Pub Date : 2024-06-02DOI: 10.1016/j.gexplo.2024.107519
Qianqian Hu , Yanpeng Liang , Honghu Zeng , Huanfang Huang , Wenwen Chen , Litang Qin , Xiaohong Song , Xiaoyu Yan
The Huixian karst wetland, situated in southwest China, is the largest karst wetland. Historically, organochlorine pesticides (OCPs) have negatively affected the aquatic environment and the health of surrounding residents. In this study, the pollution status and environmental fate of OCPs in multiple environmental media in the Huixian wetland were investigated. The 15 OCPs' total concentration ranges in lake water, ditch water, groundwater, and lake sediment were 46.8–306 ng·L−1, 77.8–251 ng·L−1, 26.0–233 ng·L−1, and 44.8–345 ng·g−1, respectively. The concentrations and proportions of the different OCPs demonstrated significant seasonality. Historical residues are the main source of OCPs in the region, as evidenced by the typical ratios of DDTs and HCHs. Karst regions are extremely vulnerable to environmental changes, as evidenced by the highly dynamic character of the karst wetland system and the rapid migration of multimodal OCPs in different media without considerable damage. According to the risk assessment, both the possible carcinogenic risk to sediments in the Huixian wetland and the ecological risk to water bodies were acceptable. In contrast, the consumption of lake water may put the local population at health risk, which is a cause of concern.
{"title":"Organochlorine pesticides in water and sediment at a typical karst wetland in Southwest China","authors":"Qianqian Hu , Yanpeng Liang , Honghu Zeng , Huanfang Huang , Wenwen Chen , Litang Qin , Xiaohong Song , Xiaoyu Yan","doi":"10.1016/j.gexplo.2024.107519","DOIUrl":"10.1016/j.gexplo.2024.107519","url":null,"abstract":"<div><p>The Huixian karst wetland, situated in southwest China, is the largest karst wetland. Historically, organochlorine pesticides (OCPs) have negatively affected the aquatic environment and the health of surrounding residents. In this study, the pollution status and environmental fate of OCPs in multiple environmental media in the Huixian wetland were investigated. The 15 OCPs' total concentration ranges in lake water, ditch water, groundwater, and lake sediment were 46.8–306 ng·L<sup>−1</sup>, 77.8–251 ng·L<sup>−1</sup>, 26.0–233 ng·L<sup>−1</sup>, and 44.8–345 ng·g<sup>−1</sup>, respectively. The concentrations and proportions of the different OCPs demonstrated significant seasonality. Historical residues are the main source of OCPs in the region, as evidenced by the typical ratios of DDTs and HCHs. Karst regions are extremely vulnerable to environmental changes, as evidenced by the highly dynamic character of the karst wetland system and the rapid migration of multimodal OCPs in different media without considerable damage. According to the risk assessment, both the possible carcinogenic risk to sediments in the Huixian wetland and the ecological risk to water bodies were acceptable. In contrast, the consumption of lake water may put the local population at health risk, which is a cause of concern.</p></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":"264 ","pages":"Article 107519"},"PeriodicalIF":3.9,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141279801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-31DOI: 10.1016/j.gexplo.2024.107518
Manzhi Chen , Xuexian Li , Xingxing Cao , Wentao Yang , Pan Wu , Haiyang Hao , Zhijun Fei , Yining Gao
Heavy metals (HMs) are often abnormally enriched in soils in geologically high background areas, posing a serious threat to the ecosystem and human health. However, the material origin of HMs in overlying soils is unclear. In this paper, we studied the accumulation control and formation process of HMs (Cd, Hg, As, Pb, Cr, Cu, Ni, and Zn) in soils overlying bedrock from different geological periods in a typical anticline structure area in southwest of Guizhou province. The results revealed that the content of HMs in the bedrock were ranked as Carboniferous carbonate rocks < Permian carbonate rocks < Triassic clastic rocks, while the opposite trend was observed for the HMs content in the overlying soil. The slopes of the EF-Q values of HMs in the soils overlying the Carboniferous, Permian, and Triassic rocks were 0.003, 0.007, and 0.83, respectively, which suggests that HMs enrichment or leaching was more complicated in the process of carbonate weathering soil-forming, whereas it was mainly in situ weathering during the process of clastic weathering soil-forming. The soils overlying the bedrock of the three geological periods experienced similar weathering processes and had the same source of soil-forming matrices, as it was observed that their Fe2O3-Al2O3, Hf-Zr, Nb-Ta, Th/Sc-Zr/Sc and Y/Ho-Y contents were significantly correlated (with R2 values of 0.80, 0.94, 0.72, 0.60, and 0.76, respectively) with very similar REE assignment patterns. The results corroborated the causes of the high background geological heterogeneity of HMs in the overlying soils in karst areas and supported the theory of the source of weathering soil-forming materials from carbonate rocks in karst areas.
重金属(HMs)经常在地质本底较高地区的土壤中异常富集,对生态系统和人类健康构成严重威胁。然而,上覆土壤中 HMs 的物质来源尚不清楚。本文研究了贵州省西南部典型反斜构造区不同地质时期基岩上覆土壤中 HMs(镉、汞、砷、铅、铬、铜、镍和锌)的累积控制和形成过程。结果表明,基岩中 HMs 的含量依次为石炭系碳酸盐岩、二叠系碳酸盐岩和三叠系碎屑岩,而上覆土壤中 HMs 的含量则呈相反趋势。石炭系、二叠系和三叠系岩石上覆土壤中 HMs 的 EF-Q 值斜率分别为 0.003、0.007 和 0.83,这表明碳酸盐风化成土过程中 HMs 富集或淋滤较为复杂,而碎屑岩风化成土过程中主要是原位风化。三个地质时期基岩上覆盖的土壤经历了相似的风化过程,成土基质来源相同,其Fe2O3-Al2O3、Hf-Zr、Nb-Ta、Th/Sc-Zr/Sc和Y/Ho-Y含量显著相关(R2值分别为0.80、0.94、0.72、0.60和0.76),REE赋存模式非常相似。结果证实了岩溶地区上覆土壤中 HMs 背景地质异质性较高的原因,支持了岩溶地区碳酸盐岩风化成土物质来源的理论。
{"title":"Soil-forming accumulation of heavy metals in geological high background areas: Constraints of structure, lithology, and overlying soil geochemistry","authors":"Manzhi Chen , Xuexian Li , Xingxing Cao , Wentao Yang , Pan Wu , Haiyang Hao , Zhijun Fei , Yining Gao","doi":"10.1016/j.gexplo.2024.107518","DOIUrl":"https://doi.org/10.1016/j.gexplo.2024.107518","url":null,"abstract":"<div><p>Heavy metals (HMs) are often abnormally enriched in soils in geologically high background areas, posing a serious threat to the ecosystem and human health. However, the material origin of HMs in overlying soils is unclear. In this paper, we studied the accumulation control and formation process of HMs (Cd, Hg, As, Pb, Cr, Cu, Ni, and Zn) in soils overlying bedrock from different geological periods in a typical anticline structure area in southwest of Guizhou province. The results revealed that the content of HMs in the bedrock were ranked as Carboniferous carbonate rocks < Permian carbonate rocks < Triassic clastic rocks, while the opposite trend was observed for the HMs content in the overlying soil. The slopes of the EF-Q values of HMs in the soils overlying the Carboniferous, Permian, and Triassic rocks were 0.003, 0.007, and 0.83, respectively, which suggests that HMs enrichment or leaching was more complicated in the process of carbonate weathering soil-forming, whereas it was mainly in situ weathering during the process of clastic weathering soil-forming. The soils overlying the bedrock of the three geological periods experienced similar weathering processes and had the same source of soil-forming matrices, as it was observed that their Fe<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub>, Hf-Zr, Nb-Ta, Th/Sc-Zr/Sc and Y/Ho-Y contents were significantly correlated (with R<sup>2</sup> values of 0.80, 0.94, 0.72, 0.60, and 0.76, respectively) with very similar REE assignment patterns. The results corroborated the causes of the high background geological heterogeneity of HMs in the overlying soils in karst areas and supported the theory of the source of weathering soil-forming materials from carbonate rocks in karst areas.</p></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":"263 ","pages":"Article 107518"},"PeriodicalIF":3.9,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141242338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weathering indices are widely used in soil science and some other environmental disciplines for a variety of purposes (e. g. for soil classification, in soil formation studies, or in wider palaeoclimatic research). Two main categories of weathering indices have been developed: geochemical and mineralogical. In both cases, an approach is developed that takes into account the compositional nature of the geochemical data. To date, however, the most commonly used weathering indices are geochemical indices that do not consider the geochemical data as compositional. Although the compositional approach minimises possible statistical errors, the weathering indices developed in both approaches, i.e., compositional and classical, axiomatically assume two things that are inaccurate in some cases. First, that soil composition is invariant with respect to the preferential translocation of clay-sized particles, i.e. lessivage, and second, that the selective sorting of minerals during transport does not affect the values of weathering indices. As a result, in some cases bulk analyses of mineralogical and geochemical content are an unreliable tool for determining weathering rates of soil. To overcome these difficulties, this study proposes a new weathering index (Wp-min) based on the orthonormal log ratio (olr) transformation of quantitative mineral data derived from silt- to sand-sized allochthonous mineral assemblages. The size fraction used ensures that only the parent mineral assemblages, which are not prone to translocation, are analysed. In this paper, olr transformation is done using the concept of balances. This enabled the construction of variables, which essentially are various mineral log ratios, with the desired properties, i.e. transport invariance and sensitivity to selective dissolution. In this way, undesirable effects, i.e. selective sorting and lessivage, which ultimately affect bulk analyses, are avoided, allowing a more accurate estimation of weathering in the soil profiles studied. The new index was validated by comparison with the geochemical W index, which was modified by consulting the standardized variation matrix prior to element selection. Ultimately, compared to the geochemical index, the new index was better able to characterise weathering in soils where intense lessivage was detected. The study was conducted on terra rossa soils, which have common source, mostly of aeolian origin.
风化指数广泛应用于土壤科学和其他一些环境学科,目的多种多样(如土壤分类、土壤形成研究或更广泛的古气候研究)。目前已开发出两大类风化指数:地球化学指数和矿物学指数。在这两种情况下,开发的方法都考虑到了地球化学数据的组成性质。但迄今为止,最常用的风化指数都是地球化学指数,不考虑地球化学数据的成分性。虽然成分方法可将可能出现的统计误差降至最低,但这两种方法(即成分方法和经典方法)所开发的风化指数都公理地假定了两点,而这两点在某些情况下是不准确的。首先,土壤成分在粘土大小的颗粒优先转移(即少风化)方面是不变的;其次,矿物在迁移过程中的选择性分选不会影响风化指数的值。因此,在某些情况下,矿物学和地球化学含量的批量分析是确定土壤风化率的不可靠工具。为了克服这些困难,本研究提出了一种新的风化指数(Wp-min),该指数基于从淤泥到沙粒大小的同生矿物集合体中提取的定量矿物数据的正交对数比(olr)变换。所使用的粒度分段可确保只分析不易发生易位的母体矿物组合。在本文中,olr 转换是利用平衡概念完成的。这使得变量的构建成为可能,这些变量本质上是各种矿物的对数比率,具有所需的特性,即迁移不变性和对选择性溶解的敏感性。这样就避免了最终影响批量分析的不良影响,即选择性分选和少溶,从而可以更准确地估计所研究土壤剖面的风化情况。新指数与地球化学 W 指数进行了比较验证,后者在元素选择前参考了标准化变化矩阵进行了修改。最终,与地球化学指数相比,新指数能更好地描述检测到强烈少风化的土壤的风化特征。这项研究是在赤红壤上进行的,赤红壤有共同的来源,大多来自风化。
{"title":"New soil weathering index based on compositional data analyses of silt to sand sized parent mineral assemblages of terra rossa soils","authors":"Ivan Razum , Snježana Mikulčić Pavlaković , Vedran Rubinić , Goran Durn","doi":"10.1016/j.gexplo.2024.107513","DOIUrl":"10.1016/j.gexplo.2024.107513","url":null,"abstract":"<div><p>Weathering indices are widely used in soil science and some other environmental disciplines for a variety of purposes (e. g. for soil classification, in soil formation studies, or in wider palaeoclimatic research). Two main categories of weathering indices have been developed: geochemical and mineralogical. In both cases, an approach is developed that takes into account the compositional nature of the geochemical data. To date, however, the most commonly used weathering indices are geochemical indices that do not consider the geochemical data as compositional. Although the compositional approach minimises possible statistical errors, the weathering indices developed in both approaches, i.e., compositional and classical, axiomatically assume two things that are inaccurate in some cases. First, that soil composition is invariant with respect to the preferential translocation of clay-sized particles, i.e. lessivage, and second, that the selective sorting of minerals during transport does not affect the values of weathering indices. As a result, in some cases bulk analyses of mineralogical and geochemical content are an unreliable tool for determining weathering rates of soil. To overcome these difficulties, this study proposes a new weathering index (W<sub><em>p-min</em></sub>) based on the orthonormal log ratio (olr) transformation of quantitative mineral data derived from silt- to sand-sized allochthonous mineral assemblages. The size fraction used ensures that only the parent mineral assemblages, which are not prone to translocation, are analysed. In this paper, olr transformation is done using the concept of balances. This enabled the construction of variables, which essentially are various mineral log ratios, with the desired properties, i.e. transport invariance and sensitivity to selective dissolution. In this way, undesirable effects, i.e. selective sorting and lessivage, which ultimately affect bulk analyses, are avoided, allowing a more accurate estimation of weathering in the soil profiles studied. The new index was validated by comparison with the geochemical <em>W</em> index, which was modified by consulting the standardized variation matrix prior to element selection. Ultimately, compared to the geochemical index, the new index was better able to characterise weathering in soils where intense lessivage was detected. The study was conducted on terra rossa soils, which have common source, mostly of aeolian origin.</p></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":"263 ","pages":"Article 107513"},"PeriodicalIF":3.9,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141135419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-24DOI: 10.1016/j.gexplo.2024.107515
Miao Yu , Qinghong Zeng , Hui Wang , Jiandong Zhang , Jingwen Mao , Chengyou Feng
This study examines the influence of lithospheric architecture on regional metallogenesis, using geological and geochemical data from the East Kunlun Orogen (EKO). We explore how specific lithospheric components and structures affect the formation of orogenic gold and various polymetallic mineral deposits. The study reveals that metallogenic processes in the EKO initially targeted sources within the metasomatized-enriched subcontinental lithospheric mantle (SCLM) and reactivated lower crust during the Paleozoic era.
Lithospheric architecture, shaped by crust-mantle interactions occurred in the Early Mesozoic led to variations in the sizes of orogenic gold deposits between the eastern and western EKO. In the west, smaller gold deposits are linked to moderate mantle underplating and slightly enriched SCLM. Gold-bearing fluids released by mantle devolatilization mixed with metamorphism fluid in collision stage, contributing to the formation of these deposits. In contrast, the eastern EKO hosts larger gold deposits, resulting from significantly enriched SCLM. Extensive lithospheric thinning process in post-collision stage lead to the mixing of gold-bearing mantle-derived and magmatic-hydrothermal fluids. Fertilized magma differentiation potentially increases gold concentrations in this region.
Additionally, Triassic-era melting of the lower crust led to diverse mineralization types in porphyry-skarn-epithermal deposit systems. Key findings include the role of juvenile fertile lower crustal materials in forming copper polymetallic deposits, the importance of metamorphic basement reworking for molybdenum and tungsten deposits, and the influence of lead and zinc leaching from old sedimentary rocks on the formation of silver‑lead‑zinc deposits. This study broadens our understanding of the geological factors influencing metallogenesis and provides a framework for future exploration and research in regions with similar lithospheric architectures.
{"title":"Lithospheric influence on metallogenesis in the East Kunlun Orogen: Insights from isotopic and geochemical mapping","authors":"Miao Yu , Qinghong Zeng , Hui Wang , Jiandong Zhang , Jingwen Mao , Chengyou Feng","doi":"10.1016/j.gexplo.2024.107515","DOIUrl":"10.1016/j.gexplo.2024.107515","url":null,"abstract":"<div><p>This study examines the influence of lithospheric architecture on regional metallogenesis, using geological and geochemical data from the East Kunlun Orogen (EKO). We explore how specific lithospheric components and structures affect the formation of orogenic gold and various polymetallic mineral deposits. The study reveals that metallogenic processes in the EKO initially targeted sources within the metasomatized-enriched subcontinental lithospheric mantle (SCLM) and reactivated lower crust during the Paleozoic era.</p><p>Lithospheric architecture, shaped by crust-mantle interactions occurred in the Early Mesozoic led to variations in the sizes of orogenic gold deposits between the eastern and western EKO. In the west, smaller gold deposits are linked to moderate mantle underplating and slightly enriched SCLM. Gold-bearing fluids released by mantle devolatilization mixed with metamorphism fluid in collision stage, contributing to the formation of these deposits. In contrast, the eastern EKO hosts larger gold deposits, resulting from significantly enriched SCLM. Extensive lithospheric thinning process in post-collision stage lead to the mixing of gold-bearing mantle-derived and magmatic-hydrothermal fluids. Fertilized magma differentiation potentially increases gold concentrations in this region.</p><p>Additionally, Triassic-era melting of the lower crust led to diverse mineralization types in porphyry-skarn-epithermal deposit systems. Key findings include the role of juvenile fertile lower crustal materials in forming copper polymetallic deposits, the importance of metamorphic basement reworking for molybdenum and tungsten deposits, and the influence of lead and zinc leaching from old sedimentary rocks on the formation of silver‑lead‑zinc deposits. This study broadens our understanding of the geological factors influencing metallogenesis and provides a framework for future exploration and research in regions with similar lithospheric architectures.</p></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":"263 ","pages":"Article 107515"},"PeriodicalIF":3.9,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141143607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-23DOI: 10.1016/j.gexplo.2024.107516
Yifan Zeng , Qiang Wu , Aoshuang Mei , Lu Wang , Wenbin Yin , Lei Yang , Di Zhao , Shihao Meng , Hongfei Gao
The Jurassic coalfield in the mining area of western China exhibits a multi-layered groundwater system. However, it is subject to an arid and semi-arid climate with limited water resources. Consequently, the ecological environment is highly vulnerable, and the chemistry and quality of groundwater may be influenced by multiple factors. This study systematically the coal mining-motivated effect on the hydrochemistry and water quality of the groundwater system, using the Caojiatan Coal Mine as a case study. The analysis incorporates a combination of the self-organizing maps (SOM), entropy-weighted water quality index (EWQI), and traditional hydrochemical analysis methods. After coal mining, there was an increase in the proportion of HCO3-Ca and HCO3-Mg in the groundwater samples of J2z, J2y4, and J2y5. The groundwater is controlled by cation exchange as a whole. The J2y4 and above groundwater is influenced by both the dissolution of carbonate and silicate rocks before coal mining. After coal mining, the Quaternary and J2a groundwater in the western wing is primarily influenced by the dissolution of carbonate rocks; the J2z, J2y4 and J2y5 groundwater is primarily governed by the dissolution of silicate rocks and the oxidation of FeS2; the J2y3 and below groundwater is primarily controlled by the dissolution of evaporate rocks. The resulting dilution effect after coal mining and the implementation of measures for the discharge of treated mine water make the groundwater quality of the J2y4 and higher aquifers tend to be better. The research findings serve as a valuable reference for promoting the sustainable development and protection of groundwater resources not only in the study area but also in other coal mines.
{"title":"Hydrogeochemical process and coal mining-motivated effect on the hydrochemistry for the groundwater system in mining area of Western China","authors":"Yifan Zeng , Qiang Wu , Aoshuang Mei , Lu Wang , Wenbin Yin , Lei Yang , Di Zhao , Shihao Meng , Hongfei Gao","doi":"10.1016/j.gexplo.2024.107516","DOIUrl":"10.1016/j.gexplo.2024.107516","url":null,"abstract":"<div><p>The Jurassic coalfield in the mining area of western China exhibits a multi-layered groundwater system. However, it is subject to an arid and semi-arid climate with limited water resources. Consequently, the ecological environment is highly vulnerable, and the chemistry and quality of groundwater may be influenced by multiple factors. This study systematically the coal mining-motivated effect on the hydrochemistry and water quality of the groundwater system, using the Caojiatan Coal Mine as a case study. The analysis incorporates a combination of the self-organizing maps (SOM), entropy-weighted water quality index (EWQI), and traditional hydrochemical analysis methods. After coal mining, there was an increase in the proportion of HCO<sub>3</sub>-Ca and HCO<sub>3</sub>-Mg in the groundwater samples of J<sub>2</sub>z, J<sub>2</sub>y<sup>4</sup>, and J<sub>2</sub>y<sup>5</sup>. The groundwater is controlled by cation exchange as a whole. The J<sub>2</sub>y<sup>4</sup> and above groundwater is influenced by both the dissolution of carbonate and silicate rocks before coal mining. After coal mining, the Quaternary and J<sub>2</sub>a groundwater in the western wing is primarily influenced by the dissolution of carbonate rocks; the J<sub>2</sub>z, J<sub>2</sub>y<sup>4</sup> and J<sub>2</sub>y<sup>5</sup> groundwater is primarily governed by the dissolution of silicate rocks and the oxidation of FeS<sub>2</sub>; the J<sub>2</sub>y<sup>3</sup> and below groundwater is primarily controlled by the dissolution of evaporate rocks. The resulting dilution effect after coal mining and the implementation of measures for the discharge of treated mine water make the groundwater quality of the J<sub>2</sub>y<sup>4</sup> and higher aquifers tend to be better. The research findings serve as a valuable reference for promoting the sustainable development and protection of groundwater resources not only in the study area but also in other coal mines.</p></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":"263 ","pages":"Article 107516"},"PeriodicalIF":3.9,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141130888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-23DOI: 10.1016/j.gexplo.2024.107514
Hanliang Liu , Bimin Zhang , Xueqiu Wang , Qiang Wang , Yude Du , Baoyun Zhang , Yubin Cui , Jian Zhou , Bin Liu , Jie Li
Jiaodong stands out among three global provinces boasting gold reserves surpassing 5000 tons. As geological exploration in the region continues to rise, the significance of deep and covered areas in Jiaodong for ore prospecting becomes increasingly evident. In this study, a Fine-grained soil prospecting method was employed in the Qujia hidden gold deposit and its surrounding region, situated in Yantai City, Shandong Province, and concealed by alluvial soil. The gold (Au) content exhibited a high enrichment level, and the range of Au and silver (Ag) geochemical anomalies demonstrated a robust correlation with known hidden orebodies. Furthermore, transmission electron microscopy and nano-CT were utilized to identify nano-micron metal particles and micro-fractures in the wall rock. A hereditary relationship between the nano-micron metal particles of ore-forming elements present in surface media and the deep orebody was observed. A migration model detailing the movement of deep ore-forming materials in the form of nano-micron metal particles, governed by a multi-agent relay dominated by ascending geogas flow, was established in the Qujia gold deposit in Jiaodong. These findings contribute theoretical support for the fine-grained soil prospecting method in geochemical exploration within alluvial soil covered areas.
{"title":"Exploration indication of hidden gold deposits using the fine-grained soil prospecting method and its nano-micron metal migration evidence in the alluvial soil covered area, Jiaodong","authors":"Hanliang Liu , Bimin Zhang , Xueqiu Wang , Qiang Wang , Yude Du , Baoyun Zhang , Yubin Cui , Jian Zhou , Bin Liu , Jie Li","doi":"10.1016/j.gexplo.2024.107514","DOIUrl":"10.1016/j.gexplo.2024.107514","url":null,"abstract":"<div><p>Jiaodong stands out among three global provinces boasting gold reserves surpassing 5000 tons. As geological exploration in the region continues to rise, the significance of deep and covered areas in Jiaodong for ore prospecting becomes increasingly evident. In this study, a Fine-grained soil prospecting method was employed in the Qujia hidden gold deposit and its surrounding region, situated in Yantai City, Shandong Province, and concealed by alluvial soil. The gold (Au) content exhibited a high enrichment level, and the range of Au and silver (Ag) geochemical anomalies demonstrated a robust correlation with known hidden orebodies. Furthermore, transmission electron microscopy and nano-CT were utilized to identify nano-micron metal particles and micro-fractures in the wall rock. A hereditary relationship between the nano-micron metal particles of ore-forming elements present in surface media and the deep orebody was observed. A migration model detailing the movement of deep ore-forming materials in the form of nano-micron metal particles, governed by a multi-agent relay dominated by ascending geogas flow, was established in the Qujia gold deposit in Jiaodong. These findings contribute theoretical support for the fine-grained soil prospecting method in geochemical exploration within alluvial soil covered areas.</p></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":"263 ","pages":"Article 107514"},"PeriodicalIF":3.9,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141134648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Well-exposed mineral deposits are scarce at a global level and presently potential mineral-rich sites are underlying vegetation cover and topsoil, which are suboptimal for direct remote sensing based exploration techniques. This study aims to implement an indirect approach to arsenic (As) distribution mapping using the surface manifestations of the subsurface geology and link it to the known gold mineralisation in the study area. Rise and Shine Shear Zone (RSSZ) in New Zealand is broadly a part of the Otago schist hosting lower to upper green-schist facies rocks manifesting mesothermal gold mineralisation. The area has several surficial geological imprints separating mineralised and non-mineralised zones, but these are dominated by topographic ruggedness, soil moisture and vegetation (mainly grass/tussock) spectra in the hyperspectral data. Initially, a band selection using Recursive Feature Elimination (RFE) was executed. The bands generated were tallied with the field and geological understanding of the area. The resultant 85 bands were then further put through Orthogonal Total Variation Component Analysis (OTVCA) to concise the information in 10 bands. OTVCA output was then classified using Random Forest classifier to map three levels of As concentration (<20 ppm, between 20 and 100 ppm and >100 ppm). The potentially high As concentration zones are likely to be related to the gold mineralisation. The geology of the area correlates with soil exposure which is captured by the classification in some parts, this increases the accuracy but also makes the classification analysis challenging.
{"title":"Inferring arsenic anomalies indirectly using airborne hyperspectral imaging – Implication for gold prospecting along the Rise and Shine Shear Zone in New Zealand","authors":"Rupsa Chakraborty , Gabor Kereszturi , Reddy Pullanagari , Dave Craw , Patricia Durance , Salman Ashraf","doi":"10.1016/j.gexplo.2024.107510","DOIUrl":"https://doi.org/10.1016/j.gexplo.2024.107510","url":null,"abstract":"<div><p>Well-exposed mineral deposits are scarce at a global level and presently potential mineral-rich sites are underlying vegetation cover and topsoil, which are suboptimal for direct remote sensing based exploration techniques. This study aims to implement an indirect approach to arsenic (As) distribution mapping using the surface manifestations of the subsurface geology and link it to the known gold mineralisation in the study area. Rise and Shine Shear Zone (RSSZ) in New Zealand is broadly a part of the Otago schist hosting lower to upper green-schist facies rocks manifesting mesothermal gold mineralisation. The area has several surficial geological imprints separating mineralised and non-mineralised zones, but these are dominated by topographic ruggedness, soil moisture and vegetation (mainly grass/tussock) spectra in the hyperspectral data. Initially, a band selection using Recursive Feature Elimination (RFE) was executed. The bands generated were tallied with the field and geological understanding of the area. The resultant 85 bands were then further put through Orthogonal Total Variation Component Analysis (OTVCA) to concise the information in 10 bands. OTVCA output was then classified using Random Forest classifier to map three levels of As concentration (<20 ppm, between 20 and 100 ppm and >100 ppm). The potentially high As concentration zones are likely to be related to the gold mineralisation. The geology of the area correlates with soil exposure which is captured by the classification in some parts, this increases the accuracy but also makes the classification analysis challenging.</p></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":"263 ","pages":"Article 107510"},"PeriodicalIF":3.9,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141077659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-21DOI: 10.1016/j.gexplo.2024.107511
Zhiqiang Xu, Bin Liang, Hui Jiang, Ting Liu, Qiubo Wang, Jiaxin Duan, Bangqiao Chen, Yangpiao He
The Jiajika hardrock-type rare metal deposit in western Sichuan, China, is considered the largest spodumene deposit in Asia. The quaternary overburden of this area leads to ineffectiveness for ore prospecting using geochemical soil and geochemical stream sediment surveys. Although geogas prospecting has been proven to be effective in exploring buried orebodies, it is seldom deployed to explore concealed lithium deposits. In this work, the geogas samples were collected using the dynamic collection technique along the traverses over three concealed lithium deposits, namely, V-804, V-X03 (Line 7 and Line 35 were selected for sampling, denoted as V-X03–7 and V-X03–35, respectively), and V-STG. The samples were also collected from a Li-poor pegmatite (V-CLZ). The concentrations of Li, Be, Rb, Cs, Nb, Ta, Sn, B, Sr, Ba, and W in the nitric acid collector were measured by performing inductively coupled plasma-mass spectrometry (ICP-MS) measurements. The nanoparticles in geogas were analysed by using a transmission electron microscope coupled with performing energy dispersive spectroscopy (TEM-EDS) measurements. Apparent anomalies of Li, Be, Rb, Cs, B, and Sr were observed on all the traverses. These elements are regarded as pathfinders for the detection of concealed lithium deposits. Clear anomalies of Li, Be, Rb, Sn, B, and Sr were also found over V-CLZ. The concentrations of these elements in the nitric acid solutions were close to those over V-X03–35 and V-STG. The pathfinders are thus not effective in accurately recognizing the false anomalies over Li-poor pegmatite. The TEM-EDS measurements are not suitable for the characterization of nanoparticles in the Jiajika area because the particles from Li-rich and Li-poor pegmatites exhibited similarities in their morphologies. In addition, Li and Be cannot be detected by studying the EDS spectra, and the disturbance from the high background was non-negligible. To effectively address these issues, factor analysis (FA) was conducted on the concentrations of Li, Be, Rb, Cs, Nb, Ta, and Sn in geogas. The synthesis score (SSC) was computed based on three factors extracted by FA. At some sampling sites over V-804, V-X03, and V-STG, the SSC values were larger than 0.25, whereas the maximum SSC over V-CLZ was 0.15. Therefore, FA of geogas data is arising as a feasible method to detect concealed lithium deposits and identify false anomalies in the Jiajika area. The elemental concentrations in the samples from V-X03–7 were much higher than those from the other veins. This effect was attributed to the migration of the elements from buried orebodies to the ground surface, which was possibly promoted by the tourmalinized hornfels.
中国四川西部的贾家卡硬岩型稀有金属矿床被认为是亚洲最大的钠长石矿床。该地区的第四纪覆盖层导致利用土壤地球化学和河流沉积物地球化学勘测找矿的效果不佳。尽管地质气勘探已被证明在勘探埋藏矿体方面非常有效,但却很少用于勘探隐蔽的锂矿床。在这项工作中,采用动态采集技术沿三个隐蔽锂矿床(即 V-804、V-X03(选择 7 号线和 35 号线进行采样,分别称为 V-X03-7 和 V-X03-35)和 V-STG 上的横断面采集了地气样品。此外,还从一个贫锂伟晶岩(V-CLZ)中采集了样品。通过电感耦合等离子体质谱法(ICP-MS)测量了硝酸收集器中 Li、Be、Rb、Cs、Nb、Ta、Sn、B、Sr、Ba 和 W 的浓度。使用透射电子显微镜和能量色散光谱仪(TEM-EDS)测量分析了地气中的纳米颗粒。在所有横断面上都观察到了 Li、Be、Rb、Cs、B 和 Sr 的明显异常。这些元素被视为探测隐蔽锂矿床的探路者。在 V-CLZ 上也发现了明显的 Li、Be、Rb、Sn、B 和 Sr 异常。这些元素在硝酸溶液中的浓度与 V-X03-35 和 V-STG 上的浓度接近。因此,探路者无法准确识别贫锂伟晶岩上的假异常。由于富锂伟晶岩和贫锂伟晶岩的颗粒在形态上表现出相似性,因此 TEM-EDS 测量并不适合用于表征贾家卡地区的纳米颗粒。此外,通过研究 EDS 光谱无法检测到 Li 和 Be,而且高背景的干扰也不可忽略。为了有效解决这些问题,我们对地质气中 Li、Be、Rb、Cs、Nb、Ta 和 Sn 的浓度进行了因子分析(FA)。根据因子分析提取的三个因子,计算出综合得分(SSC)。在 V-804、V-X03 和 V-STG 上的一些采样点,SSC 值大于 0.25,而在 V-CLZ 上的最大 SSC 值为 0.15。因此,地气数据 FA 被认为是探测贾家卡地区隐蔽锂矿床和识别虚假异常的可行方法。V-X03-7 号矿脉样品的元素浓度远高于其他矿脉。这种效应归因于元素从埋藏的矿体迁移到地表,而电气化角闪岩可能促进了这种迁移。
{"title":"Factor analysis of geogas data for concealed lithium deposits detection and false anomalies identification in Jiajika area","authors":"Zhiqiang Xu, Bin Liang, Hui Jiang, Ting Liu, Qiubo Wang, Jiaxin Duan, Bangqiao Chen, Yangpiao He","doi":"10.1016/j.gexplo.2024.107511","DOIUrl":"https://doi.org/10.1016/j.gexplo.2024.107511","url":null,"abstract":"<div><p>The Jiajika hardrock-type rare metal deposit in western Sichuan, China, is considered the largest spodumene deposit in Asia. The quaternary overburden of this area leads to ineffectiveness for ore prospecting using geochemical soil and geochemical stream sediment surveys. Although geogas prospecting has been proven to be effective in exploring buried orebodies, it is seldom deployed to explore concealed lithium deposits. In this work, the geogas samples were collected using the dynamic collection technique along the traverses over three concealed lithium deposits, namely, V-804, V-X03 (Line 7 and Line 35 were selected for sampling, denoted as V-X03–7 and V-X03–35, respectively), and V-STG. The samples were also collected from a Li-poor pegmatite (V-CLZ). The concentrations of Li, Be, Rb, Cs, Nb, Ta, Sn, B, Sr, Ba, and W in the nitric acid collector were measured by performing inductively coupled plasma-mass spectrometry (ICP-MS) measurements. The nanoparticles in geogas were analysed by using a transmission electron microscope coupled with performing energy dispersive spectroscopy (TEM-EDS) measurements. Apparent anomalies of Li, Be, Rb, Cs, B, and Sr were observed on all the traverses. These elements are regarded as pathfinders for the detection of concealed lithium deposits. Clear anomalies of Li, Be, Rb, Sn, B, and Sr were also found over V-CLZ. The concentrations of these elements in the nitric acid solutions were close to those over V-X03–35 and V-STG. The pathfinders are thus not effective in accurately recognizing the false anomalies over Li-poor pegmatite. The TEM-EDS measurements are not suitable for the characterization of nanoparticles in the Jiajika area because the particles from Li-rich and Li-poor pegmatites exhibited similarities in their morphologies. In addition, Li and Be cannot be detected by studying the EDS spectra, and the disturbance from the high background was non-negligible. To effectively address these issues, factor analysis (FA) was conducted on the concentrations of Li, Be, Rb, Cs, Nb, Ta, and Sn in geogas. The synthesis score (SSC) was computed based on three factors extracted by FA. At some sampling sites over V-804, V-X03, and V-STG, the SSC values were larger than 0.25, whereas the maximum SSC over V-CLZ was 0.15. Therefore, FA of geogas data is arising as a feasible method to detect concealed lithium deposits and identify false anomalies in the Jiajika area. The elemental concentrations in the samples from V-X03–7 were much higher than those from the other veins. This effect was attributed to the migration of the elements from buried orebodies to the ground surface, which was possibly promoted by the tourmalinized hornfels.</p></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":"263 ","pages":"Article 107511"},"PeriodicalIF":3.9,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141090951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-21DOI: 10.1016/j.gexplo.2024.107512
Wen-Kai Jin , Xu-Dong Che , Ru-Cheng Wang , Huan Hu , Can Rao , Wen-Lan Zhang , Xiao-Feng Li
Beryllium is a strategically critical metal, and its accurate in situ analysis in beryllium minerals is challenging in the field of earth science. High spatial resolution is also a difficult point in the analysis. A new analysis approach for the accurate and precise determination of beryllium contents in beryl using an ablation spot size of 13 μm by LA–ICP–MS was first achieved in this study. The control variables were used to optimise the instrument conditions and determine the laser ablation parameters suitable for determining beryl under an ablation spot size of 13 μm. The energy density was set at 5.5 J/cm2 with a repetition rate of 4 Hz, and the ablation time was 50 s. A new concept, the Relative Fractionation Index (RFI), was proposed to measure fractionation and matrix effects. Two potential beryl reference substances (B4–2 and Brl-3) were also assessed by determining their homogeneity to further improve the measurement accuracy. Other common beryllium minerals, including phenakite, chrysoberyl, and herderite, were identified in this study. By comparing the RFI values of different minerals and reference materials, appropriate reference materials and determination conditions were selected, and ideal analysis results were obtained. Therefore, the accurate and precise determination of beryllium contents in common beryllium minerals was achieved using an ablation spot size of 13 μm by LA–ICP–MS.
{"title":"Accurate and precise in situ determination of beryllium contents in beryllium minerals using ablation spot size of 13 μm by LA–ICP–MS","authors":"Wen-Kai Jin , Xu-Dong Che , Ru-Cheng Wang , Huan Hu , Can Rao , Wen-Lan Zhang , Xiao-Feng Li","doi":"10.1016/j.gexplo.2024.107512","DOIUrl":"https://doi.org/10.1016/j.gexplo.2024.107512","url":null,"abstract":"<div><p>Beryllium is a strategically critical metal, and its accurate <em>in situ</em> analysis in beryllium minerals is challenging in the field of earth science. High spatial resolution is also a difficult point in the analysis. A new analysis approach for the accurate and precise determination of beryllium contents in beryl using an ablation spot size of 13 μm by LA–ICP–MS was first achieved in this study. The control variables were used to optimise the instrument conditions and determine the laser ablation parameters suitable for determining beryl under an ablation spot size of 13 μm. The energy density was set at 5.5 J/cm<sup>2</sup> with a repetition rate of 4 Hz, and the ablation time was 50 s. A new concept, the Relative Fractionation Index (<em>RFI</em>), was proposed to measure fractionation and matrix effects. Two potential beryl reference substances (B4–2 and Brl-3) were also assessed by determining their homogeneity to further improve the measurement accuracy. Other common beryllium minerals, including phenakite, chrysoberyl, and herderite, were identified in this study. By comparing the <em>RFI</em> values of different minerals and reference materials, appropriate reference materials and determination conditions were selected, and ideal analysis results were obtained. Therefore, the accurate and precise determination of beryllium contents in common beryllium minerals was achieved using an ablation spot size of 13 μm by LA–ICP–MS.</p></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":"263 ","pages":"Article 107512"},"PeriodicalIF":3.9,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141095996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1016/j.gexplo.2024.107499
Sandeep Banerjee , Peir K. Pufahl , Fred J. Longstaffe
Phosphate is an indispensable component in the fertilizer industry. It has recently become a critical part of the green energy transition because of the demand for lithium ferro phosphate in rechargeable batteries. A significant amount of phosphate ore (∼90 %) is globally produced from sedimentary rocks. High-quality phosphate ore containing low amounts of toxic elements, however, is mostly produced from igneous carbonatite.
The Lac à l'Orignal deposit (∼1069–993 Ma), Canada, in the central Grenville Province, contains a large amount of fluorapatite (≤ 20 %) hosted in oxide-bearing norite-gabbronorite-anorthosite layered intrusions. The deposit is hosted in the Vanel Anorthosite (1080 ± 2 Ma) near the northern border of the Mattawa Anorthosite (1016 ± 2 Ma). The major host rock oxide-apatite-gabbronorite (OAGN) is primarily composed of plagioclase, orthopyroxene, clinopyroxene, fluorapatite, ilmenite, and magnetite. The Al contents of the OAGN orthopyroxene indicate that the magmatic deposit was emplaced at mid-low crustal levels (∼2.0–3.6 kbar) and reverse zoning in the OAGN plagioclase suggests <2.5 kbar of pressure change during their crystallization. An overall increase of REE + Y concentrations in the OAGN fluorapatite with decreasing their fluorapatite contents indicates that the magma went through fractional crystallization. This study suggests that high abundances (ca. > 8 %) of fluorapatite in some OAGN were produced from crystal avalanching after initial crystal settling. Antithetic correlation between the Cl content of fluorapatite and the Mg# [Mg/(Mg + Fe2+)] of coexisting orthopyroxene suggests that phosphate ores with low Cl contents are expected for OAGN that formed at the initial stages of magma crystallization. Therefore, the Mg# of the OAGN orthopyroxene provides an exploration tool for targeting phosphate ore with low Cl content, which is preferred in the production of phosphoric acid, a major intermediate feedstock for the fertilizer and green energy industries. Apatite contents in carbonatite and average P2O5 content in carbonatite melt are generally similar to those of the Lac à l'Orignal OAGN. The average concentrations of REE, and toxic metals, such as Pb, Th, and U, in the OAGN fluorapatite are, however, lower than those in apatite from carbonatite worldwide. Therefore, the apatite of the OAGN appears to be of high quality and more environmentally-friendly as a source of phosphate ore.
{"title":"The Lac à l'Orignal phosphate deposit and constraints on high-quality phosphatic ore in massif-type anorthosite, Grenville Province, Canada","authors":"Sandeep Banerjee , Peir K. Pufahl , Fred J. Longstaffe","doi":"10.1016/j.gexplo.2024.107499","DOIUrl":"10.1016/j.gexplo.2024.107499","url":null,"abstract":"<div><p>Phosphate is an indispensable component in the fertilizer industry. It has recently become a critical part of the green energy transition because of the demand for lithium ferro phosphate in rechargeable batteries. A significant amount of phosphate ore (∼90 %) is globally produced from sedimentary rocks. High-quality phosphate ore containing low amounts of toxic elements, however, is mostly produced from igneous carbonatite.</p><p>The Lac à l'Orignal deposit (∼1069–993 Ma), Canada, in the central Grenville Province, contains a large amount of fluorapatite (≤ 20 %) hosted in oxide-bearing norite-gabbronorite-anorthosite layered intrusions. The deposit is hosted in the Vanel Anorthosite (1080 ± 2 Ma) near the northern border of the Mattawa Anorthosite (1016 ± 2 Ma). The major host rock oxide-apatite-gabbronorite (OAGN) is primarily composed of plagioclase, orthopyroxene, clinopyroxene, fluorapatite, ilmenite, and magnetite. The Al contents of the OAGN orthopyroxene indicate that the magmatic deposit was emplaced at mid-low crustal levels (∼2.0–3.6 kbar) and reverse zoning in the OAGN plagioclase suggests <2.5 kbar of pressure change during their crystallization. An overall increase of REE + Y concentrations in the OAGN fluorapatite with decreasing their fluorapatite contents indicates that the magma went through fractional crystallization. This study suggests that high abundances (ca. > 8 %) of fluorapatite in some OAGN were produced from crystal avalanching after initial crystal settling. Antithetic correlation between the Cl content of fluorapatite and the Mg# [Mg/(Mg + Fe<sup>2+</sup>)] of coexisting orthopyroxene suggests that phosphate ores with low Cl contents are expected for OAGN that formed at the initial stages of magma crystallization. Therefore, the Mg# of the OAGN orthopyroxene provides an exploration tool for targeting phosphate ore with low Cl content, which is preferred in the production of phosphoric acid, a major intermediate feedstock for the fertilizer and green energy industries. Apatite contents in carbonatite and average P<sub>2</sub>O<sub>5</sub> content in carbonatite melt are generally similar to those of the Lac à l'Orignal OAGN. The average concentrations of REE, and toxic metals, such as Pb, Th, and U, in the OAGN fluorapatite are, however, lower than those in apatite from carbonatite worldwide. Therefore, the apatite of the OAGN appears to be of high quality and more environmentally-friendly as a source of phosphate ore.</p></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":"263 ","pages":"Article 107499"},"PeriodicalIF":3.9,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141025238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}