sampler (LMS) for ice cores to measure the stable water isotope ratios (δ 18 O and δD) as temperature proxies at sub-centimeter depth resolutions. In this LMS system, a 2 mm diameter movable evacuation nozzle holds an optical fiber through which a laser beam irradiates the ice core. The movable nozzle intrudes into the ice core, the laser radiation meanwhile melts the ice cylindrically, and the meltwater is pumped away simultaneously through the same nozzle and transferred to a vial for analysis. To avoid isotopic fractionation of the ice through vaporization, the laser power is adjusted to ensure that the temperature of the meltwater is always kept well below its boiling point. A segment of a Dome Fuji shallow ice core (Antarctica), using the LMS, was then demonstrated to have been discretely sampled with a depth resolution as small as 3 mm: subsequent analysis of δ 18 O, δD, and deuterium excess ( d ) was consistent with results obtained by hand segmentation within measurement uncertainties. With system software to control sampling resolution, the LMS will enable us to identify temperature variations that may be detectable only at sub-centimeter resolutions in ice cores.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135059686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Voermans, J. Rabault, A. Marchenko, T. Nose, T. Waseda, A. Babanin
Progress in our understanding of wave–ice interactions is currently hindered by the lack of in situ observations and information of sea-ice properties, including the elastic modulus. Here, we estimate the effective elastic modulus of sea ice using observations of waves in ice through the deployment of three open-source geophone recorders on landfast sea ice. From observations of low-frequency dispersive waves, we obtain an estimate of the effective elastic modulus in the range of 0.4–0.7 GPa. This is lower than the purely elastic modulus of the ice estimated at 1 GPa as derived from in situ beam experiments. Importantly, our experimental observation is significantly lower than the default value currently in use in wave models. While our estimate is not representative for all sea ice, it does indicate that considerably more measurements are required to provide confidence in the development of parameterizations for this complex sea-ice property for wave models.
{"title":"Estimating the elastic modulus of landfast ice from wave observations","authors":"J. Voermans, J. Rabault, A. Marchenko, T. Nose, T. Waseda, A. Babanin","doi":"10.1017/jog.2023.63","DOIUrl":"https://doi.org/10.1017/jog.2023.63","url":null,"abstract":"\u0000 Progress in our understanding of wave–ice interactions is currently hindered by the lack of in situ observations and information of sea-ice properties, including the elastic modulus. Here, we estimate the effective elastic modulus of sea ice using observations of waves in ice through the deployment of three open-source geophone recorders on landfast sea ice. From observations of low-frequency dispersive waves, we obtain an estimate of the effective elastic modulus in the range of 0.4–0.7 GPa. This is lower than the purely elastic modulus of the ice estimated at 1 GPa as derived from in situ beam experiments. Importantly, our experimental observation is significantly lower than the default value currently in use in wave models. While our estimate is not representative for all sea ice, it does indicate that considerably more measurements are required to provide confidence in the development of parameterizations for this complex sea-ice property for wave models.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46365000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
W. Du, Shichang Kang, Ji-zu Chen, Weijun Sun, Xiang Qin, Zhenming Ji, Wenxuan Sun, Yanan Qiu
Ice records provide a qualitative rather than a quantitative indication of the trend of climate change. Using the bulk aerodynamic method and degree day model, this study quantified ice mass loss attributable to sublimation/evaporation (S/E) and meltwater on the basis of integrated observations (1960–2006) of glacier-related and atmospheric variables in the northeastern Tibetan Plateau. During 1961–2005, the average annual mass loss in the ice core was 95.33 ± 20.56 mm w.e. (minimum: 78.97 mm w.e. in 1967, maximum: 146.67 mm w.e. in 2001), while the average ratio of the revised annual ice accumulation was 21.2 ± 7.7% (minimum: 11.0% in 1992, maximum 44.8% in 2000). A quantitative formula expressing the relationship between S/E and air temperature at the monthly scale was established, which could be extended to estimation of S/E changes of other glaciers in other regions. The elevation effect on alpine precipitation determined using revised ice accumulation and instrumental data was found remarkable. This work established a method for quantitative assessment of the temporal variation in ice core mass loss, and advanced the reconstruction of long-term precipitation at high elevations. Importantly, the formula established for reconstruction of S/E from temperature time series data could be used in other regions.
{"title":"Quantified mass loss of the Laohugou ice core and its precipitation signal during 1961–2005 at high elevation in the northeastern Tibetan Plateau","authors":"W. Du, Shichang Kang, Ji-zu Chen, Weijun Sun, Xiang Qin, Zhenming Ji, Wenxuan Sun, Yanan Qiu","doi":"10.1017/jog.2023.51","DOIUrl":"https://doi.org/10.1017/jog.2023.51","url":null,"abstract":"\u0000 Ice records provide a qualitative rather than a quantitative indication of the trend of climate change. Using the bulk aerodynamic method and degree day model, this study quantified ice mass loss attributable to sublimation/evaporation (S/E) and meltwater on the basis of integrated observations (1960–2006) of glacier-related and atmospheric variables in the northeastern Tibetan Plateau. During 1961–2005, the average annual mass loss in the ice core was 95.33 ± 20.56 mm w.e. (minimum: 78.97 mm w.e. in 1967, maximum: 146.67 mm w.e. in 2001), while the average ratio of the revised annual ice accumulation was 21.2 ± 7.7% (minimum: 11.0% in 1992, maximum 44.8% in 2000). A quantitative formula expressing the relationship between S/E and air temperature at the monthly scale was established, which could be extended to estimation of S/E changes of other glaciers in other regions. The elevation effect on alpine precipitation determined using revised ice accumulation and instrumental data was found remarkable. This work established a method for quantitative assessment of the temporal variation in ice core mass loss, and advanced the reconstruction of long-term precipitation at high elevations. Importantly, the formula established for reconstruction of S/E from temperature time series data could be used in other regions.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43247250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We investigate unusual discontinuous glacier motion on Thompson Glacier, Umingmat Nunaat, Arctic Canada, using synthetic aperture radar (SAR) images and ice-flow modeling. A novel intensity-rescaling scheme is developed to reduce errors in high-resolution speckle tracking, resulting in a ~25% improvement in accuracy. Interferometric SAR (InSAR) and speckle tracking using high resolution RADARSAT-2 data indicate velocity discontinuities of up to 1 cm d−1 across deep and longitudinally extensive supraglacial channels on Thompson Glacier. We use a cross-sectional finite-element ice-flow model to determine the conditions under which velocity discontinuities of the observed magnitude and signature are possible. The modeling suggests that discontinuous motion across (long and straight) supraglacial channels can occur without ice fracture and under a wide variety of glacier thermal structures, including in fully temperate glaciers. Despite the wide range of conditions conducive to discontinuous motion, the form we observe requires that the associated channels be deep, longitudinally extensive and located in regions of lateral shearing. We speculate that these combined conditions are rare except on polythermal glaciers, where drainage features such as moulins are comparatively scarce and lower deformation rates allow channels to incise consistently and persist over many years.
我们使用合成孔径雷达(SAR)图像和冰流建模,研究了加拿大北极乌明马特-努纳特汤普森冰川上不寻常的不连续冰川运动。开发了一种新的强度重新缩放方案,以减少高分辨率散斑跟踪中的误差,从而使精度提高约25%。干涉SAR(InSAR)和使用高分辨率RADARSAT-2数据的散斑跟踪表明,汤普森冰川上深层和纵向扩展的冰上通道的速度不连续性高达1 cm d−1。我们使用截面有限元冰流模型来确定观测到的幅度和特征的速度不连续性可能存在的条件。该模型表明,在没有冰破裂的情况下,在各种各样的冰川热结构下,包括在全温带冰川中,可以发生跨越(长而直)冰上通道的不连续运动。尽管有利于不连续运动的广泛条件,但我们观察到的形式要求相关通道是深的、纵向延伸的,并且位于横向剪切区域。我们推测,除了多热冰川外,这些综合条件很少见,多热冰川的排水特征(如丘林)相对较少,较低的变形率使通道能够持续切割并持续多年。
{"title":"Detection and characterization of discontinuous motion on Thompson Glacier, Canadian High Arctic, using synthetic aperture radar speckle tracking and ice-flow modeling","authors":"Giovanni Corti, B. Rabus, G. Flowers","doi":"10.1017/jog.2023.67","DOIUrl":"https://doi.org/10.1017/jog.2023.67","url":null,"abstract":"\u0000 We investigate unusual discontinuous glacier motion on Thompson Glacier, Umingmat Nunaat, Arctic Canada, using synthetic aperture radar (SAR) images and ice-flow modeling. A novel intensity-rescaling scheme is developed to reduce errors in high-resolution speckle tracking, resulting in a ~25% improvement in accuracy. Interferometric SAR (InSAR) and speckle tracking using high resolution RADARSAT-2 data indicate velocity discontinuities of up to 1 cm d−1 across deep and longitudinally extensive supraglacial channels on Thompson Glacier. We use a cross-sectional finite-element ice-flow model to determine the conditions under which velocity discontinuities of the observed magnitude and signature are possible. The modeling suggests that discontinuous motion across (long and straight) supraglacial channels can occur without ice fracture and under a wide variety of glacier thermal structures, including in fully temperate glaciers. Despite the wide range of conditions conducive to discontinuous motion, the form we observe requires that the associated channels be deep, longitudinally extensive and located in regions of lateral shearing. We speculate that these combined conditions are rare except on polythermal glaciers, where drainage features such as moulins are comparatively scarce and lower deformation rates allow channels to incise consistently and persist over many years.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49181057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We present the surface mass balance (SMB) dataset from Vostok Station's accumulation stake farms which provide the longest instrumental record of its kind obtained with a uniform technique in central Antarctica over the last 53 years. The snow build-up values at individual stakes demonstrate a strong random scatter related to the interaction of wind-driven snow with snow micro-relief. Because of this depositional noise, the signal-to-noise ratio (SNR) in individual SMB time series derived at single points (from stakes, snow pits or firn cores) is as low as 0.045. Averaging the data over the whole stake farm increases the SNR to 2.3 and thus allows us to investigate reliably the climatic variability of the SMB. Since 1970, the average snow accumulation rate at Vostok has been 22.5 ± 1.3 kg m−2 yr−1. Our data suggest an overall increase of the SMB during the observation period accompanied by a significant decadal variability. The main driver of this variability is local air temperature with an SMB temperature sensitivity of 2.4 ± 0.2 kg m−2 yr−1 K−1 (11 ± 2% K−1). A covariation between the Vostok SMB and the Southern Oscillation Index is also observed.
我们提供了来自Vostok站积累场场的地表质量平衡(SMB)数据集,该数据集提供了过去53年来在南极洲中部使用统一技术获得的最长仪器记录。单个桩的雪积值表现出与风驱动雪和雪微地形相互作用有关的强随机散射。由于这种沉积噪声,单点(来自木桩、雪坑或铁芯)的单个SMB时间序列的信噪比(SNR)低至0.045。对整个桩场的数据进行平均,将信噪比提高到2.3,从而使我们能够可靠地研究SMB的气候变异性。自1970年以来,Vostok的平均积雪率为22.5±1.3 kg m−2 yr−1。我们的数据表明,在观测期间,SMB总体增加,并伴有显著的年代际变化。这种变化的主要驱动因素是当地气温,SMB温度敏感性为2.4±0.2 kg m−2 yr−1 K−1(11±2% K−1)。在Vostok SMB和南方涛动指数之间也观察到协变。
{"title":"Fifty years of instrumental surface mass balance observations at Vostok Station, central Antarctica","authors":"A. Ekaykin, V. Lipenkov, N. Tebenkova","doi":"10.1017/jog.2023.53","DOIUrl":"https://doi.org/10.1017/jog.2023.53","url":null,"abstract":"\u0000 We present the surface mass balance (SMB) dataset from Vostok Station's accumulation stake farms which provide the longest instrumental record of its kind obtained with a uniform technique in central Antarctica over the last 53 years. The snow build-up values at individual stakes demonstrate a strong random scatter related to the interaction of wind-driven snow with snow micro-relief. Because of this depositional noise, the signal-to-noise ratio (SNR) in individual SMB time series derived at single points (from stakes, snow pits or firn cores) is as low as 0.045. Averaging the data over the whole stake farm increases the SNR to 2.3 and thus allows us to investigate reliably the climatic variability of the SMB. Since 1970, the average snow accumulation rate at Vostok has been 22.5 ± 1.3 kg m−2 yr−1. Our data suggest an overall increase of the SMB during the observation period accompanied by a significant decadal variability. The main driver of this variability is local air temperature with an SMB temperature sensitivity of 2.4 ± 0.2 kg m−2 yr−1 K−1 (11 ± 2% K−1). A covariation between the Vostok SMB and the Southern Oscillation Index is also observed.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"56961787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kamilla H. Sjursen, T. Dunse, Antoine Tambue, T. Schuler, L. Andreassen
Empirical glacier mass-balance models are commonly used in assessments of glacier and runoff evolution. Recent satellite-borne geodetic mass-balance observations of global coverage facilitate large-scale model calibration that previously relied on sparse in situ observations of glacier mass change. Geodetic observations constitute temporally aggregated mass-balance signals with significant uncertainty, raising questions about the role of observations with different temporal resolutions and uncertainties in constraining model parameters. We employ a Bayesian approach and demonstrate the sensitivity of parameter values to commonly used mass-balance observations of seasonal, annual and decadal resolution with uncertainties characteristic to in situ and satellite-borne observations. For glaciers along a continentality gradient in Norway, the use of annual mass balances results in around 20% lower magnitude of modelled ablation and accumulation (1960–2020), compared to employing seasonal balances. Decadal mass balance also underestimates magnitudes of ablation and accumulation, but parameter values are strongly influenced by the prior distribution. The datasets yield similar estimates of annual mass balance with different margins of uncertainty. Decadal observations are afflicted with considerable uncertainty in mass-balance sensitivity due to high parameter uncertainty. Our results highlight the importance of seasonal observations when model applications require accurate magnitudes of ablation, e.g. to estimate meltwater runoff.
{"title":"Bayesian parameter estimation in glacier mass-balance modelling using observations with distinct temporal resolutions and uncertainties","authors":"Kamilla H. Sjursen, T. Dunse, Antoine Tambue, T. Schuler, L. Andreassen","doi":"10.1017/jog.2023.62","DOIUrl":"https://doi.org/10.1017/jog.2023.62","url":null,"abstract":"\u0000 Empirical glacier mass-balance models are commonly used in assessments of glacier and runoff evolution. Recent satellite-borne geodetic mass-balance observations of global coverage facilitate large-scale model calibration that previously relied on sparse in situ observations of glacier mass change. Geodetic observations constitute temporally aggregated mass-balance signals with significant uncertainty, raising questions about the role of observations with different temporal resolutions and uncertainties in constraining model parameters. We employ a Bayesian approach and demonstrate the sensitivity of parameter values to commonly used mass-balance observations of seasonal, annual and decadal resolution with uncertainties characteristic to in situ and satellite-borne observations. For glaciers along a continentality gradient in Norway, the use of annual mass balances results in around 20% lower magnitude of modelled ablation and accumulation (1960–2020), compared to employing seasonal balances. Decadal mass balance also underestimates magnitudes of ablation and accumulation, but parameter values are strongly influenced by the prior distribution. The datasets yield similar estimates of annual mass balance with different margins of uncertainty. Decadal observations are afflicted with considerable uncertainty in mass-balance sensitivity due to high parameter uncertainty. Our results highlight the importance of seasonal observations when model applications require accurate magnitudes of ablation, e.g. to estimate meltwater runoff.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42240944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Lovell, J. Carrivick, O. King, J. Sutherland, J. Yde, C. M. Boston, Jakub Małecki
We present the first systematic inventory of surge-type glaciers for the whole of Greenland compiled from published datasets and multitemporal satellite images and digital elevation models. The inventory allows us to define the spatial and climatic distribution of surge-type glaciers and to analyse the timing of surges from 1985 to 2019. We identified 274 surge-type glaciers, an increase of 37% compared to previous work. Mapping surge-type glacier distribution by temperature and precipitation variables derived from ERA5-Land reanalysis data shows that the west and east clusters occur in well-defined climatic envelopes. Analysis of the timing of surge active phases during the periods ~1985 to 2000 (T1) and ~2000 to 2019 (T2) suggests that overall surge activity is similar in T1 and T2, but there appears to be a reduction in surging in the west cluster in T2. Our climate analysis shows a coincident increase in mean annual and mean winter air temperature between T1 and T2. We suggest that as glaciers thin under current warming, some surge-type glaciers in the west cluster may be being prevented from surging due to (1) their inability to build-up sufficient mass and (2) a switch from a polythermal to a largely cold-based thermal regime.
{"title":"Surge-type glaciers in Kalaallit Nunaat (Greenland): distribution, temporal patterns and climatic controls","authors":"H. Lovell, J. Carrivick, O. King, J. Sutherland, J. Yde, C. M. Boston, Jakub Małecki","doi":"10.1017/jog.2023.61","DOIUrl":"https://doi.org/10.1017/jog.2023.61","url":null,"abstract":"\u0000 We present the first systematic inventory of surge-type glaciers for the whole of Greenland compiled from published datasets and multitemporal satellite images and digital elevation models. The inventory allows us to define the spatial and climatic distribution of surge-type glaciers and to analyse the timing of surges from 1985 to 2019. We identified 274 surge-type glaciers, an increase of 37% compared to previous work. Mapping surge-type glacier distribution by temperature and precipitation variables derived from ERA5-Land reanalysis data shows that the west and east clusters occur in well-defined climatic envelopes. Analysis of the timing of surge active phases during the periods ~1985 to 2000 (T1) and ~2000 to 2019 (T2) suggests that overall surge activity is similar in T1 and T2, but there appears to be a reduction in surging in the west cluster in T2. Our climate analysis shows a coincident increase in mean annual and mean winter air temperature between T1 and T2. We suggest that as glaciers thin under current warming, some surge-type glaciers in the west cluster may be being prevented from surging due to (1) their inability to build-up sufficient mass and (2) a switch from a polythermal to a largely cold-based thermal regime.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47776439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}