Pub Date : 2024-03-18DOI: 10.1016/j.jmr.2024.107661
Irene Ceccolini , Clemens Kauffmann , Julian Holzinger , Robert Konrat , Anna Zawadzka-Kazimierczuk
Intrinsically disordered proteins (IDPs) defy the conventional structure-function paradigm by lacking a well-defined tertiary structure and exhibiting inherent flexibility. This flexibility leads to distinctive spin relaxation modes, reflecting isolated and specific motions within individual peptide planes. In this work, we propose a new pulse sequence to measure the longitudinal 13C CSA-13C-13C DD CCR rate and present a novel 3D version of the transverse CCR rate, adopting the symmetrical reconversion approach. We combined these rates with the analogous and CCR rates to derive residue-specific correlation times for both spin-pairs within the same peptide plane. The presented approach offers a straightforward and intuitive way to compare the correlation times of two different and complementary spin vectors, anticipated to be a valuable aid to determine IDPs backbone dihedral angles distributions. We performed the proposed experiments on two systems: a folded protein ubiquitin and Coturnix japonica osteopontin, a prototypical IDP. Comparative analyses of the results show that the correlation times of different residues vary more for IDPs than globular proteins, indicating that the dynamics of IDPs is largely heterogeneous and dominated by local fluctuations.
{"title":"A set of cross-correlated relaxation experiments to probe the correlation time of two different and complementary spin pairs","authors":"Irene Ceccolini , Clemens Kauffmann , Julian Holzinger , Robert Konrat , Anna Zawadzka-Kazimierczuk","doi":"10.1016/j.jmr.2024.107661","DOIUrl":"10.1016/j.jmr.2024.107661","url":null,"abstract":"<div><p>Intrinsically disordered proteins (IDPs) defy the conventional structure-function paradigm by lacking a well-defined tertiary structure and exhibiting inherent flexibility. This flexibility leads to distinctive spin relaxation modes, reflecting isolated and specific motions within individual peptide planes. In this work, we propose a new pulse sequence to measure the longitudinal <sup>13</sup>C<span><math><msup><mrow></mrow><mrow><mo>′</mo></mrow></msup></math></span> CSA-<sup>13</sup>C<span><math><msup><mrow></mrow><mrow><mo>′</mo></mrow></msup></math></span>-<sup>13</sup>C<span><math><msup><mrow></mrow><mrow><mi>α</mi></mrow></msup></math></span> DD CCR rate <span><math><msubsup><mrow><mi>Γ</mi></mrow><mrow><mi>z</mi></mrow><mrow><msup><mrow><mi>C</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>/</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>′</mo></mrow></msup><msup><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow></msubsup></math></span> and present a novel 3D version of the transverse <span><math><msubsup><mrow><mi>Γ</mi></mrow><mrow><mi>x</mi><mi>y</mi></mrow><mrow><msup><mrow><mi>C</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>/</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>′</mo></mrow></msup><msup><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow></msubsup></math></span> CCR rate, adopting the symmetrical reconversion approach. We combined these rates with the analogous <span><math><msubsup><mrow><mi>Γ</mi></mrow><mrow><mi>x</mi><mi>y</mi></mrow><mrow><mi>N</mi><mo>/</mo><mi>N</mi><mi>H</mi></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>Γ</mi></mrow><mrow><mi>z</mi></mrow><mrow><mi>N</mi><mo>/</mo><mi>N</mi><mi>H</mi></mrow></msubsup></math></span> CCR rates to derive residue-specific correlation times for both spin-pairs within the same peptide plane. The presented approach offers a straightforward and intuitive way to compare the correlation times of two different and complementary spin vectors, anticipated to be a valuable aid to determine IDPs backbone dihedral angles distributions. We performed the proposed experiments on two systems: a folded protein ubiquitin and <em>Coturnix japonica</em> osteopontin, a prototypical IDP. Comparative analyses of the results show that the correlation times of different residues vary more for IDPs than globular proteins, indicating that the dynamics of IDPs is largely heterogeneous and dominated by local fluctuations.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"361 ","pages":"Article 107661"},"PeriodicalIF":2.2,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1090780724000454/pdfft?md5=4e2e55d9d786c2ab1d665523b49c9fdd&pid=1-s2.0-S1090780724000454-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140274127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-12DOI: 10.1016/j.jmr.2024.107654
Zheng Zhang , Boris Epel , Buxin Chen , Dan Xia , Emil Y. Sidky , Howard Halpern , Xiaochuan Pan
In continuous-wave electron paramagnetic resonance imaging (CW EPRI), data are collected generally at densely sampled views sufficient for achieving accurate reconstruction of a four dimensional spectral–spatial (4DSS) image by use of the conventional filtered-backprojection (FBP) algorithm. It is desirable to minimize the scan time by collection of data only at sparsely sampled views, referred to as sparse-view data. Interest thus remains in investigation of algorithms for accurate reconstruction of 4DSS images from sparse-view data collected for potentially enabling fast data acquisition in CW EPRI. In this study, we investigate and demonstrate optimization-based algorithms for accurate reconstruction of 4DSS images from sparse-view data. Numerical studies using simulated and real sparse-view data acquired in CW EPRI are conducted that reveal, in terms of image visualization and physical-parameter estimation, the potential of the algorithms developed for yielding accurate 4DSS images from sparse-view data in CW EPRI. The algorithms developed may be exploited for enabling sparse-view scans with minimized scan time in CW EPRI for yielding 4DSS images of quality comparable to, or better than, that of the FBP reconstruction from data collected at densely sampled views.
{"title":"Accurate reconstruction of 4D spectral–spatial images from sparse-view data in continuous-wave EPRI","authors":"Zheng Zhang , Boris Epel , Buxin Chen , Dan Xia , Emil Y. Sidky , Howard Halpern , Xiaochuan Pan","doi":"10.1016/j.jmr.2024.107654","DOIUrl":"https://doi.org/10.1016/j.jmr.2024.107654","url":null,"abstract":"<div><p>In continuous-wave electron paramagnetic resonance imaging (CW EPRI), data are collected generally at densely sampled views sufficient for achieving accurate reconstruction of a four dimensional spectral–spatial (4DSS) image by use of the conventional filtered-backprojection (FBP) algorithm. It is desirable to minimize the scan time by collection of data only at sparsely sampled views, referred to as sparse-view data. Interest thus remains in investigation of algorithms for accurate reconstruction of 4DSS images from sparse-view data collected for potentially enabling fast data acquisition in CW EPRI. In this study, we investigate and demonstrate optimization-based algorithms for accurate reconstruction of 4DSS images from sparse-view data. Numerical studies using simulated and real sparse-view data acquired in CW EPRI are conducted that reveal, in terms of image visualization and physical-parameter estimation, the potential of the algorithms developed for yielding accurate 4DSS images from sparse-view data in CW EPRI. The algorithms developed may be exploited for enabling sparse-view scans with minimized scan time in CW EPRI for yielding 4DSS images of quality comparable to, or better than, that of the FBP reconstruction from data collected at densely sampled views.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"361 ","pages":"Article 107654"},"PeriodicalIF":2.2,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140138570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.1016/j.jmr.2024.107637
Rheya Rajeev , Andrés Ramírez Aguilera , Florea Marica , Laura Romero-Zerón , Bruce J. Balcom
Fast Spin Echo MRI is now widely employed in biomedicine for proton density and T2 contrast imaging. Fast Spin Echo methods provide rapid data acquisition by employing multiple echoes to determine multiple k-space lines with single excitations. Due to the multi-exponential behavior of T2 in typical porous media, and the strong dependence of T2 on the details of the experiment, acquiring a proton density image with Fast Spin Echo methods requires favorable sample and acquisition parameters. In recent years, we have shown the value of pure phase encode Free Induction Decay based methods such as SPRITE. However, in a reservoir rock, a typical T2* is hundreds of µs, whereas a typical T2 is hundreds of ms. Hence, there is merit in considering spin echo-based MRI measurements such as the Fast Spin Echo for rock core plug studies.
A variable field superconducting magnet was employed in this study. This is a new class of magnet for MR/MRI. These magnets have the flexibility of operation in the field range of 0.01 Tesla to 3 Tesla. This is advantageous when working with rock core plugs, as it allows one to maximize sample magnetization, by increasing the static field while controlling magnetic susceptibility mismatch effects, and thereby T2 and T2*, through reducing the static field. The magnetic fields employed in the study were 0.79, 1.5, and 3 Tesla.
Measurements were undertaken on five brine-saturated reservoir rock core plugs (Bentheimer, Berea, Buff Berea, Nugget, and Wallace). The results show that Fast Spin Echo measurements are more sensitive than SPRITE methods in amenable samples and usually feature higher resolution. Quantification of saturation with Fast Spin Echo methods requires correction for T2 attenuation. The results also show that 3 Tesla is too high a static field in general for rock core MRI studies with either method. While the current study is focused on five representative reservoir rock cores, the conclusions which result are general for MRI of fluids in porous media.
{"title":"Fast spin echo MRI of reservoir core plugs with a variable field magnet","authors":"Rheya Rajeev , Andrés Ramírez Aguilera , Florea Marica , Laura Romero-Zerón , Bruce J. Balcom","doi":"10.1016/j.jmr.2024.107637","DOIUrl":"10.1016/j.jmr.2024.107637","url":null,"abstract":"<div><p>Fast Spin Echo MRI is now widely employed in biomedicine for proton density and <em>T</em><sub>2</sub> contrast imaging. Fast Spin Echo methods provide rapid data acquisition by employing multiple echoes to determine multiple k-space lines with single excitations. Due to the multi-exponential behavior of <em>T</em><sub>2</sub> in typical porous media, and the strong dependence of <em>T</em><sub>2</sub> on the details of the experiment, acquiring a proton density image with Fast Spin Echo methods requires favorable sample and acquisition parameters. In recent years, we have shown the value of pure phase encode Free Induction Decay based methods such as SPRITE. However, in a reservoir rock, a typical <em>T</em><sub>2</sub>* is hundreds of µs, whereas a typical <em>T</em><sub>2</sub> is hundreds of ms. Hence, there is merit in considering spin echo-based MRI measurements such as the Fast Spin Echo for rock core plug studies.</p><p>A variable field superconducting magnet was employed in this study. This is a new class of magnet for MR/MRI. These magnets have the flexibility of operation in the field range of 0.01 Tesla to 3 Tesla. This is advantageous when working with rock core plugs, as it allows one to maximize sample magnetization, by increasing the static field while controlling magnetic susceptibility mismatch effects, and thereby <em>T</em><sub><em>2</em></sub> and <em>T</em><sub><em>2</em></sub><em>*</em>, through reducing the static field. The magnetic fields employed in the study were 0.79, 1.5, and 3 Tesla.</p><p>Measurements were undertaken on five brine-saturated reservoir rock core plugs (Bentheimer, Berea, Buff Berea, Nugget, and Wallace). The results show that Fast Spin Echo measurements are more sensitive than SPRITE methods in amenable samples and usually feature higher resolution. Quantification of saturation with Fast Spin Echo methods requires correction for <em>T</em><sub>2</sub> attenuation. The results also show that 3 Tesla is too high a static field in general for rock core MRI studies with either method. While the current study is focused on five representative reservoir rock cores, the conclusions which result are general for MRI of fluids in porous media.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"360 ","pages":"Article 107637"},"PeriodicalIF":2.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139819275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.1016/j.jmr.2024.107651
W.Th. Wenckebach
Spectral diffusion of electron spin polarization plays a key part in dynamic nuclear polarization (DNP). It determines the distribution of polarization across the electron spin resonance (ESR) line and consequently the polarization that is available for transfer to the nuclear spins. Various authors have studied it experimentally by means of electron–electron double resonance (ELDOR) and proposed and used macroscopic models to interpret these experiments. However, microscopic models predicting the rate of spectral diffusion are scarce. The present article is an attempt to fill this gap. It derives a spectral diffusion equation from first principles and uses Monte Carlo simulations to determine the parameters in this equation.
The derivation given here builds on an observation made in a previous article on nuclear dipolar relaxation: spectral diffusion is also spatial diffusion and the random distribution of spins in space limits the former. This can be modelled assuming that rapid flip-flop transitions between a spin and its nearest neighbour do not contribute to diffusion of polarization across the ESR spectrum. The present article presents predictions of the spectral diffusion constant and shows that this limitation may lower the spectral diffusion constant by several orders of magnitude. As a check the constant is determined from first principles for a sample containing 40 mM TEMPOL. Including the limitation then results in a value that is close to that obtained from an analysis of previously reported ELDOR experiments.
电子自旋极化的光谱扩散在动态核极化(DNP)中起着关键作用。它决定了整个电子自旋共振(ESR)线的极化分布,从而决定了可转移到核自旋的极化。许多学者通过电子-电子双共振(ELDOR)对其进行了实验研究,并提出和使用宏观模型来解释这些实验。然而,预测光谱扩散速率的微观模型却很少见。本文试图填补这一空白。本文的推导基于之前一篇关于核双极弛豫的文章中的观察:光谱扩散也是空间扩散,而空间中的自旋随机分布限制了前者。假定自旋与其近邻之间的快速翻转转换不会对整个 ESR 光谱的极化扩散产生影响,那么就可以对其进行建模。本文对光谱扩散常数进行了预测,并表明这种限制可能会将光谱扩散常数降低几个数量级。作为检验,该常数是根据含有 40 mM TEMPOL 的样品的第一原理确定的。将该限制计算在内后,得出的数值与之前报告的 ELDOR 实验分析得出的数值相近。
{"title":"Spectral diffusion of electron spin polarization in glasses doped with radicals for DNP","authors":"W.Th. Wenckebach","doi":"10.1016/j.jmr.2024.107651","DOIUrl":"https://doi.org/10.1016/j.jmr.2024.107651","url":null,"abstract":"<div><p>Spectral diffusion of electron spin polarization plays a key part in dynamic nuclear polarization (DNP). It determines the distribution of polarization across the electron spin resonance (ESR) line and consequently the polarization that is available for transfer to the nuclear spins. Various authors have studied it experimentally by means of electron–electron double resonance (ELDOR) and proposed and used macroscopic models to interpret these experiments. However, microscopic models predicting the rate of spectral diffusion are scarce. The present article is an attempt to fill this gap. It derives a spectral diffusion equation from first principles and uses Monte Carlo simulations to determine the parameters in this equation.</p><p>The derivation given here builds on an observation made in a previous article on nuclear dipolar relaxation: spectral diffusion is also spatial diffusion and the random distribution of spins in space limits the former. This can be modelled assuming that rapid flip-flop transitions between a spin and its nearest neighbour do not contribute to diffusion of polarization across the ESR spectrum. The present article presents predictions of the spectral diffusion constant and shows that this limitation may lower the spectral diffusion constant by several orders of magnitude. As a check the constant is determined from first principles for a sample containing 40 mM TEMPOL. Including the limitation then results in a value that is close to that obtained from an analysis of previously reported ELDOR experiments.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"360 ","pages":"Article 107651"},"PeriodicalIF":2.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140014641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.1016/j.jmr.2024.107652
Chenyun Fang , Yarui Xi , Boris Epel , Howard Halpern , Zhiwei Qiao
Precise radiation guided by oxygen images has demonstrated superiority over the traditional radiation methods. Electron paramagnetic resonance (EPR) imaging has proven to be the most advanced oxygen imaging modality. However, the main drawback of EPR imaging is the long scan time. For each projection, we usually need to collect the projection many times and then average them to achieve high signal-to-noise ratio (SNR). One approach to fast scan is to reduce the repeating time for each projection. While the projections would be noisy and thus the traditional commonly-use filtered backprojection (FBP) algorithm would not be capable of accurately reconstructing images. Optimization-based iterative algorithms may accurately reconstruct images from noisy projections for they may incorporate prior information into optimization models. Based on the total variation (TV) algorithms for EPR imaging, in this work, we propose a directional TV (DTV) algorithm to further improve the reconstruction accuracy. We construct the DTV constrained, data divergence minimization (DTVcDM) model, derive its Chambolle–Pock (CP) solving algorithm, validate the correctness of the whole algorithm, and perform evaluations via simulated and real data. The experimental results show that the DTV algorithm outperforms the existing TV and FBP algorithms in fast EPR imaging. Compared to the standard FBP algorithm, the proposed algorithm may achieve 10 times of acceleration.
{"title":"Directional TV algorithm for fast EPR imaging","authors":"Chenyun Fang , Yarui Xi , Boris Epel , Howard Halpern , Zhiwei Qiao","doi":"10.1016/j.jmr.2024.107652","DOIUrl":"https://doi.org/10.1016/j.jmr.2024.107652","url":null,"abstract":"<div><p>Precise radiation guided by oxygen images has demonstrated superiority over the traditional radiation methods. Electron paramagnetic resonance (EPR) imaging has proven to be the most advanced oxygen imaging modality. However, the main drawback of EPR imaging is the long scan time. For each projection, we usually need to collect the projection many times and then average them to achieve high signal-to-noise ratio (SNR). One approach to fast scan is to reduce the repeating time for each projection. While the projections would be noisy and thus the traditional commonly-use filtered backprojection (FBP) algorithm would not be capable of accurately reconstructing images. Optimization-based iterative algorithms may accurately reconstruct images from noisy projections for they may incorporate prior information into optimization models. Based on the total variation (TV) algorithms for EPR imaging, in this work, we propose a directional TV (DTV) algorithm to further improve the reconstruction accuracy. We construct the DTV constrained, data divergence minimization (DTVcDM) model, derive its Chambolle–Pock (CP) solving algorithm, validate the correctness of the whole algorithm, and perform evaluations via simulated and real data. The experimental results show that the DTV algorithm outperforms the existing TV and FBP algorithms in fast EPR imaging. Compared to the standard FBP algorithm, the proposed algorithm may achieve 10 times of acceleration.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"361 ","pages":"Article 107652"},"PeriodicalIF":2.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140062850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-29DOI: 10.1016/j.jmr.2024.107653
Katrina Steiner , Wolfgang Bermel , Ronald Soong , Daniel H. Lysak , Amy Jenne , Katelyn Downey , William W. Wolff , Peter M. Costa , Kiera Ronda , Vincent Moxley-Paquette , Jacob Pellizzari , Andre J. Simpson
Nuclear magnetic resonance (NMR) based 13C tracing has broad applications across medical and environmental research. As many biological and environmental samples are heterogeneous, they experience considerable spectral overlap and relatively low signal. Here a 1D 1H–12C/13C is introduced that uses “in-phase/opposite-phase” encoding to simultaneously detect and discriminate both protons attached to 12C and 13C at full 1H sensitivity in every scan. Unlike traditional approaches that focus on the 12C/13C satellite ratios in a 1H spectrum, this approach creates separate sub-spectra for the 12C and 13C bound protons. These spectra can be used for both quantitative and qualitative analysis of complex samples with significant spectral overlap. Due to the presence of the 13C dipole, faster relaxation of the 1H–13C pairs results in slight underestimation compared to the 1H–12C pairs. However, this is easily compensated for, by collecting an additional reference spectrum, from which the absolute percentage of 13C can be calculated by difference. When combined with the result, 12C and 13C percent enrichment in both 1H–12C and 1H–13C fractions are obtained. As the approach uses isotope filtered 1H NMR for detection, it retains nearly the same sensitivity as a standard 1H spectrum. Here, a proof-of-concept is performed using simple mixtures of 12C and 13C glucose, followed by suspended algal cells with varying 12C /13C ratios representing a complex mixture. The results consistently return 12C/13C ratios that deviate less than 1 % on average from the expected. Finally, the sequence was used to monitor and quantify 13C% enrichment in Daphnia magna neonates which were fed a 13C diet over 1 week. The approach helped reveal how the organisms utilized the 12C lipids they are born with vs. the 13C lipids they assimilate from their diet during growth. Given the experiments simplicity, versatility, and sensitivity, we anticipate it should find broad application in a wide range of tracer studies, such as fluxomics, with applications spanning various disciplines.
{"title":"A simple 1H (12C/13C) filtered experiment to quantify and trace isotope enrichment in complex environmental and biological samples","authors":"Katrina Steiner , Wolfgang Bermel , Ronald Soong , Daniel H. Lysak , Amy Jenne , Katelyn Downey , William W. Wolff , Peter M. Costa , Kiera Ronda , Vincent Moxley-Paquette , Jacob Pellizzari , Andre J. Simpson","doi":"10.1016/j.jmr.2024.107653","DOIUrl":"https://doi.org/10.1016/j.jmr.2024.107653","url":null,"abstract":"<div><p>Nuclear magnetic resonance (NMR) based <sup>13</sup>C tracing has broad applications across medical and environmental research. As many biological and environmental samples are heterogeneous, they experience considerable spectral overlap and relatively low signal. Here a 1D <sup>1</sup>H–<sup>12</sup>C/<sup>13</sup>C is introduced that uses “in-phase/opposite-phase” encoding to simultaneously detect and discriminate both protons attached to <sup>12</sup>C and <sup>13</sup>C at full <sup>1</sup>H sensitivity in every scan. Unlike traditional approaches that focus on the <sup>12</sup>C/<sup>13</sup>C satellite ratios in a <sup>1</sup>H spectrum, this approach creates separate sub-spectra for the <sup>12</sup>C and <sup>13</sup>C bound protons. These spectra can be used for both quantitative and qualitative analysis of complex samples with significant spectral overlap. Due to the presence of the <sup>13</sup>C dipole, faster relaxation of the <sup>1</sup>H–<sup>13</sup>C pairs results in slight underestimation compared to the <sup>1</sup>H–<sup>12</sup>C pairs. However, this is easily compensated for, by collecting an additional reference spectrum, from which the absolute percentage of <sup>13</sup>C can be calculated by difference. When combined with the result, <sup>12</sup>C and <sup>13</sup>C percent enrichment in both <sup>1</sup>H–<sup>12</sup>C and <sup>1</sup>H–<sup>13</sup>C fractions are obtained. As the approach uses isotope filtered <sup>1</sup>H NMR for detection, it retains nearly the same sensitivity as a standard <sup>1</sup>H spectrum. Here, a proof-of-concept is performed using simple mixtures of <sup>12</sup>C and <sup>13</sup>C glucose, followed by suspended algal cells with varying <sup>12</sup>C /<sup>13</sup>C ratios representing a complex mixture. The results consistently return <sup>12</sup>C/<sup>13</sup>C ratios that deviate less than 1 % on average from the expected. Finally, the sequence was used to monitor and quantify <sup>13</sup>C% enrichment in <em>Daphnia magna</em> neonates which were fed a <sup>13</sup>C diet over 1 week. The approach helped reveal how the organisms utilized the <sup>12</sup>C lipids they are born with vs. the <sup>13</sup>C lipids they assimilate from their diet during growth. Given the experiments simplicity, versatility, and sensitivity, we anticipate it should find broad application in a wide range of tracer studies, such as fluxomics, with applications spanning various disciplines.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"361 ","pages":"Article 107653"},"PeriodicalIF":2.2,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1090780724000375/pdfft?md5=136568fdc7e8212556005d4d32e40998&pid=1-s2.0-S1090780724000375-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140104054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-23DOI: 10.1016/j.jmr.2024.107648
Simon V. Babenko , Sergey V. Sviyazov , Dudari B. Burueva , Igor V. Koptyug
In this work we achieve a significant overpopulation (PLLS≈1%) of the long-lived spin state (LLS) of methylene protons in 2-bromoethan(2H)ol (BrEtOD) obtained in a reaction between ethylene with non-equilibrium nuclear spin order and bromine water. Given all protons in ethylene are magnetically equivalent, its nuclear states are classified into nuclear spin isomers (NSIM) with total spin I = 2,1,0. Addition of parahydrogen to acetylene produces ethylene with a population of only those NSIMs with I = 1,0. As a result of the reaction with bromine water the non-equilibrium spin order of ethylene is partly transferred to the singlet LLS involving the two methylene groups of BrEtOD. The 1H NMR signal enhancement (SE≈200) obtained as a result of the LLS readout is approximately equal to the SE of the hyperpolarized BrEtOD obtained with a single π/4 pulse. The LLS relaxation time (TLLS) was shown to be approximately 40 s (≈8T1) in the argon-bubbled sample.
{"title":"Hyperpolarized long-lived spin state of methylene protons of 2-bromoethanol obtained from ethylene with non-equilibrium nuclear spin order","authors":"Simon V. Babenko , Sergey V. Sviyazov , Dudari B. Burueva , Igor V. Koptyug","doi":"10.1016/j.jmr.2024.107648","DOIUrl":"https://doi.org/10.1016/j.jmr.2024.107648","url":null,"abstract":"<div><p>In this work we achieve a significant overpopulation (P<sub>LLS</sub>≈1%) of the long-lived spin state (LLS) of methylene protons in 2-bromoethan(<sup>2</sup>H)ol (BrEtOD) obtained in a reaction between ethylene with non-equilibrium nuclear spin order and bromine water. Given all protons in ethylene are magnetically equivalent, its nuclear states are classified into nuclear spin isomers (NSIM) with total spin I = 2,1,0. Addition of parahydrogen to acetylene produces ethylene with a population of only those NSIMs with I = 1,0. As a result of the reaction with bromine water the non-equilibrium spin order of ethylene is partly transferred to the singlet LLS involving the two methylene groups of BrEtOD. The <sup>1</sup>H NMR signal enhancement (SE≈200) obtained as a result of the LLS readout is approximately equal to the SE of the hyperpolarized BrEtOD obtained with a single π/4 pulse. The LLS relaxation time (T<sub>LLS</sub>) was shown to be approximately 40 s (≈8T<sub>1</sub>) in the argon-bubbled sample.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"360 ","pages":"Article 107648"},"PeriodicalIF":2.2,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139936185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-23DOI: 10.1016/j.jmr.2024.107650
Haoqin Zhu , Qiang Zhang , Rangsong Li , Yuanyuan Chen , Gong Zhang , Ruilin Wang , Ming Lu , Xinqiang Yan
MRI is essential for evaluating and diagnosing various conditions affecting the temporomandibular joint (TMJ) and surrounding structures, as it provides highly detailed images that enable healthcare professionals to assess the joints and surroundings in great detail. While commercial MRI scanners typically come equipped with basic receive coils, such as the head receive array, RF coils tailored for specialized applications like TMJ MRI must be obtained separately. Consequently, TMJ MRI scans are often conducted using the head receive array, yet this configuration proves suboptimal due to the lack of specialized coils. In this study, we introduce a simple, low-cost, and easy-to-reproduce wireless resonator insert to enhance the quality of TMJ MRI at 1.5 T. The wireless resonator shows a significant improvement in signal-to-noise ratio (SNR) and noticeably better imaging quality than the head array alone configuration in both phantom and in vivo images.
核磁共振成像对于评估和诊断影响颞下颌关节(TMJ)和周围结构的各种病症至关重要,因为它能提供非常详细的图像,使医护人员能够非常详细地评估关节和周围环境。商用磁共振成像扫描仪通常配备基本的接收线圈,如头部接收阵列,而为颞下颌关节磁共振成像等专门应用定制的射频线圈则必须单独购买。因此,颞下颌关节磁共振成像扫描通常使用头部接收阵列,但由于缺乏专用线圈,这种配置无法达到最佳效果。在这项研究中,我们引入了一种简单、低成本且易于生产的无线谐振器插件,以提高 1.5 T 下颞下颌关节磁共振成像的质量。在模型和活体图像中,无线谐振器都显示出信噪比(SNR)的显著改善,成像质量明显优于仅使用头部阵列的配置。
{"title":"A detunable wireless resonator insert for high-resolution TMJ MRI at 1.5 T","authors":"Haoqin Zhu , Qiang Zhang , Rangsong Li , Yuanyuan Chen , Gong Zhang , Ruilin Wang , Ming Lu , Xinqiang Yan","doi":"10.1016/j.jmr.2024.107650","DOIUrl":"https://doi.org/10.1016/j.jmr.2024.107650","url":null,"abstract":"<div><p>MRI is essential for evaluating and diagnosing various conditions affecting the temporomandibular joint (TMJ) and surrounding structures, as it provides highly detailed images that enable healthcare professionals to assess the joints and surroundings in great detail. While commercial MRI scanners typically come equipped with basic receive coils, such as the head receive array, RF coils tailored for specialized applications like TMJ MRI must be obtained separately. Consequently, TMJ MRI scans are often conducted using the head receive array, yet this configuration proves suboptimal due to the lack of specialized coils. In this study, we introduce a simple, low-cost, and easy-to-reproduce wireless resonator insert to enhance the quality of TMJ MRI at 1.5 T. The wireless resonator shows a significant improvement in signal-to-noise ratio (SNR) and noticeably better imaging quality than the head array alone configuration in both phantom and in vivo images.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"360 ","pages":"Article 107650"},"PeriodicalIF":2.2,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139985742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-23DOI: 10.1016/j.jmr.2024.107649
Gal Porat-Dahlerbruch , Jochem Struppe , Tatyana Polenova
Biomolecular solid-state magic angle spinning (MAS) NMR spectroscopy frequently relies on selective 13C-15N magnetization transfers, for various kinds of correlation experiments. Introduced in 1998, spectrally induced filtering in combination with cross polarization (SPECIFIC-CP) is a selective heteronuclear magnetization transfer experiment widely used for biological applications. At MAS frequencies below 20 kHz, commonly used for 13C-detected MAS NMR experiments, SPECIFIC-CP transfer between amide 15N and 13Cα atoms (NCA) is typically performed with radiofrequency (rf) fields set higher than the MAS frequency for both 13C and 15N channels, and high-power 1H decoupling rf field is simultaneously applied. Here, we experimentally explore a broad range of NCA zero-quantum (ZQ) SPECIFIC-CP matching conditions at the MAS frequency of 14 kHz and compare the best high- and low-power matching conditions with respect to selectivity, robustness, and sensitivity at lower 1H decoupling rf fields. We show that low-power NCA SPECIFIC-CP matching condition gives rise to 20% sensitivity enhancement compared to high-power conditions, in 2D NCA spectra of microcrystalline assemblies of HIV-1 CACTD-SP1 protein with inositol hexakis-phosphate (IP6).
{"title":"High-efficiency low-power 13C-15N cross polarization in MAS NMR","authors":"Gal Porat-Dahlerbruch , Jochem Struppe , Tatyana Polenova","doi":"10.1016/j.jmr.2024.107649","DOIUrl":"10.1016/j.jmr.2024.107649","url":null,"abstract":"<div><p>Biomolecular solid-state magic angle spinning (MAS) NMR spectroscopy frequently relies on selective <sup>13</sup>C-<sup>15</sup>N magnetization transfers, for various kinds of correlation experiments. Introduced in 1998, spectrally induced filtering in combination with cross polarization (SPECIFIC-CP) is a selective heteronuclear magnetization transfer experiment widely used for biological applications. At MAS frequencies below 20 kHz, commonly used for <sup>13</sup>C-detected MAS NMR experiments, SPECIFIC-CP transfer between amide <sup>15</sup>N and <sup>13</sup>C<sup>α</sup> atoms (NCA) is typically performed with radiofrequency (rf) fields set higher than the MAS frequency for both <sup>13</sup>C and <sup>15</sup>N channels, and high-power <sup>1</sup>H decoupling rf field is simultaneously applied. Here, we experimentally explore a broad range of NCA zero-quantum (ZQ) SPECIFIC-CP matching conditions at the MAS frequency of 14 kHz and compare the best high- and low-power matching conditions with respect to selectivity, robustness, and sensitivity at lower <sup>1</sup>H decoupling rf fields. We show that low-power NCA SPECIFIC-CP matching condition gives rise to 20% sensitivity enhancement compared to high-power conditions, in 2D NCA spectra of microcrystalline assemblies of HIV-1 CA<sub>CTD</sub>-SP1 protein with inositol hexakis-phosphate (IP6).</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"361 ","pages":"Article 107649"},"PeriodicalIF":2.2,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139966542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-16DOI: 10.1016/j.jmr.2024.107633
Hideo Sato-Akaba , Tsukasa Sakai , Hiroshi Hirata
This study describes a technique to clean amplitude modulation (AM) noise of RF transmission waves, which is used to observe the sub-GHz CW-EPR spectrum. An RF transmitter amplifier that has the function of cleaning AM noise has been developed. Cleaning of the AM noise was owing to saturation of the output at the amplifier. Three stages of the amplifiers in series could effectively suppress the AM noise to about –176 dBc/Hz and –183 dBc/Hz at offset frequency of 10 kHz and 100 kHz, respectively at the carrier frequency of 750 MHz and the output power of 29 dBm. Since phase modulation (PM) noise is suppressed by phase sensitive detection, the AM noise in the transmission is dominant cause of the noise in the sub-GHz CW-EPR absorption spectrum using a reflection bridge, which depends on the quality factor of the resonator and the power of the RF transmission. The additive phase modulation (PM) noise of this amplifier was –171 dBc/Hz at an offset frequency of 100 kHz, which indicated that the frequency modulation (FM) of the transmission wave was not distorted with this amplifier. Therefore, conventional CW-EPR spectrometers that typically require FM for automatic frequency control or automatic tunning control can use this technique to increase sensitivity.
{"title":"Generation of transmission wave with low AM noise for sub-GHz CW-EPR spectrometer","authors":"Hideo Sato-Akaba , Tsukasa Sakai , Hiroshi Hirata","doi":"10.1016/j.jmr.2024.107633","DOIUrl":"https://doi.org/10.1016/j.jmr.2024.107633","url":null,"abstract":"<div><p>This study describes a technique to clean amplitude modulation (AM) noise of RF transmission waves, which is used to observe the sub-GHz CW-EPR spectrum. An RF transmitter amplifier that has the function of cleaning AM noise has been developed. Cleaning of the AM noise was owing to saturation of the output at the amplifier. Three stages of the amplifiers in series could effectively suppress the AM noise to about –176 dBc/Hz and –183 dBc/Hz at offset frequency of 10 kHz and 100 kHz, respectively at the carrier frequency of 750 MHz and the output power of 29 dBm. Since phase modulation (PM) noise is suppressed by phase sensitive detection, the AM noise in the transmission is dominant cause of the noise in the sub-GHz CW-EPR absorption spectrum using a reflection bridge, which depends on the quality factor of the resonator and the power of the RF transmission. The additive phase modulation (PM) noise of this amplifier was –171 dBc/Hz at an offset frequency of 100 kHz, which indicated that the frequency modulation (FM) of the transmission wave was not distorted with this amplifier. Therefore, conventional CW-EPR spectrometers that typically require FM for automatic frequency control or automatic tunning control can use this technique to increase sensitivity.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"360 ","pages":"Article 107633"},"PeriodicalIF":2.2,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139936187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}