This study uses keyword filtering, a transformer-based algorithm, and inductive content coding to identify and characterize cannabis adverse experiences as discussed on the social media platform Reddit and reports a total of 1177 self-reported adverse experiences requiring medical attention.
Background: Improving sleep is critical for optimizing short-term and long-term health. Although in-person meditation training has been shown to impact sleep positively, there is a gap in our understanding of whether apps that teach self-guided meditation are also effective.
Objective: This study aims to test whether Headspace (Headspace, Inc) improves sleep quality, tiredness, sleep duration, and sleep efficiency.
Methods: Staff employees (N=135; mean age 38.1, SD 10.9; 75.0% female; 59.3% non-Hispanic White; 27.1% Hispanic) from a university in California's San Joaquin Valley participated in the study. Participants were randomized to complete 10 minutes of daily meditation via the Headspace app for 8 weeks or waitlist control. Sleep assessments were taken for 4 consecutive days at baseline, and then for 4-day bursts at 2, 5, and 8 weeks after randomization. Sleep quality and subjective sleep duration were assessed each morning with a sleep diary, tiredness was assessed throughout the day using ecological momentary assessment, and objective sleep duration and efficiency were measured using a Fitbit Charge 2.
Results: Both subjective and objective sleep outcomes improved. For subjective sleep outcomes, multilevel modeling revealed that those in the Headspace condition, compared to the control group, reported better sleep quality at sessions 2 (β=0.48, SE=0.12; P<.001), 5 (β=0.91, SE=0.13; P<.001), and 8 (β=0.69, SE=0.15; P<.001) compared to baseline, and a decrease in tiredness at session 5 (β=-0.58, SE=0.19; P=.001) compared to baseline, but not at sessions 2 or 8. For objective sleep outcomes, those in the Headspace condition compared to the control group had longer sleep durations at session 5 (β=23.96, SE=12.19; P=.04) compared to baseline, but not at sessions 2 or 8. There were no significant effects for sleep efficiency.
Conclusions: This study continues adding to the ever-developing field of mobile health apps by demonstrating that Headspace can positively impact sleep quality, tiredness, and duration.
Background: Multimorbidity, the coexistence of 2 or more chronic conditions, is associated with poor well-being. Health coaching apps offer cost-effective and accessible support. However, there is a lack of evidence of the impact of health coaching apps on individuals with multimorbidity.
Objective: This study aimed to assess the impact and acceptability of a health coaching app (the Holly Health [HH] app) on the subjective well-being (SWB) of adults with multimorbidity.
Methods: This study used an explanatory-sequential mixed methods design, with quantitative secondary data analysis in the first phase and qualitative interviews in the second phase. In the quantitative phase (n=565), pre- and post-SWB (Office for National Statistics' 4 personal well-being questions [ONS4]) scores from existing app users with multimorbidity were analyzed using Bayesian growth curve modeling to assess the impact of HH. In the qualitative phase (n=22), data were collected via semistructured interviews and analyzed using reflexive thematic analysis. Mechanisms of action that supported SWB were categorized using the Multi-Level Leisure Mechanisms Framework.
Results: There was a significant increase in life satisfaction (Coef.=0.71, 95% highest density interval [HDI] 0.52-0.89), worthwhileness (Coef.=0.62, 95% HDI 0.43-0.81), and happiness (Coef.=0.74, 95% HDI 0.54-0.92) and a decrease in anxiety (Coef.=-0.50, 95% HDI -0.74 to -0.25) before and after using the HH app. Overall, 8 acceptable app features activated 5 mechanisms of action, including behavioral, psychological, and social mechanisms. Three additional factors influenced the acceptability of the health coaching app: type of chronic condition, availability of time, and the use of other support tools.
Conclusions: The study demonstrates that health coaching apps could be effective and acceptable support tools for individuals with multimorbidity. This study contributes to understanding why health coaching apps support SWB and could be used to inform the development of future digital health interventions in multimorbidity.
[This corrects the article DOI: 10.2196/64303.].
Background: Accurately predicting ovarian response and determining the optimal starting dose of follicle-stimulating hormone (FSH) remain critical yet challenging for effective ovarian stimulation. Currently, there is a lack of a comprehensive model capable of simultaneously forecasting the number of oocytes retrieved (NOR) and assessing the risk of early-onset moderate-to-severe ovarian hyperstimulation syndrome (OHSS).
Objective: This study aimed to establish an integrated mode capable of forecasting the NOR and assessing the risk of early-onset moderate-to-severe OHSS across varying starting doses of FSH.
Methods: This prognostic study included patients undergoing their first ovarian stimulation cycles at 2 independent in vitro fertilization clinics. Automated classifiers were used for variable selection. Machine learning models (11 for NOR and 11 for OHSS) were developed and validated using internal (n=6401) and external (n=3805) datasets. Shapley additive explanation was applied for variable interpretation. The best-performing models were incorporated into a web-based prediction tool.
Results: For NOR prediction, 17 variables were selected, with the gradient boosting regressor achieving the highest performance (internal dataset: R2=0.7978; external dataset: R2=0.7924). For OHSS prediction, 19 variables were identified, and the LightGBM model demonstrated superior performance (internal dataset: area under the receiver operating characteristic curve=0.7588; external dataset: area under the receiver operating characteristic curve=0.7287). Shapley additive explanation analysis highlighted the FSH starting dose to BMI ratio and baseline antral follicle count as key predictors for NOR and OHSS, respectively. Dose-response curves were generated to visualize predicted outcomes with varying FSH starting doses. The models were implemented in a user-friendly, research-oriented online prototype, individualized ovarian stimulation guide (InOvaSGuide).
Conclusions: This study introduces an integrated framework for predicting NOR and early-onset moderate-to-severe OHSS risk across different FSH doses. Future prospective evaluation is needed before clinical implementation.

