首页 > 最新文献

Journal of Luminescence最新文献

英文 中文
Luminescent perovskite quantum dots: Progress in fabrication, modelling and machine learning approaches for advanced photonic and quantum computing applications 发光过氧化物量子点:先进光子和量子计算应用的制造、建模和机器学习方法的进展
IF 3.3 3区 物理与天体物理 Q2 OPTICS Pub Date : 2024-09-23 DOI: 10.1016/j.jlumin.2024.120906
Deepthi Jayan K., Kesiya Babu
Luminescent metal halide quantum dots (QDs), particularly perovskite quantum dots (PQDs), garnered remarkable attention for unique optical properties as well as critical use for advanced photonic and electronic devices. This comprehensive review explores the synthesis, properties, and applications of PQDs, with a focus on their role in luminescent metal halide QD devices. The review begins by discussing advanced synthesis techniques and surface engineering strategies for PQDs, highlighting recent developments in the field. Structural and optical characterization techniques are then examined, emphasizing the importance of understanding quantum confinement effects and emission mechanisms in PQDs. The review also includes a discussion on modelling and simulation, discussing computational methods for predicting and optimizing PQD properties. Experimental studies and device fabrication techniques are discussed in detail, showcasing the progress made in integrating PQDs into optoelectronic devices. Advanced applications of PQDs in light-emitting devices, solar cells, sensors, and photodetectors are explored, highlighting their potential for efficiency enhancements and novel functionalities. A detailed discussion on the emerging role of machine learning (ML) in PQD research, focusing on its applications in materials discovery and device optimization are also included. This review explores the potential of luminescent PQDs for quantum computing applications, focusing on their role as qubits, quantum gates, and quantum memory devices, emphasizing the latest advancements, challenges, and future prospects of integrating PQDs into quantum computing architectures. The review concludes with an overview of emerging trends and future directions in the field, emphasizing the need for continued research to unlock the full potential of PQDs in advanced photonic and electronic devices.
发光金属卤化物量子点(QDs),尤其是过氧化物量子点(PQDs),因其独特的光学特性以及在先进光子和电子设备中的重要应用而备受关注。这篇综述探讨了 PQDs 的合成、特性和应用,重点是它们在发光金属卤化物 QD 器件中的作用。综述首先讨论了 PQDs 的先进合成技术和表面工程策略,重点介绍了该领域的最新进展。然后研究了结构和光学表征技术,强调了了解 PQDs 中量子约束效应和发射机制的重要性。综述还包括对建模和模拟的讨论,讨论了预测和优化 PQD 特性的计算方法。书中详细讨论了实验研究和器件制造技术,展示了在将 PQDs 集成到光电器件方面取得的进展。还探讨了 PQDs 在发光器件、太阳能电池、传感器和光电探测器中的先进应用,强调了它们在提高效率和新功能方面的潜力。此外,还详细讨论了机器学习(ML)在 PQD 研究中的新兴作用,重点关注其在材料发现和器件优化中的应用。本综述探讨了发光 PQD 在量子计算应用中的潜力,重点关注其作为量子比特、量子门和量子存储器件的作用,强调了将 PQD 集成到量子计算架构中的最新进展、挑战和未来前景。综述最后概述了该领域的新兴趋势和未来发展方向,强调需要继续开展研究,以释放 PQDs 在先进光子和电子设备中的全部潜力。
{"title":"Luminescent perovskite quantum dots: Progress in fabrication, modelling and machine learning approaches for advanced photonic and quantum computing applications","authors":"Deepthi Jayan K.,&nbsp;Kesiya Babu","doi":"10.1016/j.jlumin.2024.120906","DOIUrl":"10.1016/j.jlumin.2024.120906","url":null,"abstract":"<div><div>Luminescent metal halide quantum dots (QDs), particularly perovskite quantum dots (PQDs), garnered remarkable attention for unique optical properties as well as critical use for advanced photonic and electronic devices. This comprehensive review explores the synthesis, properties, and applications of PQDs, with a focus on their role in luminescent metal halide QD devices. The review begins by discussing advanced synthesis techniques and surface engineering strategies for PQDs, highlighting recent developments in the field. Structural and optical characterization techniques are then examined, emphasizing the importance of understanding quantum confinement effects and emission mechanisms in PQDs. The review also includes a discussion on modelling and simulation, discussing computational methods for predicting and optimizing PQD properties. Experimental studies and device fabrication techniques are discussed in detail, showcasing the progress made in integrating PQDs into optoelectronic devices. Advanced applications of PQDs in light-emitting devices, solar cells, sensors, and photodetectors are explored, highlighting their potential for efficiency enhancements and novel functionalities. A detailed discussion on the emerging role of machine learning (ML) in PQD research, focusing on its applications in materials discovery and device optimization are also included. This review explores the potential of luminescent PQDs for quantum computing applications, focusing on their role as qubits, quantum gates, and quantum memory devices, emphasizing the latest advancements, challenges, and future prospects of integrating PQDs into quantum computing architectures. The review concludes with an overview of emerging trends and future directions in the field, emphasizing the need for continued research to unlock the full potential of PQDs in advanced photonic and electronic devices.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative investigation of structural, morphological and temperature-dependent photoluminescence characteristics of trivalent rare-earth-activated NaCaPO4 phosphors for solid-state lighting applications 用于固态照明应用的三价稀土活化 NaCaPO4 荧光粉的结构、形态和温度依赖性光致发光特性的比较研究
IF 3.3 3区 物理与天体物理 Q2 OPTICS Pub Date : 2024-09-23 DOI: 10.1016/j.jlumin.2024.120901
Mudasir Farooq , Haqnawaz Rafiq , Irfan Nazir , Ab Mateen Tantray , Hameed Younis , Mir Hashim Rasool
This study explores the synthesis, structure, morphology, and photoluminescence features of trivalent RE3+-activated NaCaPO4 phosphors, aiming to develop phosphor materials for white-light-emitting diode (WLED) applications. Single-phase polycrystalline NaCa(1-x) REx3+ PO4 (REx3+ = Sm, Eu, Dy, and Tb) phosphor materials with various REx3+-doping percentiles were produced by a solid-state reaction process, which were analyzed using various characterization techniques. The FullProf Suite software program was used for phase evidence and crystalline structure analysis, confirming the composition of orthorhombic materials as a single phase. FE-SEM micrographs revealed asymmetrically stacked morphologies across all the compositions. This study reveals that trivalent RE3+-activated phosphors produced exceptional PL outcomes. Dexter's and Blasse's approaches were used to establish the interaction mechanisms and critical energy transfer ranges as dipole-dipole. Lifetime decay patterns were used to fit a bi-exponential function and the resulting values were approximated in milliseconds. This study reveals that trivalent RE3+-activated NaCaPO4 phosphors, with their thermal resilience and color integrity, have potential applications in solid-state lighting (SSL) technology.
本研究探讨了三价 RE3+ 活化 NaCaPO4 荧光粉的合成、结构、形态和光致发光特性,旨在开发白光发光二极管(WLED)用荧光粉材料。采用固态反应工艺制备了具有不同 REx3+ 掺杂百分位数的单相多晶 NaCa(1-x) REx3+ PO4(REx3+ = Sm、Eu、Dy 和 Tb)荧光粉材料,并使用各种表征技术对其进行了分析。使用 FullProf Suite 软件程序进行了相证和晶体结构分析,确认了正交材料作为单相的组成。FE-SEM 显微照片显示了所有成分的不对称堆叠形态。这项研究表明,三价 RE3+ 激活的荧光粉能产生优异的聚光效果。利用 Dexter 和 Blasse 方法建立了相互作用机制和偶极-偶极临界能量转移范围。寿命衰减模式被用来拟合双指数函数,得出的数值以毫秒为近似单位。这项研究表明,三价 RE3+ 激活的 NaCaPO4 荧光粉具有热弹性和色彩完整性,在固态照明 (SSL) 技术中具有潜在的应用价值。
{"title":"Comparative investigation of structural, morphological and temperature-dependent photoluminescence characteristics of trivalent rare-earth-activated NaCaPO4 phosphors for solid-state lighting applications","authors":"Mudasir Farooq ,&nbsp;Haqnawaz Rafiq ,&nbsp;Irfan Nazir ,&nbsp;Ab Mateen Tantray ,&nbsp;Hameed Younis ,&nbsp;Mir Hashim Rasool","doi":"10.1016/j.jlumin.2024.120901","DOIUrl":"10.1016/j.jlumin.2024.120901","url":null,"abstract":"<div><div>This study explores the synthesis, structure, morphology, and photoluminescence features of trivalent RE<sup>3+</sup>-activated NaCaPO<sub>4</sub> phosphors, aiming to develop phosphor materials for white-light-emitting diode (WLED) applications. Single-phase polycrystalline NaCa<sub>(1-x)</sub> RE<sub>x</sub><sup>3+</sup> PO<sub>4</sub> (RE<sub>x</sub><sup>3+</sup> = Sm, Eu, Dy, and Tb) phosphor materials with various RE<sub>x</sub><sup>3+</sup>-doping percentiles were produced by a solid-state reaction process, which were analyzed using various characterization techniques. The FullProf Suite software program was used for phase evidence and crystalline structure analysis, confirming the composition of orthorhombic materials as a single phase. FE-SEM micrographs revealed asymmetrically stacked morphologies across all the compositions. This study reveals that trivalent RE<sup>3+</sup>-activated phosphors produced exceptional PL outcomes. Dexter's and Blasse's approaches were used to establish the interaction mechanisms and critical energy transfer ranges as dipole-dipole. Lifetime decay patterns were used to fit a bi-exponential function and the resulting values were approximated in milliseconds. This study reveals that trivalent RE<sup>3+</sup>-activated NaCaPO<sub>4</sub> phosphors, with their thermal resilience and color integrity, have potential applications in solid-state lighting (SSL) technology.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142327868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-color emitting in rare-earth based double perovskites Cs2NaLuCl6: Sb3+, Tb3+ for warm WLED and anti-counterfeiting 稀土基双过氧化物 Cs2NaLuCl6 中的双色发光:Sb3+、Tb3+ 用于暖色 WLED 和防伪
IF 3.3 3区 物理与天体物理 Q2 OPTICS Pub Date : 2024-09-23 DOI: 10.1016/j.jlumin.2024.120909
Yiying Zhu, Yining Wang, Yixin Sun, Zheng Xu, Mengmeng Shang
Lead-free double perovskites (LFDPs) usually exhibit poor luminescent performance, and doping lanthanide ions (Ln3+) presents a promising solution to solve this problem. However, most Ln3+ ions face difficulties in incorporating into LFDPs due to the mismatch in radius or valence state. Here, we successfully synthesized rare-earth (RE3+) based Cs2NaLuCl6 (CNLC) LFDPs and achieved efficient green emission through doping Tb3+ into CNLC. Introducing Sb3+ improves the absorption efficiency of CNLC: Tb3+ from 25.1 % to 73.5 % by establishing an energy transfer channel from Sb3+ to Tb3+. Benefiting from the energy transfer, the CNLC: 0.01Sb3+, 0.10Tb3+ phosphor produces blue-green dual emissions, highlighting its potential in white light-emitting diodes (WLEDs). In addition, an anti-counterfeiting pattern composed of CNLC: Sb3+, CNLC: Tb3+, and CNLC: Sb3+, Tb3+ samples was fabricated, which shows their promising prospect in anti-counterfeiting applications.
无铅双包晶石(LFDPs)的发光性能通常较差,而掺杂镧系离子(Ln3+)则是解决这一问题的可行方案。然而,由于半径或价态不匹配,大多数 Ln3+ 离子很难掺入 LFDPs 中。在此,我们成功合成了基于稀土(RE3+)的 Cs2NaLuCl6(CNLC)LFDPs,并通过在 CNLC 中掺杂 Tb3+ 实现了高效的绿色发射。通过建立从 Sb3+ 到 Tb3+ 的能量转移通道,Sb3+ 的引入将 CNLC: Tb3+ 的吸收效率从 25.1% 提高到 73.5%。得益于能量转移,CNLC: 0.01Sb3+, 0.10Tb3+ 荧光粉产生了蓝绿双发射,突出了其在白光发光二极管(WLED)中的应用潜力。此外,还制作出了由 CNLC:Sb3+、CNLC:Tb3+ 和 CNLC:Sb3+、Tb3+ 样品组成的防伪图案,显示了它们在防伪应用中的广阔前景。
{"title":"Dual-color emitting in rare-earth based double perovskites Cs2NaLuCl6: Sb3+, Tb3+ for warm WLED and anti-counterfeiting","authors":"Yiying Zhu,&nbsp;Yining Wang,&nbsp;Yixin Sun,&nbsp;Zheng Xu,&nbsp;Mengmeng Shang","doi":"10.1016/j.jlumin.2024.120909","DOIUrl":"10.1016/j.jlumin.2024.120909","url":null,"abstract":"<div><div>Lead-free double perovskites (LFDPs) usually exhibit poor luminescent performance, and doping lanthanide ions (Ln<sup>3+</sup>) presents a promising solution to solve this problem. However, most Ln<sup>3+</sup> ions face difficulties in incorporating into LFDPs due to the mismatch in radius or valence state. Here, we successfully synthesized rare-earth (RE<sup>3+</sup>) based Cs<sub>2</sub>NaLuCl<sub>6</sub> (CNLC) LFDPs and achieved efficient green emission through doping Tb<sup>3+</sup> into CNLC. Introducing Sb<sup>3+</sup> improves the absorption efficiency of CNLC: Tb<sup>3+</sup> from 25.1 % to 73.5 % by establishing an energy transfer channel from Sb<sup>3+</sup> to Tb<sup>3+</sup>. Benefiting from the energy transfer, the CNLC: 0.01Sb<sup>3+</sup>, 0.10Tb<sup>3+</sup> phosphor produces blue-green dual emissions, highlighting its potential in white light-emitting diodes (WLEDs). In addition, an anti-counterfeiting pattern composed of CNLC: Sb<sup>3+</sup>, CNLC: Tb<sup>3+</sup>, and CNLC: Sb<sup>3+</sup>, Tb<sup>3+</sup> samples was fabricated, which shows their promising prospect in anti-counterfeiting applications.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multicolor and multimode luminescent lanthanide-doped Cs2NaInCl6:Sb3+ from visible to near infrared for versatile applications 掺杂镧系元素的 Cs2NaInCl6:Sb3+ 从可见光到近红外的多色多模发光,可用于多种应用领域
IF 3.3 3区 物理与天体物理 Q2 OPTICS Pub Date : 2024-09-22 DOI: 10.1016/j.jlumin.2024.120908
Xiaowei Deng , Xu Chen , Meng Wang , Weilong Qin , Gaoqiang Li , Jiaqiong Qin , Yanbing Han , Mochen Jia , Xinjian Li , Zhifeng Shi
Double halide perovskites have shown admirable potential in promising optoelectronic applications due to simple synthesis, good stability and high structural tolerance. However, the poor optical properties caused by the parity-forbidden transitions posts a stringent limitation on their potential applications. Herein, we dope the lanthanide (Ln3+) ions with abundant energy levels into the Cs2NaInCl6:Sb3+ single crystals, which not only achieve multicolor visible emissions spectra from blue to red light, but also expand to the near infrared region from 800 to 1900 nm. In addition, the phosphors enable the multimode emissions with the up-conversion and down-conversion photoluminescence. Intriguingly, the excitation source, and the excitation light intensity also endow the multicolor emissions. Thus, combining with the multicolor and multimode luminescent properties, Cs2NaInCl6:Sb3+/Ln3+ could be applied to night vision imaging, substance detection, optical thermometry, white-light-emitting diodes (WLEDs) and anti-counterfeiting. The maximum value of relative temperature sensitivity reaches as high as 1.207 % K−1, which is relatively higher than those of most metal halide perovskites. Moreover, the single-source WLED displays Commission Internationale de L'Eclairage color coordinates (0.32, 0.31), a correlated color temperature of 6673 K, and color rendering index of 81.7. These results demonstrate the potential applications in the multifunctional photoelectric applications.
双卤化物过氧化物晶石具有合成简单、稳定性好和结构容差大等优点,在光电应用领域显示出令人钦佩的潜力。然而,由于奇偶禁止跃迁而导致的不良光学特性对其潜在应用造成了严格限制。在此,我们将能级丰富的镧系(Ln3+)离子掺杂到 Cs2NaInCl6:Sb3+ 单晶中,不仅实现了从蓝光到红光的多色可见光发射光谱,而且还扩展到了从 800 纳米到 1900 纳米的近红外区域。此外,这种荧光粉还能实现上转换和下转换光致发光的多模发射。有趣的是,激发光源和激发光强度也赋予了多色发射。因此,结合多色和多模发光特性,Cs2NaInCl6:Sb3+/Ln3+ 可应用于夜视成像、物质检测、光学测温、白光发光二极管(WLED)和防伪。相对温度灵敏度的最大值高达 1.207 % K-1,相对高于大多数金属卤化物类包晶石。此外,单源 WLED 显示出国际照明委员会的色坐标(0.32,0.31),相关色温为 6673 K,显色指数为 81.7。这些结果表明了其在多功能光电应用领域的潜在应用前景。
{"title":"Multicolor and multimode luminescent lanthanide-doped Cs2NaInCl6:Sb3+ from visible to near infrared for versatile applications","authors":"Xiaowei Deng ,&nbsp;Xu Chen ,&nbsp;Meng Wang ,&nbsp;Weilong Qin ,&nbsp;Gaoqiang Li ,&nbsp;Jiaqiong Qin ,&nbsp;Yanbing Han ,&nbsp;Mochen Jia ,&nbsp;Xinjian Li ,&nbsp;Zhifeng Shi","doi":"10.1016/j.jlumin.2024.120908","DOIUrl":"10.1016/j.jlumin.2024.120908","url":null,"abstract":"<div><div>Double halide perovskites have shown admirable potential in promising optoelectronic applications due to simple synthesis, good stability and high structural tolerance. However, the poor optical properties caused by the parity-forbidden transitions posts a stringent limitation on their potential applications. Herein, we dope the lanthanide (Ln<sup>3+</sup>) ions with abundant energy levels into the Cs<sub>2</sub>NaInCl<sub>6</sub>:Sb<sup>3+</sup> single crystals, which not only achieve multicolor visible emissions spectra from blue to red light, but also expand to the near infrared region from 800 to 1900 nm. In addition, the phosphors enable the multimode emissions with the up-conversion and down-conversion photoluminescence. Intriguingly, the excitation source, and the excitation light intensity also endow the multicolor emissions. Thus, combining with the multicolor and multimode luminescent properties, Cs<sub>2</sub>NaInCl<sub>6</sub>:Sb<sup>3+</sup>/Ln<sup>3+</sup> could be applied to night vision imaging, substance detection, optical thermometry, white-light-emitting diodes (WLEDs) and anti-counterfeiting. The maximum value of relative temperature sensitivity reaches as high as 1.207 % K<sup>−1</sup>, which is relatively higher than those of most metal halide perovskites. Moreover, the single-source WLED displays Commission Internationale de L'Eclairage color coordinates (0.32, 0.31), a correlated color temperature of 6673 K, and color rendering index of 81.7. These results demonstrate the potential applications in the multifunctional photoelectric applications.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CsPbBr3 perovskite thin film as a saturable absorber for MIR passively Q-switched lasers 用作中红外被动 Q 开关激光器可饱和吸收体的铯硼硼 3 包晶薄膜
IF 3.3 3区 物理与天体物理 Q2 OPTICS Pub Date : 2024-09-21 DOI: 10.1016/j.jlumin.2024.120910
Mingchao Shao , Xiaoyue Feng , Beilei Yuan , Jiahao Dong , Wenxin Li , Jie liu , Jingjing Liu , Bingqiang Cao , Jun Xu
Saturable absorbers (SAs) are key devices for passive Q-switching. All-inorganic halide perovskites demonstrate superior stability compared to their organic-inorganic hybrid counterparts, making them more promising candidates as SAs. A high-quality, all-inorganic halide perovskite CsPbBr3, designed for mid-infrared (MIR) broadband saturable absorption, has been successfully fabricated. The saturable absorption properties of this material within the MIR region have been thoroughly characterized. Characterization outcomes reveal that CsPbBr3 possesses outstanding broadband saturable absorption characteristics. For the first time, passive Q-switching operation has been successfully achieved in the MIR region, specifically at wavelengths of 1.9 μm and 2.8 μm, utilizing the CsPbBr3 SA. Peak powers of 5.57 W at the 1.9 μm wavelength and 5.23 W at the 2.8 μm wavelength were achieved. The experimental results indicate that CsPbBr3 is an efficient SA material, holding significant promise for the development of pulsed lasers with broad bandwidth and high energy outputs.
可饱和吸收体(SA)是无源 Q 开关的关键器件。与有机无机杂化的同类产品相比,全无机卤化物包光体具有更高的稳定性,因此更有希望成为可饱和吸收体。目前已成功制备出一种用于中红外(MIR)宽带可饱和吸收的高质量全无机卤化物包晶 CsPbBr3。对这种材料在中红外区域的可饱和吸收特性进行了全面表征。表征结果表明,CsPbBr3 具有出色的宽带可饱和吸收特性。利用 CsPbBr3 SA,我们首次在中红外区域成功实现了无源 Q 开关操作,特别是在 1.9 μm 和 2.8 μm 波长处。在 1.9 μm 波长和 2.8 μm 波长分别实现了 5.57 W 和 5.23 W 的峰值功率。实验结果表明,CsPbBr3 是一种高效的 SA 材料,有望开发出具有宽带宽和高能量输出的脉冲激光器。
{"title":"CsPbBr3 perovskite thin film as a saturable absorber for MIR passively Q-switched lasers","authors":"Mingchao Shao ,&nbsp;Xiaoyue Feng ,&nbsp;Beilei Yuan ,&nbsp;Jiahao Dong ,&nbsp;Wenxin Li ,&nbsp;Jie liu ,&nbsp;Jingjing Liu ,&nbsp;Bingqiang Cao ,&nbsp;Jun Xu","doi":"10.1016/j.jlumin.2024.120910","DOIUrl":"10.1016/j.jlumin.2024.120910","url":null,"abstract":"<div><div>Saturable absorbers (SAs) are key devices for passive Q-switching. All-inorganic halide perovskites demonstrate superior stability compared to their organic-inorganic hybrid counterparts, making them more promising candidates as SAs. A high-quality, all-inorganic halide perovskite CsPbBr<sub>3</sub>, designed for mid-infrared (MIR) broadband saturable absorption, has been successfully fabricated. The saturable absorption properties of this material within the MIR region have been thoroughly characterized. Characterization outcomes reveal that CsPbBr<sub>3</sub> possesses outstanding broadband saturable absorption characteristics. For the first time, passive Q-switching operation has been successfully achieved in the MIR region, specifically at wavelengths of 1.9 μm and 2.8 μm, utilizing the CsPbBr<sub>3</sub> SA. Peak powers of 5.57 W at the 1.9 μm wavelength and 5.23 W at the 2.8 μm wavelength were achieved. The experimental results indicate that CsPbBr<sub>3</sub> is an efficient SA material, holding significant promise for the development of pulsed lasers with broad bandwidth and high energy outputs.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the thermal stability and luminescence of Sr3Ga1.98In0.02Ge4O14:0.03Cr3+ through the efficient energy transfer 通过高效能量转移提高 Sr3Ga1.98In0.02Ge4O14:0.03Cr3+ 的热稳定性和发光性能
IF 3.3 3区 物理与天体物理 Q2 OPTICS Pub Date : 2024-09-21 DOI: 10.1016/j.jlumin.2024.120911
Haonan Huang, Jiayue Zhang, Bingkai Gao, Runqiu Peng, Zhijun Wang, Jiehong Li, Panlai Li
In this work, in order to explore the near-infrared (NIR) phosphor converted light emitting diodes (pc-LEDs), the NIR phosphor Sr3Ga1.98In0.02Ge4O14:0.03Cr3+, 0.05 Yb3+ was achieved by the high temperature solid-state method, which presents a broadband emission with a large full width at half maximum (FWHM) of 291 nm due to the energy transfer from Cr3+ to Yb3+. The emission intensity (at 423 K) of Sr3Ga1.98In0.02Ge4O14:0.03Cr3+, 0.05 Yb3+ can be maintained at 77 % of room temperature, which is 14 % higher than that before co-doping, indicating that this phosphor has better thermal stability. The NIR pc-LEDs can be fabricated by combining the phosphor Sr3Ga1.98In0.02Ge4O14:0.03Cr3+, 0.05 Yb3+ with the blue LED, which can be applied in night vision. The results demonstrated its potential application value.
在这项工作中,为了探索近红外荧光粉转换发光二极管(pc-LEDs),采用高温固态方法实现了近红外荧光粉 Sr3Ga1.98In0.02Ge4O14:0.03Cr3+, 0.05 Yb3+,由于从 Cr3+ 到 Yb3+ 的能量转移,该荧光粉呈现出宽带发射,半最大全宽(FWHM)达到 291 nm。Sr3Ga1.98In0.02Ge4O14:0.03Cr3+, 0.05Yb3+ 的发射强度(423 K 时)可保持在室温的 77%,比未共掺杂之前高出 14%,表明这种荧光粉具有更好的热稳定性。通过将 Sr3Ga1.98In0.02Ge4O14:0.03Cr3+, 0.05 Yb3+ 荧光粉与蓝光 LED 结合,可以制造出近红外 pc-LED,应用于夜视领域。结果证明了其潜在的应用价值。
{"title":"Improving the thermal stability and luminescence of Sr3Ga1.98In0.02Ge4O14:0.03Cr3+ through the efficient energy transfer","authors":"Haonan Huang,&nbsp;Jiayue Zhang,&nbsp;Bingkai Gao,&nbsp;Runqiu Peng,&nbsp;Zhijun Wang,&nbsp;Jiehong Li,&nbsp;Panlai Li","doi":"10.1016/j.jlumin.2024.120911","DOIUrl":"10.1016/j.jlumin.2024.120911","url":null,"abstract":"<div><div>In this work, in order to explore the near-infrared (NIR) phosphor converted light emitting diodes (pc-LEDs), the NIR phosphor Sr<sub>3</sub>Ga<sub>1.98</sub>In<sub>0.02</sub>Ge<sub>4</sub>O<sub>14</sub>:0.03Cr<sup>3+</sup>, 0.05 Yb<sup>3+</sup> was achieved by the high temperature solid-state method, which presents a broadband emission with a large full width at half maximum (FWHM) of 291 nm due to the energy transfer from Cr<sup>3+</sup> to Yb<sup>3+</sup>. The emission intensity (at 423 K) of Sr<sub>3</sub>Ga<sub>1.98</sub>In<sub>0.02</sub>Ge<sub>4</sub>O<sub>14</sub>:0.03Cr<sup>3+</sup>, 0.05 Yb<sup>3+</sup> can be maintained at 77 % of room temperature, which is 14 % higher than that before co-doping, indicating that this phosphor has better thermal stability. The NIR pc-LEDs can be fabricated by combining the phosphor Sr<sub>3</sub>Ga<sub>1.98</sub>In<sub>0.02</sub>Ge<sub>4</sub>O<sub>14</sub>:0.03Cr<sup>3+</sup>, 0.05 Yb<sup>3+</sup> with the blue LED, which can be applied in night vision. The results demonstrated its potential application value.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluorinated triphenylamine phthalocyanine @ silica-coated gold nanorods: A photoactivated lysosome escape and targeting mitochondria two-photon probe for imaging-guided photothermal synergistic photodynamic therapy in cancer cells 氟化三苯胺酞菁@二氧化硅涂层金纳米棒:一种光激活溶酶体逃逸和靶向线粒体的双光子探针,用于对癌细胞进行成像引导的光热协同光动力治疗
IF 3.3 3区 物理与天体物理 Q2 OPTICS Pub Date : 2024-09-21 DOI: 10.1016/j.jlumin.2024.120900
Yating Shen , Junwen Zhou , Guizhi Chen , Jingtang Wang , Qiuhao Ye , Kuizhi Chen , Liting Qiu , Linying Chen , Yiru Peng
The timely evasion of nanomedicines from lysosomes is essential to avert premature degradation under the acidic and hydrolytic conditions characteristic of these cellular compartments. However, the development of effective strategies has been hindered by the complexity of design material and the scarcity of practical methods. In this study, we have synthesized a novel nanoparticle, designated as TPA-BPAF-SiPc@AuNR@SiO2. This nanoparticle was prepared by encapsulating near-infrared fluorinated triphenylamine-substituted silicon phthalocyanines (TPA-BPAF-SiPc) within mesoporous silica-coated gold nanorods (AuNR@SiO2). TPA-BPAF-SiPc@AuNR@SiO2 functions as a dual-function two-photon probe, facilitating photoactivated lysosome escape and targeting mitochondria. The inherent aggregation-induced emission (AIE) two-photon fluorescence of TPA-BPAF-SiPc is notably bright when encapsulated in AuNR@SiO2 nanocarriers, a phenomenon not observed in polymer nanocarriers composed of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000) or in THF/water mixtures. Upon irradiation, this nanoparticle autonomously escapes from lysosomes and selectively targets mitochondria, a process can be visually monitored in real-time through the two-photon AIE fluorescence of TPA-BPAF-SiPc. Moreover, upon activation, TPA-BPAF-SiPc@AuNR@SiO2 produces a substantial quantity of reactive oxygen species (ROS) and induces hyperthermia effects, showcasing its potential for effective photodynamic therapy (PDT) in conjunction with synergistic hyperthermia. Flow cytometry data corroborate the induction of tumor cell death through both necrosis and apoptosis pathways by TPA-BPAF-SiPc@AuNR@SiO2. This study underscores the potential of TPA-BPAF-SiPc@AuNR@SiO2 as a multifunctional probe capable of enabling lysosome escape, mitochondria targeting, and two-photon fluorescence imaging-guided photothermal synergistic photodynamic therapy, specifically tailored for the treatment of breast cancer.
要避免纳米药物在细胞溶酶体特有的酸性和水解条件下过早降解,就必须及时避免纳米药物进入溶酶体。然而,设计材料的复杂性和实用方法的匮乏阻碍了有效策略的开发。在本研究中,我们合成了一种新型纳米粒子,命名为 TPA-BPAF-SiPc@AuNR@SiO2。这种纳米粒子是通过将近红外氟化三苯胺取代硅酞菁(TPA-BPAF-SiPc)封装在介孔二氧化硅包覆金纳米棒(AuNR@SiO2)中制备而成的。TPA-BPAF-SiPc@AuNR@SiO2 具有双光子探针的双重功能,既能促进光激活的溶酶体逃逸,又能靶向线粒体。当 TPA-BPAF-SiPc 被封装在 AuNR@SiO2 纳米载体中时,其固有的聚集诱导发射(AIE)双光子荧光非常明亮,而在由 1,2-二硬脂酰-sn-甘油-3-磷脂乙醇胺-N-[甲氧基(聚乙二醇)-2000](DSPE-PEG2000)组成的聚合物纳米载体或在 THF/ 水混合物中却观察不到这种现象。照射时,这种纳米粒子会自主脱离溶酶体,并选择性地靶向线粒体,这一过程可通过 TPA-BPAF-SiPc 的双光子 AIE 荧光进行实时可视化监测。此外,TPA-BPAF-SiPc@AuNR@SiO2 被激活后会产生大量活性氧(ROS)并诱导热效应,从而展示了其在协同热效应的同时进行有效光动力疗法(PDT)的潜力。流式细胞仪数据证实了 TPA-BPAF-SiPc@AuNR@SiO2 通过坏死和凋亡两种途径诱导肿瘤细胞死亡。这项研究强调了 TPA-BPAF-SiPc@AuNR@SiO2 作为一种多功能探针的潜力,它能够实现溶酶体逃逸、线粒体靶向和双光子荧光成像引导的光热协同光动力疗法,特别适用于乳腺癌的治疗。
{"title":"Fluorinated triphenylamine phthalocyanine @ silica-coated gold nanorods: A photoactivated lysosome escape and targeting mitochondria two-photon probe for imaging-guided photothermal synergistic photodynamic therapy in cancer cells","authors":"Yating Shen ,&nbsp;Junwen Zhou ,&nbsp;Guizhi Chen ,&nbsp;Jingtang Wang ,&nbsp;Qiuhao Ye ,&nbsp;Kuizhi Chen ,&nbsp;Liting Qiu ,&nbsp;Linying Chen ,&nbsp;Yiru Peng","doi":"10.1016/j.jlumin.2024.120900","DOIUrl":"10.1016/j.jlumin.2024.120900","url":null,"abstract":"<div><div>The timely evasion of nanomedicines from lysosomes is essential to avert premature degradation under the acidic and hydrolytic conditions characteristic of these cellular compartments. However, the development of effective strategies has been hindered by the complexity of design material and the scarcity of practical methods. In this study, we have synthesized a novel nanoparticle, designated as TPA-BPAF-SiPc@AuNR@SiO<sub>2</sub>. This nanoparticle was prepared by encapsulating near-infrared fluorinated triphenylamine-substituted silicon phthalocyanines (TPA-BPAF-SiPc) within mesoporous silica-coated gold nanorods (AuNR@SiO<sub>2</sub>). TPA-BPAF-SiPc@AuNR@SiO<sub>2</sub> functions as a dual-function two-photon probe, facilitating photoactivated lysosome escape and targeting mitochondria. The inherent aggregation-induced emission (AIE) two-photon fluorescence of TPA-BPAF-SiPc is notably bright when encapsulated in AuNR@SiO<sub>2</sub> nanocarriers, a phenomenon not observed in polymer nanocarriers composed of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG<sub>2000</sub>) or in THF/water mixtures. Upon irradiation, this nanoparticle autonomously escapes from lysosomes and selectively targets mitochondria, a process can be visually monitored in real-time through the two-photon AIE fluorescence of TPA-BPAF-SiPc. Moreover, upon activation, TPA-BPAF-SiPc@AuNR@SiO<sub>2</sub> produces a substantial quantity of reactive oxygen species (ROS) and induces hyperthermia effects, showcasing its potential for effective photodynamic therapy (PDT) in conjunction with synergistic hyperthermia. Flow cytometry data corroborate the induction of tumor cell death through both necrosis and apoptosis pathways by TPA-BPAF-SiPc@AuNR@SiO<sub>2</sub>. This study underscores the potential of TPA-BPAF-SiPc@AuNR@SiO<sub>2</sub> as a multifunctional probe capable of enabling lysosome escape, mitochondria targeting, and two-photon fluorescence imaging-guided photothermal synergistic photodynamic therapy, specifically tailored for the treatment of breast cancer.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Growth of anthracene microcrystals by the micro-space sublimation method and their photophysical properties 利用微空间升华法生长蒽微晶及其光物理特性
IF 3.3 3区 物理与天体物理 Q2 OPTICS Pub Date : 2024-09-20 DOI: 10.1016/j.jlumin.2024.120905
Wei-Long Xu, Jingli Hu, Sisi Pang, Min Zheng, Yuebin Lian, Yannan Zhang
Anthracene and its derivatives are widely utilized in optoelectronic devices due to their unique properties. Generally, single-crystal structures can avoid non-radiative recombination, enhance carrier mobility, and ultimately improve device performance. In this work, anthracene microcrystals were prepared using the micro-space sublimation method. Through real-time in-situ observation, the crystallization dynamics of anthracene molecules were revealed. Unlike traditional vacuum evaporation deposition technique, the close proximity of the substrate to the source facilitates the self-assembly of anthracene molecules into an ordered crystal structure. Six peaks can be observed in the photoluminescence spectrum, corresponding to various lowest excited state decay processes. The fluorescence intensity at the peak of 423 nm decreases significantly with increasing temperature. The reason for this is the relatively high exciton binding energy, which makes excitons more stable and easier to form. The lattice vibrations induced by increased temperature were found to affect the transport and separation of excitons. Time-resolved fluorescence spectroscopy imaging revealed that a relatively uniform distribution of fluorescence lifetimes in the anthracene microcrystals, indicating high crystallization quality. This work provides valuable insights for controlling the morphology and investigating the photophysical properties of organic semiconductors.
蒽及其衍生物因其独特的性能而被广泛应用于光电设备中。一般来说,单晶结构可以避免非辐射重组,提高载流子迁移率,最终改善器件性能。本研究采用微空间升华法制备了蒽微晶。通过实时原位观测,揭示了蒽分子的结晶动态。与传统的真空蒸发沉积技术不同,基底与光源的距离很近,有利于蒽分子自组装成有序的晶体结构。在光致发光光谱中可以观察到六个峰值,分别对应于各种最低激发态衰变过程。随着温度的升高,423 nm 峰值处的荧光强度明显下降。其原因是激子结合能相对较高,这使得激子更稳定、更容易形成。研究发现,温度升高引起的晶格振动会影响激子的传输和分离。时间分辨荧光光谱成像显示,蒽微晶中的荧光寿命分布相对均匀,表明结晶质量较高。这项工作为控制有机半导体的形态和研究其光物理性质提供了宝贵的见解。
{"title":"Growth of anthracene microcrystals by the micro-space sublimation method and their photophysical properties","authors":"Wei-Long Xu,&nbsp;Jingli Hu,&nbsp;Sisi Pang,&nbsp;Min Zheng,&nbsp;Yuebin Lian,&nbsp;Yannan Zhang","doi":"10.1016/j.jlumin.2024.120905","DOIUrl":"10.1016/j.jlumin.2024.120905","url":null,"abstract":"<div><div>Anthracene and its derivatives are widely utilized in optoelectronic devices due to their unique properties. Generally, single-crystal structures can avoid non-radiative recombination, enhance carrier mobility, and ultimately improve device performance. In this work, anthracene microcrystals were prepared using the micro-space sublimation method. Through real-time in-situ observation, the crystallization dynamics of anthracene molecules were revealed. Unlike traditional vacuum evaporation deposition technique, the close proximity of the substrate to the source facilitates the self-assembly of anthracene molecules into an ordered crystal structure. Six peaks can be observed in the photoluminescence spectrum, corresponding to various lowest excited state decay processes. The fluorescence intensity at the peak of 423 nm decreases significantly with increasing temperature. The reason for this is the relatively high exciton binding energy, which makes excitons more stable and easier to form. The lattice vibrations induced by increased temperature were found to affect the transport and separation of excitons. Time-resolved fluorescence spectroscopy imaging revealed that a relatively uniform distribution of fluorescence lifetimes in the anthracene microcrystals, indicating high crystallization quality. This work provides valuable insights for controlling the morphology and investigating the photophysical properties of organic semiconductors.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upconversion enabled optical limiting behaviour in Y2O3: Yb, Er nanophosphors under 532 nm and 1064 nm laser excitation 532 纳米和 1064 纳米激光激发下 Y2O3:Yb、Er 纳米磷酸盐的上转换光限制行为
IF 3.3 3区 物理与天体物理 Q2 OPTICS Pub Date : 2024-09-20 DOI: 10.1016/j.jlumin.2024.120903
J. Kawya, T.C. Sabari Girisun
Y2O3: Yb, Er nanophosphors were synthesized by sol-gel approach and preliminary characterization confirms the existence of lanthanide dopants and the host material in the appropriate ratio with nanosphere-like morphology. Linear absorption displays visible and NIR absorption regions due to the sub-bandgap states involved in f-f transitions of Er- Yb ions. PL study shows more intense red emissions than blue and green emissions due to the combination of energy transfer and cross-relaxation process in Er ions. Wavelength-dependent nonlinear optical response of Y2O3: Yb, Er was examined by adapting the intensity-dependent Z-scan technique (open aperture) using nano pulsed Nd: YAG laser. Remarkably Y2O3: Yb, Er nanophosphors show reverse saturable absorption ascribed due to the two-photon absorption and two/three-photon absorption at 532 nm and 1064 nm respectively. The nonlinear absorption coefficient reliant on the intensity of the laser unambiguously demonstrates the presence of a sequential multi-photon absorption process. The results from the Z-scan experiment demonstrate the influence of the sub-bandgap energy states of the Y2O3 matrix due to the Yb and Er dopants in the excited state absorption behaviour. Upconversion integrated optical limiting of Y2O3: Yb, Er nanophosphors provide a potential origin for designing high-performance broadband solid-state optical limiters for laser protection devices.
通过溶胶-凝胶法合成了 Y2O3:Yb、Er 纳米磷酸盐,初步表征证实了镧系元素掺杂剂和宿主材料以适当的比例存在,并具有纳米球状形态。线性吸收显示了可见光和近红外吸收区域,这是由于铒镱离子的 f-f 转变涉及亚带隙态。聚光研究表明,由于铒离子中能量转移和交叉衰减过程的结合,红色发射比蓝色和绿色发射更强。通过使用纳米脉冲 Nd: YAG 激光,采用强度相关的 Z 扫描技术(开孔),研究了 Y2O3: Yb, Er 的波长非线性光学响应。值得注意的是,Y2O3: Yb, Er 纳米磷酸盐在 532 纳米波长和 1064 纳米波长处分别显示出双光子吸收和双/三光子吸收引起的反向饱和吸收。与激光强度相关的非线性吸收系数清楚地表明存在一个连续的多光子吸收过程。Z 扫描实验的结果表明,掺杂镱和铒的 Y2O3 基体的亚带隙能态对激发态吸收行为有影响。Y2O3:Yb、Er 纳米磷酸盐的上转换集成光学限幅为设计用于激光保护装置的高性能宽带固态光学限幅器提供了潜在的来源。
{"title":"Upconversion enabled optical limiting behaviour in Y2O3: Yb, Er nanophosphors under 532 nm and 1064 nm laser excitation","authors":"J. Kawya,&nbsp;T.C. Sabari Girisun","doi":"10.1016/j.jlumin.2024.120903","DOIUrl":"10.1016/j.jlumin.2024.120903","url":null,"abstract":"<div><div>Y<sub>2</sub>O<sub>3</sub>: Yb, Er nanophosphors were synthesized by sol-gel approach and preliminary characterization confirms the existence of lanthanide dopants and the host material in the appropriate ratio with nanosphere-like morphology. Linear absorption displays visible and NIR absorption regions due to the sub-bandgap states involved in f-f transitions of Er- Yb ions. PL study shows more intense red emissions than blue and green emissions due to the combination of energy transfer and cross-relaxation process in Er ions. Wavelength-dependent nonlinear optical response of Y<sub>2</sub>O<sub>3</sub>: Yb, Er was examined by adapting the intensity-dependent Z-scan technique (open aperture) using nano pulsed Nd: YAG laser. Remarkably Y<sub>2</sub>O<sub>3</sub>: Yb, Er nanophosphors show reverse saturable absorption ascribed due to the two-photon absorption and two/three-photon absorption at 532 nm and 1064 nm respectively. The nonlinear absorption coefficient reliant on the intensity of the laser unambiguously demonstrates the presence of a sequential multi-photon absorption process. The results from the Z-scan experiment demonstrate the influence of the sub-bandgap energy states of the Y<sub>2</sub>O<sub>3</sub> matrix due to the Yb and Er dopants in the excited state absorption behaviour. Upconversion integrated optical limiting of Y<sub>2</sub>O<sub>3</sub>: Yb, Er nanophosphors provide a potential origin for designing high-performance broadband solid-state optical limiters for laser protection devices.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible quantum dots color conversion layer fabricated via laser direct writing technique for Micro-LED 通过激光直写技术为微型 LED 制备柔性量子点色彩转换层
IF 3.3 3区 物理与天体物理 Q2 OPTICS Pub Date : 2024-09-19 DOI: 10.1016/j.jlumin.2024.120902
Ruoxi Huang , Deyi Yao , Kaichen Sun , Qihang Liu , Zhonghua Xu , Rongqiu Lv , Teng Ma , Jun Chen

With the continuous increase in research and market demand for display, Micro-light-emitting diode (Micro-LED) has become one of the current research hotspots in the display industry due to its outstanding performance in color, resolution, life, and energy consumption. In this study, all-inorganic perovskite quantum dots (QDs) were synthesized using a hot injection method and uniformly coated on the surface of a polyethylene terephthalate (PET) substrate. Subsequently, laser processing technology was used to pattern the QDs film, achieving precise pattern design. Even after bending the film 100 times, the peak intensity of photoluminescence could still reach over 50 % compared with that of unbending. We used these specially treated flexible QDs films as the color conversion layers to realize color conversion display of Micro-LED. This research provides a research direction for the development of new display technology.

随着显示领域研究的不断深入和市场需求的不断增长,微型发光二极管(Micro-LED)因其在色彩、分辨率、寿命和能耗等方面的优异表现,已成为当前显示领域的研究热点之一。本研究采用热注入法合成了全无机过氧化物量子点(QDs),并将其均匀涂覆在聚对苯二甲酸乙二醇酯(PET)基底表面。随后,利用激光加工技术将 QDs 薄膜图案化,实现了精确的图案设计。即使将薄膜弯曲 100 次,光致发光的峰值强度仍可达到未弯曲时的 50% 以上。我们利用这些经过特殊处理的柔性 QDs 薄膜作为色彩转换层,实现了 Micro-LED 的色彩转换显示。这项研究为新型显示技术的发展提供了一个研究方向。
{"title":"Flexible quantum dots color conversion layer fabricated via laser direct writing technique for Micro-LED","authors":"Ruoxi Huang ,&nbsp;Deyi Yao ,&nbsp;Kaichen Sun ,&nbsp;Qihang Liu ,&nbsp;Zhonghua Xu ,&nbsp;Rongqiu Lv ,&nbsp;Teng Ma ,&nbsp;Jun Chen","doi":"10.1016/j.jlumin.2024.120902","DOIUrl":"10.1016/j.jlumin.2024.120902","url":null,"abstract":"<div><p>With the continuous increase in research and market demand for display, Micro-light-emitting diode (Micro-LED) has become one of the current research hotspots in the display industry due to its outstanding performance in color, resolution, life, and energy consumption. In this study, all-inorganic perovskite quantum dots (QDs) were synthesized using a hot injection method and uniformly coated on the surface of a polyethylene terephthalate (PET) substrate. Subsequently, laser processing technology was used to pattern the QDs film, achieving precise pattern design. Even after bending the film 100 times, the peak intensity of photoluminescence could still reach over 50 % compared with that of unbending. We used these specially treated flexible QDs films as the color conversion layers to realize color conversion display of Micro-LED. This research provides a research direction for the development of new display technology.</p></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Luminescence
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1