首页 > 最新文献

Journal of Marine Science and Engineering最新文献

英文 中文
The Volcanic Rocks and Hydrocarbon Accumulation in the Offshore Indus Basin, Pakistan 巴基斯坦近海印度河盆地的火山岩和碳氢化合物储量
IF 2.9 3区 地球科学 Q1 ENGINEERING, MARINE Pub Date : 2024-08-12 DOI: 10.3390/jmse12081375
Jing Sun, Jie Liang, Jianming Gong, Jing Liao, Qingfang Zhao, Chen Zhao
To analyze the impact of volcanic rocks in the Offshore Indus Basin on hydrocarbon reservoir formation, seismic data interpretation, seismic data inversion, and sea–land correlation analysis were carried out. The results show that, longitudinally, volcanic rocks are mainly distributed at the top of the Cretaceous system or at the bottom of the Paleocene, and carbonate rock platforms or reefs of the Paleocene–Eocene are usually developed on them. On the plane, volcanic rocks are mainly distributed on the Saurashtra High in the southeastern part of the basin. In terms of thickness, the volcanic rocks revealed by drilling in Karachi nearshore are about 70 m thick. We conducted sparse spike inversion for acoustic impedance in the volcanic rock area. The results show that the thickness of the Deccan volcanic rocks in the study area is between 250 and 750 m which is thinning from southeast to northwest. Based on sea–land comparison and comprehensive research, the distribution of volcanic rocks in the Indian Fan Offshore Basin played a constructive role in the Mesozoic oil and gas accumulation in the Indus offshore. Therefore, in the Indian Fan Offshore Basin, attention should be paid to finding Mesozoic self-generated and self-stored hydrocarbon reservoirs and Cenozoic lower-generated and upper-stored hydrocarbon reservoirs.
为分析近海印度河盆地火山岩对油气成藏的影响,进行了地震资料解释、地震资料反演和海陆相关分析。结果表明,纵向上,火山岩主要分布在白垩系顶部或古新世底部,其上多发育古新世-始新世的碳酸盐岩平台或岩礁。在平面上,火山岩主要分布在盆地东南部的索拉什特拉高地上。就厚度而言,卡拉奇近岸钻探揭示的火山岩厚度约为 70 米。我们在火山岩区域进行了稀疏尖峰反演声阻抗。结果显示,研究区域的德干火山岩厚度在 250 米至 750 米之间,从东南向西北逐渐变薄。根据海陆对比和综合研究,印度扇近海盆地的火山岩分布对印度河近海中生代油气聚集具有建设性作用。因此,在印度扇近海盆地应注意寻找中生代自生自储油气藏和新生代下生上储油气藏。
{"title":"The Volcanic Rocks and Hydrocarbon Accumulation in the Offshore Indus Basin, Pakistan","authors":"Jing Sun, Jie Liang, Jianming Gong, Jing Liao, Qingfang Zhao, Chen Zhao","doi":"10.3390/jmse12081375","DOIUrl":"https://doi.org/10.3390/jmse12081375","url":null,"abstract":"To analyze the impact of volcanic rocks in the Offshore Indus Basin on hydrocarbon reservoir formation, seismic data interpretation, seismic data inversion, and sea–land correlation analysis were carried out. The results show that, longitudinally, volcanic rocks are mainly distributed at the top of the Cretaceous system or at the bottom of the Paleocene, and carbonate rock platforms or reefs of the Paleocene–Eocene are usually developed on them. On the plane, volcanic rocks are mainly distributed on the Saurashtra High in the southeastern part of the basin. In terms of thickness, the volcanic rocks revealed by drilling in Karachi nearshore are about 70 m thick. We conducted sparse spike inversion for acoustic impedance in the volcanic rock area. The results show that the thickness of the Deccan volcanic rocks in the study area is between 250 and 750 m which is thinning from southeast to northwest. Based on sea–land comparison and comprehensive research, the distribution of volcanic rocks in the Indian Fan Offshore Basin played a constructive role in the Mesozoic oil and gas accumulation in the Indus offshore. Therefore, in the Indian Fan Offshore Basin, attention should be paid to finding Mesozoic self-generated and self-stored hydrocarbon reservoirs and Cenozoic lower-generated and upper-stored hydrocarbon reservoirs.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"48 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141936870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the Turning Characteristics and Influencing Factors of the Unmanned Sailboat 无人驾驶帆船的转弯特性及影响因素研究
IF 2.9 3区 地球科学 Q1 ENGINEERING, MARINE Pub Date : 2024-08-12 DOI: 10.3390/jmse12081374
Hongyu Liu, Yanan Yang, Songwei Yin
Unmanned sailboats can convert wind energy with sails to provide power for navigation, which can independently plan routes and collect data without human intervention. They have received increasing attention in recent years due to their low power consumption and strong self-sustainability. Due to the greater difficulty of manipulation, the unmanned sailboats have a weaker maneuverability than the propeller-driven vessels in the complex and variable marine environment. Typically, the turning motion is evaluated to characterize the maneuverability of a vessel, which has rarely been investigated in the existing research on unmanned sailboats. Therefore, this study builds a motion simulation platform for unmanned sailboats based on the 3 m class Petrel Sail to investigate the turning characteristics. The index of the approximate turning circle is introduced based on the turning motion trajectory, which is used to obtain the effect of rudder angle, wind angle, wind speed, and current speed on the turning performance of the sailboat in ideal hydrostatic conditions and under flow disturbance, respectively. Finally, a harbor pool test is conducted with an unmanned sailboat to verify the analysis results, and the errors in maximum transverse distance and maximum advance distance are in the reasonable range, proving the correctness of the theoretical results. The current study also provides theoretical guidance for subsequent research on sailboat manipulation and maneuverability.
无人驾驶帆船可以利用风帆转换风能,为航行提供动力,可以在无人干预的情况下独立规划航线和收集数据。由于其耗电量低、自持力强,近年来受到越来越多的关注。由于操纵难度较大,在复杂多变的海洋环境中,无人驾驶帆船的机动性要弱于螺旋桨驱动的船只。通常情况下,通过评估转弯运动来表征船只的机动性,而在现有的无人驾驶帆船研究中,很少对转弯运动进行研究。因此,本研究以 3 米级 Petrel Sail 为基础,建立了无人驾驶帆船运动模拟平台,以研究其转弯特性。根据转弯运动轨迹,引入近似转弯半径指标,分别求出理想静水条件和水流扰动条件下,舵角、风角、风速和流速对帆船转弯性能的影响。最后,用无人驾驶帆船进行港池试验验证分析结果,最大横向距离和最大前进距离的误差均在合理范围内,证明了理论结果的正确性。本次研究也为后续的帆船操纵和机动性研究提供了理论指导。
{"title":"Study on the Turning Characteristics and Influencing Factors of the Unmanned Sailboat","authors":"Hongyu Liu, Yanan Yang, Songwei Yin","doi":"10.3390/jmse12081374","DOIUrl":"https://doi.org/10.3390/jmse12081374","url":null,"abstract":"Unmanned sailboats can convert wind energy with sails to provide power for navigation, which can independently plan routes and collect data without human intervention. They have received increasing attention in recent years due to their low power consumption and strong self-sustainability. Due to the greater difficulty of manipulation, the unmanned sailboats have a weaker maneuverability than the propeller-driven vessels in the complex and variable marine environment. Typically, the turning motion is evaluated to characterize the maneuverability of a vessel, which has rarely been investigated in the existing research on unmanned sailboats. Therefore, this study builds a motion simulation platform for unmanned sailboats based on the 3 m class Petrel Sail to investigate the turning characteristics. The index of the approximate turning circle is introduced based on the turning motion trajectory, which is used to obtain the effect of rudder angle, wind angle, wind speed, and current speed on the turning performance of the sailboat in ideal hydrostatic conditions and under flow disturbance, respectively. Finally, a harbor pool test is conducted with an unmanned sailboat to verify the analysis results, and the errors in maximum transverse distance and maximum advance distance are in the reasonable range, proving the correctness of the theoretical results. The current study also provides theoretical guidance for subsequent research on sailboat manipulation and maneuverability.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"24 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141936717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ship Trajectory Planning and Optimization via Ensemble Hybrid A* and Multi-Target Point Artificial Potential Field Model 通过集合混合 A* 和多目标点人工势场模型进行船舶轨迹规划和优化
IF 2.9 3区 地球科学 Q1 ENGINEERING, MARINE Pub Date : 2024-08-12 DOI: 10.3390/jmse12081372
Yanguo Huang, Sishuo Zhao, Shuling Zhao
Ship path planning is the core problem of autonomous driving of smart ships and the basis for avoiding obstacles and other ships reasonably. To achieve this goal, this study improved the traditional A* algorithm to propose a new method for ship collision avoidance path planning by combining the multi-target point artificial potential field algorithm (MPAPF). The global planning path was smoothed and segmented into multi-target sequence points with the help of an improved A* algorithm and fewer turning nodes. The improved APF algorithm was used to plan the path of multi-target points locally, and the ship motion constraints were considered to generate a path that was more in line with the ship kinematics. In addition, this method also considered the collision avoidance situation when ships meet, carried out collision avoidance operations according to the International Regulations for Preventing Collisions at Sea (COLREGs), and introduced the collision risk index (CRI) to evaluate the collision risk and obtain a safe and reliable path. Through the simulation of a static environment and ship encounter, the experimental results show that the proposed method not only has good performance in a static environment but can also generate a safe path to avoid collision in more complex encounter scenarios.
船舶路径规划是智能船舶自主驾驶的核心问题,也是合理避开障碍物和其他船舶的基础。为实现这一目标,本研究改进了传统的 A* 算法,结合多目标点人工势场算法(MPAPF),提出了一种新的船舶避碰路径规划方法。借助改进的 A* 算法和更少的转弯节点,将全局规划路径平滑分割为多目标序列点。改进后的 APF 算法用于局部规划多目标点的路径,并考虑了船舶运动约束,以生成更符合船舶运动学的路径。此外,该方法还考虑了船舶相遇时的避碰情况,根据《国际海上避碰规则》(COLREGs)进行避碰操作,并引入了碰撞风险指数(CRI)来评估碰撞风险,获得安全可靠的路径。通过对静态环境和船舶相遇的仿真,实验结果表明所提出的方法不仅在静态环境下具有良好的性能,而且在更复杂的相遇场景下也能生成避免碰撞的安全路径。
{"title":"Ship Trajectory Planning and Optimization via Ensemble Hybrid A* and Multi-Target Point Artificial Potential Field Model","authors":"Yanguo Huang, Sishuo Zhao, Shuling Zhao","doi":"10.3390/jmse12081372","DOIUrl":"https://doi.org/10.3390/jmse12081372","url":null,"abstract":"Ship path planning is the core problem of autonomous driving of smart ships and the basis for avoiding obstacles and other ships reasonably. To achieve this goal, this study improved the traditional A* algorithm to propose a new method for ship collision avoidance path planning by combining the multi-target point artificial potential field algorithm (MPAPF). The global planning path was smoothed and segmented into multi-target sequence points with the help of an improved A* algorithm and fewer turning nodes. The improved APF algorithm was used to plan the path of multi-target points locally, and the ship motion constraints were considered to generate a path that was more in line with the ship kinematics. In addition, this method also considered the collision avoidance situation when ships meet, carried out collision avoidance operations according to the International Regulations for Preventing Collisions at Sea (COLREGs), and introduced the collision risk index (CRI) to evaluate the collision risk and obtain a safe and reliable path. Through the simulation of a static environment and ship encounter, the experimental results show that the proposed method not only has good performance in a static environment but can also generate a safe path to avoid collision in more complex encounter scenarios.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"2011 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141936869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FPID-RCP: A Control Method for a Swing-Type Wave Compensation Platform System FPID-RCP:摇摆式波浪补偿平台系统的控制方法
IF 2.9 3区 地球科学 Q1 ENGINEERING, MARINE Pub Date : 2024-08-12 DOI: 10.3390/jmse12081376
Gang Tang, Haibo Zhang, Yongli Hu, Peipei Zhou
With the rapid development of marine engineering in recent years, offshore operations have become increasingly common, making wave compensation platforms crucial for safe operations at sea. This paper presents a pendulum-type wave compensation platform specifically designed for wave compensation applications. The main components of this wave compensation platform include a chassis, support base, hydraulic cylinders, telescopic rods, upper platform, three sets of balancing mechanisms, three sets of tilt angle sensors, and a control system. Firstly, to thoroughly understand the compensatory motion of the pendulum-type three-degree-of-freedom wave compensation platform, kinematic analysis of the entire system was conducted, and the motion inverse solution curves of the mechanism were obtained through simulation using motion simulation software. Secondly, to enhance the compensatory response performance of the platform, a fuzzy PID control algorithm was employed to control the system and achieve attitude control of the platform. Finally, through control system simulation, compared to PID control, fuzzy PID reduces system response delay and successfully meets the expected technical requirements and application needs.
近年来,随着海洋工程的快速发展,海上作业越来越普遍,因此波浪补偿平台对海上安全作业至关重要。本文介绍了一种专为波浪补偿应用而设计的摆式波浪补偿平台。该波浪补偿平台的主要部件包括底盘、支撑底座、液压缸、伸缩杆、上平台、三套平衡机构、三套倾角传感器和控制系统。首先,为深入了解摆式三自由度波浪补偿平台的补偿运动,对整个系统进行了运动学分析,并利用运动仿真软件通过仿真得到了机构的运动逆解曲线。其次,为提高平台的补偿响应性能,采用模糊 PID 控制算法对系统进行控制,实现了平台的姿态控制。最后,通过控制系统仿真,与 PID 控制相比,模糊 PID 降低了系统响应延迟,成功满足了预期的技术要求和应用需求。
{"title":"FPID-RCP: A Control Method for a Swing-Type Wave Compensation Platform System","authors":"Gang Tang, Haibo Zhang, Yongli Hu, Peipei Zhou","doi":"10.3390/jmse12081376","DOIUrl":"https://doi.org/10.3390/jmse12081376","url":null,"abstract":"With the rapid development of marine engineering in recent years, offshore operations have become increasingly common, making wave compensation platforms crucial for safe operations at sea. This paper presents a pendulum-type wave compensation platform specifically designed for wave compensation applications. The main components of this wave compensation platform include a chassis, support base, hydraulic cylinders, telescopic rods, upper platform, three sets of balancing mechanisms, three sets of tilt angle sensors, and a control system. Firstly, to thoroughly understand the compensatory motion of the pendulum-type three-degree-of-freedom wave compensation platform, kinematic analysis of the entire system was conducted, and the motion inverse solution curves of the mechanism were obtained through simulation using motion simulation software. Secondly, to enhance the compensatory response performance of the platform, a fuzzy PID control algorithm was employed to control the system and achieve attitude control of the platform. Finally, through control system simulation, compared to PID control, fuzzy PID reduces system response delay and successfully meets the expected technical requirements and application needs.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"11 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141936874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ship Detection in Synthetic Aperture Radar Images Based on BiLevel Spatial Attention and Deep Poly Kernel Network 基于双级空间注意力和深度聚核网络的合成孔径雷达图像中的船舶探测
IF 2.9 3区 地球科学 Q1 ENGINEERING, MARINE Pub Date : 2024-08-12 DOI: 10.3390/jmse12081379
Siyuan Tian, Guodong Jin, Jing Gao, Lining Tan, Yuanliang Xue, Yang Li, Yantong Liu
Synthetic aperture radar (SAR) is a technique widely used in the field of ship detection. However, due to the high ship density, fore-ground-background imbalance, and varying target sizes, achieving lightweight and high-precision multiscale ship object detection remains a significant challenge. In response to these challenges, this research presents YOLO-MSD, a multiscale SAR ship detection method. Firstly, we propose a Deep Poly Kernel Backbone Network (DPK-Net) that utilizes the Optimized Convolution (OC) Module to reduce data redundancy and the Poly Kernel (PK) Module to improve the feature extraction capability and scale adaptability. Secondly, we design a BiLevel Spatial Attention Module (BSAM), which consists of the BiLevel Routing Attention (BRA) and the Spatial Attention Module. The BRA is first utilized to capture global information. Then, the Spatial Attention Module is used to improve the network’s ability to localize the target and capture high-quality detailed information. Finally, we adopt a Powerful-IoU (P-IoU) loss function, which can adjust to the ship size adaptively, effectively guiding the anchor box to achieve faster and more accurate detection. Using HRSID and SSDD as experimental datasets, mAP of 90.2% and 98.8% are achieved, respectively, outperforming the baseline by 5.9% and 6.2% with a model size of 12.3 M. Furthermore, the network exhibits excellent performance across various ship scales.
合成孔径雷达(SAR)是一种广泛应用于船舶探测领域的技术。然而,由于船舶密度高、前景-背景不平衡以及目标大小不一,实现轻量级和高精度的多尺度船舶目标检测仍然是一项重大挑战。针对这些挑战,本研究提出了一种多尺度 SAR 船舶检测方法 YOLO-MSD。首先,我们提出了一种深度多核骨干网络(DPK-Net),利用优化卷积(OC)模块减少数据冗余,并利用多核(PK)模块提高特征提取能力和规模适应性。其次,我们设计了一个双层空间注意力模块(BSAM),它由双层路由注意力(BRA)和空间注意力模块组成。BRA 首先用于捕捉全局信息。然后,空间注意力模块用于提高网络定位目标和捕捉高质量详细信息的能力。最后,我们采用了一个强大的损耗函数(P-IoU),它可以根据船只大小进行自适应调整,有效地引导锚箱实现更快、更准确的检测。使用 HRSID 和 SSDD 作为实验数据集,在模型规模为 12.3 M 时,mAP 分别达到 90.2% 和 98.8%,比基线分别高出 5.9% 和 6.2%。
{"title":"Ship Detection in Synthetic Aperture Radar Images Based on BiLevel Spatial Attention and Deep Poly Kernel Network","authors":"Siyuan Tian, Guodong Jin, Jing Gao, Lining Tan, Yuanliang Xue, Yang Li, Yantong Liu","doi":"10.3390/jmse12081379","DOIUrl":"https://doi.org/10.3390/jmse12081379","url":null,"abstract":"Synthetic aperture radar (SAR) is a technique widely used in the field of ship detection. However, due to the high ship density, fore-ground-background imbalance, and varying target sizes, achieving lightweight and high-precision multiscale ship object detection remains a significant challenge. In response to these challenges, this research presents YOLO-MSD, a multiscale SAR ship detection method. Firstly, we propose a Deep Poly Kernel Backbone Network (DPK-Net) that utilizes the Optimized Convolution (OC) Module to reduce data redundancy and the Poly Kernel (PK) Module to improve the feature extraction capability and scale adaptability. Secondly, we design a BiLevel Spatial Attention Module (BSAM), which consists of the BiLevel Routing Attention (BRA) and the Spatial Attention Module. The BRA is first utilized to capture global information. Then, the Spatial Attention Module is used to improve the network’s ability to localize the target and capture high-quality detailed information. Finally, we adopt a Powerful-IoU (P-IoU) loss function, which can adjust to the ship size adaptively, effectively guiding the anchor box to achieve faster and more accurate detection. Using HRSID and SSDD as experimental datasets, mAP of 90.2% and 98.8% are achieved, respectively, outperforming the baseline by 5.9% and 6.2% with a model size of 12.3 M. Furthermore, the network exhibits excellent performance across various ship scales.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"21 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141936876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on the Flow-Induced Vibration of Cylindrical Structures Using Lagrangian-Based Dynamic Mode Decomposition 利用基于拉格朗日的动态模式分解研究圆柱形结构的流致振动
IF 2.9 3区 地球科学 Q1 ENGINEERING, MARINE Pub Date : 2024-08-12 DOI: 10.3390/jmse12081378
Xueji Shi, Zhongxiang Liu, Tong Guo, Wanjin Li, Zhiwei Niu, Feng Ling
An oscillating flow past a structure represents a complex, high-dimensional, and nonlinear flow phenomenon, which can lead to the failure of structures due to material fatigue or constraint relaxation. In order to better understand flow-induced vibration (FIV) and coupled flow fields, a numerical simulation of a two-degrees-of-freedom FIV in a cylinder was conducted. Based on the Lagrangian-based dynamic mode decomposition (L-DMD) method, the vorticity field and motion characteristics of a cylinder were decomposed, reconstructed, and predicted. A comparison was made to the traditional Eulerian-based dynamic mode decomposition (E-DMD) method. The research results show that the first-order mode in the stable phase represents the mean flow field, showcasing the slander tail vortex structure during the vortex-shedding period and the average displacement in the in-line direction. The second mode predominantly captures the crossflow displacement, with a frequency of approximately 0.43 Hz, closely matching the corresponding frequency observed in the CFD results. The higher dominant modes mainly capture outward-spreading, smaller-scale vortex structures with detail displacement characteristics. The motion of the cylinder in the in-line direction was accompanied by symmetric vortex structures, while the motion of the cylinder in the crossflow direction was associated with anti-symmetric vortex structures. Additionally, crossflow displacement will cause a symmetrical vortex structure that spreads laterally along the axis behind the cylinder. Finally, when compared with E-DMD, the L-DMD method demonstrates a notable advantage in analyzing the nonlinear characteristics of FIV.
流过结构的振荡气流是一种复杂、高维和非线性的流动现象,可能导致结构因材料疲劳或约束松弛而失效。为了更好地理解流动诱导振动(FIV)和耦合流场,我们对圆柱体中的二自由度 FIV 进行了数值模拟。根据基于拉格朗日的动态模态分解(L-DMD)方法,对圆柱体的涡流场和运动特性进行了分解、重建和预测。与传统的基于欧拉的动力模式分解(E-DMD)方法进行了比较。研究结果表明,稳定阶段的一阶模式代表了平均流场,展示了漩涡甩尾期的甩尾漩涡结构和在线方向的平均位移。二阶模主要捕捉横流位移,频率约为 0.43 赫兹,与 CFD 结果中观测到的相应频率非常接近。较高的主导模式主要捕捉向外扩展的、尺度较小的涡旋结构,具有详细的位移特征。气缸沿直线方向的运动伴随着对称的涡旋结构,而气缸沿横流方向的运动则与反对称涡旋结构有关。此外,横流位移会导致对称涡旋结构沿气缸后面的轴线横向扩散。最后,与 E-DMD 相比,L-DMD 方法在分析 FIV 的非线性特性方面具有明显优势。
{"title":"Research on the Flow-Induced Vibration of Cylindrical Structures Using Lagrangian-Based Dynamic Mode Decomposition","authors":"Xueji Shi, Zhongxiang Liu, Tong Guo, Wanjin Li, Zhiwei Niu, Feng Ling","doi":"10.3390/jmse12081378","DOIUrl":"https://doi.org/10.3390/jmse12081378","url":null,"abstract":"An oscillating flow past a structure represents a complex, high-dimensional, and nonlinear flow phenomenon, which can lead to the failure of structures due to material fatigue or constraint relaxation. In order to better understand flow-induced vibration (FIV) and coupled flow fields, a numerical simulation of a two-degrees-of-freedom FIV in a cylinder was conducted. Based on the Lagrangian-based dynamic mode decomposition (L-DMD) method, the vorticity field and motion characteristics of a cylinder were decomposed, reconstructed, and predicted. A comparison was made to the traditional Eulerian-based dynamic mode decomposition (E-DMD) method. The research results show that the first-order mode in the stable phase represents the mean flow field, showcasing the slander tail vortex structure during the vortex-shedding period and the average displacement in the in-line direction. The second mode predominantly captures the crossflow displacement, with a frequency of approximately 0.43 Hz, closely matching the corresponding frequency observed in the CFD results. The higher dominant modes mainly capture outward-spreading, smaller-scale vortex structures with detail displacement characteristics. The motion of the cylinder in the in-line direction was accompanied by symmetric vortex structures, while the motion of the cylinder in the crossflow direction was associated with anti-symmetric vortex structures. Additionally, crossflow displacement will cause a symmetrical vortex structure that spreads laterally along the axis behind the cylinder. Finally, when compared with E-DMD, the L-DMD method demonstrates a notable advantage in analyzing the nonlinear characteristics of FIV.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"27 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141936875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Research on the Low-Cycle Fatigue Crack Growth Rate for a Stiffened Plate of EH36 Steel for Use in Ship Structures 用于船舶结构的 EH36 钢加劲板低循环疲劳裂纹生长率的实验研究
IF 2.9 3区 地球科学 Q1 ENGINEERING, MARINE Pub Date : 2024-08-11 DOI: 10.3390/jmse12081365
Qin Dong, Geng Xu, Wei Chen
This paper presents a straightforward approach for determining the low-cycle fatigue (LCF) crack propagation rate in stiffened plate structures containing cracks. The method relies on both the crack tip opening displacement (CTOD) and the accumulative plastic strain, offering valuable insights for ship structure design and assessing LCF strength. Meanwhile, the LCF crack growth tests for the EH36 steel were conducted on stiffened plates with single-side cracks and central cracks under different loading conditions. The effects of stress amplitude, stress ratio, and stiffener position on the crack growth behavior were examined. Fitting and verifying analyses of the test data were employed to investigate the relationship between CTOD and the crack growth rate of EH36 steel under LCF conditions. The results showed that the proposed CTOD-based prediction method can accurately characterize the LCF crack growth behavior for stiffened plate of EH36 steel for use in ship structures.
本文介绍了一种确定包含裂纹的加劲板结构中低循环疲劳(LCF)裂纹扩展速率的直接方法。该方法同时依赖于裂纹尖端张开位移(CTOD)和累积塑性应变,为船舶结构设计和评估低循环疲劳强度提供了有价值的见解。同时,在不同加载条件下,对存在单侧裂纹和中心裂纹的加劲板进行了 EH36 钢 LCF 裂纹生长试验。研究了应力振幅、应力比和加强筋位置对裂纹生长行为的影响。通过对试验数据进行拟合和验证分析,研究了 LCF 条件下 CTOD 与 EH36 钢裂纹生长率之间的关系。结果表明,所提出的基于 CTOD 的预测方法可以准确表征用于船舶结构的 EH36 钢加劲板的 LCF 裂纹生长行为。
{"title":"Experimental Research on the Low-Cycle Fatigue Crack Growth Rate for a Stiffened Plate of EH36 Steel for Use in Ship Structures","authors":"Qin Dong, Geng Xu, Wei Chen","doi":"10.3390/jmse12081365","DOIUrl":"https://doi.org/10.3390/jmse12081365","url":null,"abstract":"This paper presents a straightforward approach for determining the low-cycle fatigue (LCF) crack propagation rate in stiffened plate structures containing cracks. The method relies on both the crack tip opening displacement (CTOD) and the accumulative plastic strain, offering valuable insights for ship structure design and assessing LCF strength. Meanwhile, the LCF crack growth tests for the EH36 steel were conducted on stiffened plates with single-side cracks and central cracks under different loading conditions. The effects of stress amplitude, stress ratio, and stiffener position on the crack growth behavior were examined. Fitting and verifying analyses of the test data were employed to investigate the relationship between CTOD and the crack growth rate of EH36 steel under LCF conditions. The results showed that the proposed CTOD-based prediction method can accurately characterize the LCF crack growth behavior for stiffened plate of EH36 steel for use in ship structures.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"41 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141936769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Dimensional Global Temporal Predictive Model for Multi-State Prediction of Marine Diesel Engines 用于船用柴油机多状态预测的多维全局时态预测模型
IF 2.9 3区 地球科学 Q1 ENGINEERING, MARINE Pub Date : 2024-08-11 DOI: 10.3390/jmse12081370
Liyong Ma, Siqi Chen, Shuli Jia, Yong Zhang, Hai Du
The reliability and stability of marine diesel engines are pivotal to the safety and economy of maritime operations. Accurate and efficient prediction of the states of these engines is essential for performance evaluation and operational continuity. This paper introduces a novel hybrid deep learning model, the multi-dimensional global temporal predictive (MDGTP) model, designed for synchronous multi-state prediction of marine diesel engines. The model incorporates parallel multi-head attention mechanisms, an enhanced long short-term memory (LSTM) with interleaved residual connections, and gated recurrent units (GRUs). Additionally, we propose a dynamic arithmetic tuna optimization algorithm, which synergizes tuna swarm optimization (TSO), and the arithmetic optimization algorithm (AOA) for hyperparameter optimization, thereby enhancing prediction accuracy. Comparative experiments using actual marine diesel engine data demonstrate that our model outperforms the LSTM, GRU, LSTM–GRU, support vector regression (SVR), random forest (RF), Gaussian process regression (GPR), and back propagation (BP) models, achieving the lowest root mean squared error (RMSE) and mean absolute error (MAE), as well as the highest Pearson correlation coefficient across three sampling periods. Ablation studies confirm the significance of each component in improving prediction accuracy. Our findings validate the efficacy of the proposed MDGTP model for predicting the multi-dimensional operating states of marine diesel engines.
船用柴油机的可靠性和稳定性对海上作业的安全性和经济性至关重要。准确有效地预测这些发动机的状态对于性能评估和持续运行至关重要。本文介绍了一种新型混合深度学习模型--多维全局时间预测模型(MDGTP),该模型专为船用柴油机的同步多状态预测而设计。该模型包含并行多头注意机制、具有交错残差连接的增强型长短期记忆(LSTM)和门控递归单元(GRU)。此外,我们还提出了一种动态算术金枪鱼优化算法,它将金枪鱼群优化(TSO)和算术优化算法(AOA)协同用于超参数优化,从而提高了预测精度。使用实际船用柴油机数据进行的对比实验表明,我们的模型优于 LSTM、GRU、LSTM-GRU、支持向量回归 (SVR)、随机森林 (RF)、高斯过程回归 (GPR) 和反向传播 (BP) 模型,在三个采样周期内实现了最低的均方根误差 (RMSE) 和平均绝对误差 (MAE) 以及最高的皮尔逊相关系数。消融研究证实了每个组件在提高预测准确性方面的重要性。我们的研究结果验证了所提出的 MDGTP 模型在预测船用柴油机多维运行状态方面的有效性。
{"title":"Multi-Dimensional Global Temporal Predictive Model for Multi-State Prediction of Marine Diesel Engines","authors":"Liyong Ma, Siqi Chen, Shuli Jia, Yong Zhang, Hai Du","doi":"10.3390/jmse12081370","DOIUrl":"https://doi.org/10.3390/jmse12081370","url":null,"abstract":"The reliability and stability of marine diesel engines are pivotal to the safety and economy of maritime operations. Accurate and efficient prediction of the states of these engines is essential for performance evaluation and operational continuity. This paper introduces a novel hybrid deep learning model, the multi-dimensional global temporal predictive (MDGTP) model, designed for synchronous multi-state prediction of marine diesel engines. The model incorporates parallel multi-head attention mechanisms, an enhanced long short-term memory (LSTM) with interleaved residual connections, and gated recurrent units (GRUs). Additionally, we propose a dynamic arithmetic tuna optimization algorithm, which synergizes tuna swarm optimization (TSO), and the arithmetic optimization algorithm (AOA) for hyperparameter optimization, thereby enhancing prediction accuracy. Comparative experiments using actual marine diesel engine data demonstrate that our model outperforms the LSTM, GRU, LSTM–GRU, support vector regression (SVR), random forest (RF), Gaussian process regression (GPR), and back propagation (BP) models, achieving the lowest root mean squared error (RMSE) and mean absolute error (MAE), as well as the highest Pearson correlation coefficient across three sampling periods. Ablation studies confirm the significance of each component in improving prediction accuracy. Our findings validate the efficacy of the proposed MDGTP model for predicting the multi-dimensional operating states of marine diesel engines.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"132 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141936768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-Dimensional Coverage Path Planning for Cooperative Autonomous Underwater Vehicles: A Swarm Migration Genetic Algorithm Approach 合作式自主水下航行器的三维覆盖路径规划:群迁移遗传算法方法
IF 2.9 3区 地球科学 Q1 ENGINEERING, MARINE Pub Date : 2024-08-11 DOI: 10.3390/jmse12081366
Yangmin Xie, Wenbo Hui, Dacheng Zhou, Hang Shi
Cooperative marine exploration tasks involving multiple autonomous underwater vehicles (AUVs) present a complex 3D coverage path planning challenge that has not been fully addressed. To tackle this, we employ an auto-growth strategy to generate interconnected paths, ensuring simultaneous satisfaction of the obstacle avoidance and space coverage requirements. Our approach introduces a novel genetic algorithm designed to achieve equivalent and energy-efficient path allocation among AUVs. The core idea involves defining competing gene swarms to facilitate path migration, corresponding to path allocation actions among AUVs. The fitness function incorporates models for both energy consumption and optimal path connections, resulting in iterations that lead to optimal path assignment among AUVs. This framework for multi-AUV coverage path planning eliminates the need for pre-division of the working space and has proven effective in 3D underwater environments. Numerous experiments validate the proposed method, showcasing its comprehensive advantages in achieving equitable path allocation, minimizing overall energy consumption, and ensuring high computational efficiency. These benefits contribute to the success of multi-AUV cooperation in deep-sea information collection and environmental surveillance.
涉及多个自动潜航器(AUV)的合作海洋探测任务提出了一个复杂的三维覆盖路径规划挑战,而这一挑战尚未完全解决。为了解决这个问题,我们采用了自动增长策略来生成相互连接的路径,确保同时满足避障和空间覆盖的要求。我们的方法引入了一种新型遗传算法,旨在实现自动潜航器之间等效、节能的路径分配。其核心思想是定义相互竞争的基因群,以促进路径迁移,这与 AUV 之间的路径分配行动相对应。适配函数包含能耗和最佳路径连接模型,从而通过迭代实现 AUV 之间的最佳路径分配。这种用于多 AUV 覆盖路径规划的框架无需预先划分工作空间,在三维水下环境中被证明是有效的。大量实验验证了所提出的方法,展示了其在实现公平路径分配、最大限度降低总体能耗和确保高计算效率方面的综合优势。这些优势有助于多无人潜航器在深海信息收集和环境监测方面的成功合作。
{"title":"Three-Dimensional Coverage Path Planning for Cooperative Autonomous Underwater Vehicles: A Swarm Migration Genetic Algorithm Approach","authors":"Yangmin Xie, Wenbo Hui, Dacheng Zhou, Hang Shi","doi":"10.3390/jmse12081366","DOIUrl":"https://doi.org/10.3390/jmse12081366","url":null,"abstract":"Cooperative marine exploration tasks involving multiple autonomous underwater vehicles (AUVs) present a complex 3D coverage path planning challenge that has not been fully addressed. To tackle this, we employ an auto-growth strategy to generate interconnected paths, ensuring simultaneous satisfaction of the obstacle avoidance and space coverage requirements. Our approach introduces a novel genetic algorithm designed to achieve equivalent and energy-efficient path allocation among AUVs. The core idea involves defining competing gene swarms to facilitate path migration, corresponding to path allocation actions among AUVs. The fitness function incorporates models for both energy consumption and optimal path connections, resulting in iterations that lead to optimal path assignment among AUVs. This framework for multi-AUV coverage path planning eliminates the need for pre-division of the working space and has proven effective in 3D underwater environments. Numerous experiments validate the proposed method, showcasing its comprehensive advantages in achieving equitable path allocation, minimizing overall energy consumption, and ensuring high computational efficiency. These benefits contribute to the success of multi-AUV cooperation in deep-sea information collection and environmental surveillance.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"33 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141936880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of Ultrasound Waves on the Pre-Settlement Behavior of Barnacle Cyprid Larvae 超声波对藤壶鲤幼体定居前行为的影响
IF 2.9 3区 地球科学 Q1 ENGINEERING, MARINE Pub Date : 2024-08-11 DOI: 10.3390/jmse12081364
Rubens M. Lopes, Claudia Guimarães, Felipe M. Neves, Leandro T. De-La-Cruz, Gelaysi Moreno Vega, Damián Mizrahi, Julio Cesar Adamowski
Ultrasound waves have been employed to control marine biofouling but their effects on fouling organisms remain poorly understood. This study investigated the influence of ultrasound waves on barnacle (Tetraclita stalactifera cyprid larvae) pre-settlement behavior. Substrate inspection constituted most of the larval time budget, with a focus on the bottom surface rather than lateral or air–water interfaces. The frequency of substrate inspection decreased at 10 kPa when compared to higher acoustic pressures, while the time spent in the water column had an opposite trend. Various larval swimming modes were observed, including rotating, sinking, walking, and cruising, with rotating being dominant. Barnacle larvae exhibited higher speeds and less complex trajectories when subjected to ultrasound in comparison to controls. The impact of ultrasound waves on barnacle cyprid larvae behavior had a non-linear pattern, with lower acoustic pressure (10 kPa) inducing more effective substrate rejection than higher (15 and 20 kPa) intensities.
超声波已被用于控制海洋生物污损,但人们对其对污损生物的影响仍知之甚少。本研究调查了超声波对藤壶(Tetraclita stalactifera cyprid larvae)沉积前行为的影响。底质检查占了幼虫的大部分时间,重点是底面而不是侧面或空气-水界面。与较高声压相比,在 10 kPa 时底质检查频率降低,而在水体中停留的时间则呈相反趋势。观察到幼虫的各种游动模式,包括旋转、下沉、行走和巡游,其中旋转模式占主导地位。与对照组相比,藤壶幼虫在超声波作用下表现出较高的速度和较不复杂的轨迹。超声波对藤壶幼体行为的影响是非线性的,较低的声压(10 kPa)比较高的声压(15 和 20 kPa)能更有效地抑制底质。
{"title":"The Effect of Ultrasound Waves on the Pre-Settlement Behavior of Barnacle Cyprid Larvae","authors":"Rubens M. Lopes, Claudia Guimarães, Felipe M. Neves, Leandro T. De-La-Cruz, Gelaysi Moreno Vega, Damián Mizrahi, Julio Cesar Adamowski","doi":"10.3390/jmse12081364","DOIUrl":"https://doi.org/10.3390/jmse12081364","url":null,"abstract":"Ultrasound waves have been employed to control marine biofouling but their effects on fouling organisms remain poorly understood. This study investigated the influence of ultrasound waves on barnacle (Tetraclita stalactifera cyprid larvae) pre-settlement behavior. Substrate inspection constituted most of the larval time budget, with a focus on the bottom surface rather than lateral or air–water interfaces. The frequency of substrate inspection decreased at 10 kPa when compared to higher acoustic pressures, while the time spent in the water column had an opposite trend. Various larval swimming modes were observed, including rotating, sinking, walking, and cruising, with rotating being dominant. Barnacle larvae exhibited higher speeds and less complex trajectories when subjected to ultrasound in comparison to controls. The impact of ultrasound waves on barnacle cyprid larvae behavior had a non-linear pattern, with lower acoustic pressure (10 kPa) inducing more effective substrate rejection than higher (15 and 20 kPa) intensities.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"42 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141936879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Marine Science and Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1