Anne Pommier, Michael J. Tauber, Christian Renggli, Christopher Davies, Alfred Wilson
Alkaline earth sulfides are possibly abundant in the mantle of Mercury, and knowledge of their melting and transport properties is needed to investigate the structure of the planet. We report electrical experiments at pressures in the range 2–5 GPa and at temperatures up to ∼2,400 K on proposed analogs of natural sulfides, that is, Ca1-xMgxS with minor impurities. Electrical conductivity increases nonuniformly with temperature with no systematic dependence on cation composition. At relatively low temperatures (near 1,100 K), the conductivities span a wide range, whereas at higher temperatures the values converge within ∼0.5–7 S/m at 1,800 K and 5 GPa. The conductivity trends are complex, and likely reflect contributions from divalent cations, alkali metal and carbon impurities, which would similarly contribute to the conductivity of Mercury's crust and mantle. Melting is identified by a sharp increase in conductivity between ∼1,850 and 2,100 K at 5 GPa. These transition temperatures are consistent with the presence of impurities. Using electrical studies on relevant silicate minerals and petrological observations, we developed electrical conductivity-depth profiles of Mercury's silicate portion. Depending on the interconnectivity of the sulfide phase, the conductivity at the base of the mantle containing 8 vol.% sulfide ranges from ∼0.2 to >8 S/m. Our results can be tested with future observations from the ESA-JAXA BepiColombo mission.
{"title":"Electrical Properties of Alkaline Earth Sulfides and Implications for the Interior of Mercury","authors":"Anne Pommier, Michael J. Tauber, Christian Renggli, Christopher Davies, Alfred Wilson","doi":"10.1029/2024JE008651","DOIUrl":"https://doi.org/10.1029/2024JE008651","url":null,"abstract":"<p>Alkaline earth sulfides are possibly abundant in the mantle of Mercury, and knowledge of their melting and transport properties is needed to investigate the structure of the planet. We report electrical experiments at pressures in the range 2–5 GPa and at temperatures up to ∼2,400 K on proposed analogs of natural sulfides, that is, Ca<sub>1-x</sub>Mg<sub>x</sub>S with minor impurities. Electrical conductivity increases nonuniformly with temperature with no systematic dependence on cation composition. At relatively low temperatures (near 1,100 K), the conductivities span a wide range, whereas at higher temperatures the values converge within ∼0.5–7 S/m at 1,800 K and 5 GPa. The conductivity trends are complex, and likely reflect contributions from divalent cations, alkali metal and carbon impurities, which would similarly contribute to the conductivity of Mercury's crust and mantle. Melting is identified by a sharp increase in conductivity between ∼1,850 and 2,100 K at 5 GPa. These transition temperatures are consistent with the presence of impurities. Using electrical studies on relevant silicate minerals and petrological observations, we developed electrical conductivity-depth profiles of Mercury's silicate portion. Depending on the interconnectivity of the sulfide phase, the conductivity at the base of the mantle containing 8 vol.% sulfide ranges from ∼0.2 to >8 S/m. Our results can be tested with future observations from the ESA-JAXA BepiColombo mission.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 2","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ariel N. Deutsch, Valentin T. Bickel, David T. Blewett
Hollows are small, shallow, irregularly shaped landforms, widespread across Mercury, interpreted to have formed via loss of volatiles. Here, we present the first global analysis of hollow degradation states using a new machine learning-derived global catalog. We define three classes, grading from younger/potentially active “Stage 1” (sharp morphology, high visible reflectance) to older/potentially expired “Stage 3” (softened morphology, reflectance similar to that of surroundings). Most analyzed hollows are Stage 1 (N = 1,545 individual hollows), which are more common than Stage 2 (N = 1,111) or Stage 3 (N = 10) hollows near the equator, consistent with the idea that insolation is a primary driver for hollow initiation/growth. Areas where Stage 2 hollows are more common than Stage 1 hollows may indicate regions of relative volatile depletion. Stage 3 hollows are rare, suggesting they are systematically missed during image review, or that hollows on Mercury are mostly young, have been recently reactivated, or are quickly erased once they become inactive. Temperature may limit hollow growth, given that only small hollows are identified in the coldest terrains. There is no meaningful difference in the distribution of hollow sizes between stages, suggesting that their morphological and reflectance properties are not substantially muted until they are fully grown. Stage 1 hollows are more commonly found on steeper slopes than nearby Stage 2 hollows, suggesting that slopes may be an important control on how long hollows remain active. Our hollow classifications are openly available and can help to inform global-scale studies of hollow evolution, and upcoming targeting efforts by the ESA/JAXA BepiColombo mission.
{"title":"Hollows on Mercury: Global Classification of Degradation States and Insight Into Hollow Evolution","authors":"Ariel N. Deutsch, Valentin T. Bickel, David T. Blewett","doi":"10.1029/2024JE008747","DOIUrl":"https://doi.org/10.1029/2024JE008747","url":null,"abstract":"<p>Hollows are small, shallow, irregularly shaped landforms, widespread across Mercury, interpreted to have formed via loss of volatiles. Here, we present the first global analysis of hollow degradation states using a new machine learning-derived global catalog. We define three classes, grading from younger/potentially active “Stage 1” (sharp morphology, high visible reflectance) to older/potentially expired “Stage 3” (softened morphology, reflectance similar to that of surroundings). Most analyzed hollows are Stage 1 (<i>N</i> = 1,545 individual hollows), which are more common than Stage 2 (<i>N</i> = 1,111) or Stage 3 (<i>N</i> = 10) hollows near the equator, consistent with the idea that insolation is a primary driver for hollow initiation/growth. Areas where Stage 2 hollows are more common than Stage 1 hollows may indicate regions of relative volatile depletion. Stage 3 hollows are rare, suggesting they are systematically missed during image review, or that hollows on Mercury are mostly young, have been recently reactivated, or are quickly erased once they become inactive. Temperature may limit hollow growth, given that only small hollows are identified in the coldest terrains. There is no meaningful difference in the distribution of hollow sizes between stages, suggesting that their morphological and reflectance properties are not substantially muted until they are fully grown. Stage 1 hollows are more commonly found on steeper slopes than nearby Stage 2 hollows, suggesting that slopes may be an important control on how long hollows remain active. Our hollow classifications are openly available and can help to inform global-scale studies of hollow evolution, and upcoming targeting efforts by the ESA/JAXA BepiColombo mission.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 2","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008747","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p>Some melted and differentiated planetesimals, such as the parent bodies of angrites and howardite-eucrite-diogenite meteorites, are severely depleted in moderately volatile elements (MVEs). The origins of these depletions are critical for understanding early solar system evolution but remain topics of debate. Numerous previous studies have invoked evaporation from magma oceans as a potential mechanism for producing these depletions, yet this process is poorly explored. In this study, we examine the efficiency of MVE loss from planetesimal magma oceans. Upon heating from short-lived <span></span><math>