Unlabelled: The integration of medical open databases with artificial intelligence (AI) technologies marks a transformative era in biomedical research and health care innovation. Over the past 25 years, initiatives like PhysioNet have revolutionized data access, fostering unprecedented levels of collaboration and accelerating medical discoveries. This rise of medical open databases presents challenges, particularly in harmonizing research enablement with patient confidentiality. In response, privacy laws such as the Health Insurance Portability and Accountability Act have been established, and privacy-enhancing technologies have been adopted to maintain this delicate balance. Privacy-enhancing technologies, including differential privacy, secure multiparty computation, and notably, federated learning (FL), have become instrumental in safeguarding personal health information. FL, in particular, represents a significant advancement by enabling the development and training of AI models on decentralized data. In Taiwan, significant strides have been made in aligning with these global data-sharing and privacy standards. We have actively promoted the sharing of medical data through the development of dynamic consent systems. These systems enable individuals to control and adjust their data-sharing preferences, ensuring transparency and continuity of consent in the ever-evolving landscape of digital health. Despite the challenges associated with privacy protections, the benefits, including improved diagnostics and treatment, are substantial. The availability of open databases has notably accelerated AI research, leading to significant advancements in medical diagnostics and treatments. As the landscape of health care research continues to evolve with open science and FL, the role of medical open databases remains crucial in shaping the future of medicine, promising enhanced patient outcomes and fostering a global research community committed to ethical integrity and privacy.
Background: Electrocardiogram (ECG) data constitutes one of the most widely available biosignal data in clinical and research settings, providing critical insights into cardiovascular diseases as well as broader health conditions. Advancements in deep learning demonstrate high performance in diverse ECG classification tasks, ranging from arrhythmia detection to risk prediction for various diseases. However, the widespread adoption of deep learning for ECG analysis faces significant barriers, including the heterogeneity of file formats, restricted access to pretrained model weights, and complex technical workflows for out-of-domain users.
Objective: This study aims to address major bottlenecks in ECG-based deep learning by introducing ExChanGeAI, an open-source, web-based platform designed to offer an integrated, user-friendly platform for ECG data analysis. Our objective is to streamline the entire workflow-from initial data ingestion (regardless of device or format) and intuitive visualization to privacy-preserving model training and task-specific fine-tuning-making advanced ECG deep learning accessible for both clinical researchers and practitioners without machine learning (ML) expertise.
Methods: ExChanGeAI incorporates robust preprocessing modules for various ECG file types, a set of interactive visualization tools for exploratory data analysis, and multiple state-of-the-art deep learning architectures for ECGs. Users can choose to train models from scratch or fine-tune pretrained models using their own datasets, while all computations are performed locally to ensure data privacy. The platform is adaptable for deployment on personal computers as well as scalable to high-performance computing infrastructures. We demonstrate the platform's performance on several clinically relevant classification tasks across 3 external and heterogeneous validation datasets, including a newly curated test set from routine care, evaluating both model generalizability and resource efficiency.
Results: Our experiments show that de novo training with user-provided, task-specific data can outperform a leading foundation model, while requiring substantially fewer parameters and computational resources. The platform enables users to empirically determine the most suitable model for their specific tasks, based on systematic validations, while lowering technical barriers for out-of-domain experts and promoting open research.
Conclusions: ExChanGeAI provides a comprehensive, privacy-aware platform that democratizes access to ECG analysis and model training. By simplifying complex workflows, ExChanGeAI empowers out-of-domain researchers to use state-of-the-art ML on diverse datasets, democratizing the access to ML in the field of ECG data. The platform is available as open-source code under the Massachusetts Institute of Technology (MIT) license.
Background: Metabolic dysfunction-associated steatohepatitis (MASH) cirrhosis is a leading indication for liver transplantation (LT). Patients with MASH cirrhosis are complex and often have extensive comorbidities. The current model for end-stage liver disease (MELD)-based liver allocation system has suboptimal concordance in predicting waitlist mortality for patients with MASH cirrhosis. Furthermore, it does not capture the competing outcomes of death and LT on the liver transplant waitlist.
Objective: A competing risk analysis using deep learning was conducted to forecast waitlist trajectories of patients with MASH cirrhosis using data available at the time of waitlisting.
Methods: A deep learning competing risk model was constructed using data from 17,551 waitlisted patients with MASH cirrhosis in the Scientific Registry of Transplant Recipients (SRTR) based on the DeepHit model framework with five-fold cross-validation. Model performance was evaluated and compared to single-risk Cox proportional hazards and random survival forests (RSF) models in predicting death or transplant using the concordance index and Brier score. Additionally, a novel performance metric, the competing event coherence (CEC) score, was developed to evaluate model performance in the setting of competing risks. Features associated with death and transplant in the DeepHit model were identified using permutation importance. Models were externally validated on data from the University Health Network.
Results: A total of 17,551 patients were included. The mean MELD at listing was 19.4 (SD 8.1). At 120 months of follow-up on the waitlist, 54.6% (9599/17551) of patients underwent LT, 25.6% (4510/17551) of patients died or were removed due to deterioration, and 19.8% (3442/17551) of patients were removed for improvement or were censored. In a competing risk scenario, DeepHit achieved the best CEC scores at 1 (0.813), 3 (0.811), 6 (0.794), and 12 months (0.772) on the waitlist. The cause-specific RSF model had the highest concordance indices for death or transplant at all time points (death: 0.874 at 1 month, 0.840 at 6 months, and 0.814 at 12 months) except for death at 3 months, where DeepHit (0.883) outperformed RSF. RSF also had lower Brier scores overall, except for transplant at 12 months, where DeepHit outperformed RSF (0.206 vs 0.228). These results were similar on external validation. On feature importance assessment, MELD at listing and its components, as well as functional status, age, and blood type, were associated with death and transplant on the waitlist.
Conclusions: A deep learning competing risk analysis can forecast the risks of both death and transplant in patients with MASH on the waitlist, helping to inform clinical decisions by identifying the most impactful covariates for each outcome.

