Stabilization mechanisms involving doped zirconia systems have been discussed over the last 60 years. The primary objective of this work is to provide scientific clarifications regarding the relevance of Garvie factor for important doped zirconia systems. With the commercially popular compositions of yttria-stabilized zirconia (YSZ) systems, our results illustrate no relevance of a Garvie criterion for YSZ systems (for yttria doping ≥ 2.5 mol.%). The same was found to be true for ceria (12–20 mol.%)-doped zirconia (CeTZP) systems. The Garvie criterion seems to be strongly system dependent as it was found to be valid for tetragonal CaO-doped (3–4 mol.%) zirconia (CaSZ) systems. Contrary to a ‘consolidation factor’ that was credited for stabilization of tetragonal CaSZ ceramic, an opposite trend (between grain and particle size) was observed for YSZ and CeTZP systems. This was explained in terms of their possible difference and crossover between their respective surface and grain boundary diffusion parameters.