Pub Date : 2024-04-29DOI: 10.1557/s43578-024-01349-x
Rafaela Alcindo Silva, Raphael Victor Silva Andrade, Agnes Andrade Martins, Valkleidson Santos de Araujo, Arnóbio Antônio da Silva Júnior, Ednaldo Gomes do Nascimento, Alcides de Oliveira Wanderley Neto, Gabriela de Souza Balbinot, Fabricio Mezzomo Collares, Ana Paula Negreiros Nunes Alves, Renata Ferreira de Carvalho Leitão, Conceição S. Martins Rebouças, Fábio Roberto Dametto, Rafael Rodrigues Lima, Salete Martins Alves, Aurigena Antunes de Araújo
This study evaluated the chemical, mechanical, and biocompatibility of Portland cement (PC) with different proportions of niobium oxide (Nb2O5). Five male Wistar rats were used. Four polyethylene tubes were placed on the dorsal subcutaneous tissue: one tube empty (NC), one tube MTA (Angelus®), one tube contained F6 (PC, Nb2O5 and CaSO4), and one tube F7 (PC, Bi2O3, Nb2O5 and CaSO4). After 60 days, animals were euthanized, and tubes were removed with the surrounding tissues. Inflammatory infiltrates were stained with hematoxylin–eosin. Mineralization was analyzed using Von Kossa staining and polarized light. The F6 showed small vessels and dispersed mononuclear inflammatory cells, score of 1 (1–2), p˃0.05 vs. NC 0.5 (0–1), and the absence of cell giants. Positive Von Kossa staining and birefringent structures under polarized light were observed with MTA, F6, and F7. The niobium oxide (Nb2O5), in association with Portland cement, exhibits calcium crystals and biocompatibility in rat subcutaneous tissue.
Graphical abstract
本研究评估了含有不同比例氧化铌(Nb2O5)的硅酸盐水泥(PC)的化学、机械和生物相容性。研究使用了五只雄性 Wistar 大鼠。在背侧皮下组织上放置了四根聚乙烯管:一根空管(NC)、一根 MTA 管(Angelus®)、一根含有 F6(PC、Nb2O5 和 CaSO4)的管子和一根 F7(PC、Bi2O3、Nb2O5 和 CaSO4)的管子。60 天后,动物被安乐死,管子和周围组织一起被移除。用苏木精-伊红对炎性浸润进行染色。使用 Von Kossa 染色法和偏振光分析矿化情况。F6 显示小血管和分散的单核炎症细胞,评分为 1(1-2),p˃0.05 与 NC 0.5(0-1)相比,没有细胞巨头。用 MTA、F6 和 F7 观察到阳性 Von Kossa 染色和偏振光下的双折射结构。氧化铌(Nb2O5)与波特兰水泥结合,在大鼠皮下组织中显示出钙结晶和生物相容性。
{"title":"Portland cement associated with niobium is evidenced by the presence of calcium crystals and biocompatibility in the rat subcutaneous tissue","authors":"Rafaela Alcindo Silva, Raphael Victor Silva Andrade, Agnes Andrade Martins, Valkleidson Santos de Araujo, Arnóbio Antônio da Silva Júnior, Ednaldo Gomes do Nascimento, Alcides de Oliveira Wanderley Neto, Gabriela de Souza Balbinot, Fabricio Mezzomo Collares, Ana Paula Negreiros Nunes Alves, Renata Ferreira de Carvalho Leitão, Conceição S. Martins Rebouças, Fábio Roberto Dametto, Rafael Rodrigues Lima, Salete Martins Alves, Aurigena Antunes de Araújo","doi":"10.1557/s43578-024-01349-x","DOIUrl":"https://doi.org/10.1557/s43578-024-01349-x","url":null,"abstract":"<p>This study evaluated the chemical, mechanical, and biocompatibility of Portland cement (PC) with different proportions of niobium oxide (Nb<sub>2</sub>O<sub>5</sub>). Five male Wistar rats were used. Four polyethylene tubes were placed on the dorsal subcutaneous tissue: one tube empty (NC), one tube MTA (Angelus®), one tube contained F6 (PC, Nb<sub>2</sub>O<sub>5</sub> and CaSO<sub>4</sub>), and one tube F7 (PC, Bi<sub>2</sub>O<sub>3</sub>, Nb<sub>2</sub>O<sub>5</sub> and CaSO<sub>4</sub>). After 60 days, animals were euthanized, and tubes were removed with the surrounding tissues. Inflammatory infiltrates were stained with hematoxylin–eosin. Mineralization was analyzed using Von Kossa staining and polarized light. The F6 showed small vessels and dispersed mononuclear inflammatory cells, score of 1 (1–2), p˃0.05 vs. NC 0.5 (0–1), and the absence of cell giants. Positive Von Kossa staining and birefringent structures under polarized light were observed with MTA, F6, and F7. The niobium oxide (Nb<sub>2</sub>O<sub>5</sub>), in association with Portland cement, exhibits calcium crystals and biocompatibility in rat subcutaneous tissue.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":16306,"journal":{"name":"Journal of Materials Research","volume":"49 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A worm-like oxide Ca3Co2O6 was prepared by electrostatic spinning as a cathode material for solid-oxide fuel cells. Compared to the plain granular structure, the worm-like Ca3Co2O6 exhibits a desirable morphological organization and an enhanced electrochemical performance. At 1073 K, polarization resistance with the worm-like cathode is favorably reduced to 0.151 Ω cm2, and the power peak of the corresponding single cell reaches to 512 mW cm−2, showing a fast cathodic kinetics. By contrast, the polarization resistance with the plain cathode is 0.275 Ω cm2, and the power peak of the corresponding single cell is 406 mW cm−2. Under a constant voltage load of applied 0.6 V at 1023 K, cell power with the worm-like cathode maintains steadily from 420 to 400 mW cm−2 after 14 h of running time, showing a less fading rate, a more stable performance, and a better application prospect than the plain cathode.
Graphical abstract
Electrostatic spinning of Ca3Co2O6 as the cathode material of solid-oxide fuel cells.