Maria Thereza A. G. Yogi, Fred Gaidies, Olivier K. A. Heldwein, A. Hugh N. Rice
The 3D microstructure and compositional zoning of garnet populations in micaschists from the Kolvik and Bekkarfjord nappes indicate the quasi-equilibration of their major components across the rock matrices during interface-controlled, size-independent garnet growth. There is microstructural evidence for foliation-parallel, small-scale resorption of garnet rims in the Kolvik Nappe, influencing the metamorphic peak conditions obtained from thermodynamic modelling. The local chemical compositions of rims less affected by resorption indicate a peak temperature of ~630°C, which is ~40°C higher than the temperature obtained from resorbed rims of the largest garnet crystal. Using a diffusion geospeedometry approach that considers the geometry of the compositional zoning of the garnet population, as well as the higher, more realistic peak temperature, a duration of 1 to 4.9 Myr is obtained for garnet growth in the Kolvik Nappe. This is approximately 1 order of magnitude faster than duration estimates obtained when using the apparent, lower temperature estimated from the resorbed garnet rims. Concomitantly to garnet growth in the Kolvik Nappe, garnet overgrowths formed in the Bekkarfjord Nappe for circa 2.5 Myr at metamorphic peak temperatures of ~560°C. The garnet growth durations obtained here are comparable with the uncertainty on the Lu–Hf garnet–whole rock isochron ages of 419.9 ± 2.4 Ma and 423.0 ± 1.9 Ma, previously obtained for these rocks. These results provide new insight into the timescales of repeated Barrovian-type metamorphic events experienced by the lower nappes of the Kalak Nappe Complex during the Caledonian Orogeny in Arctic Norway. This study emphasizes the importance of microstructural and chemical characterization of garnet populations in assessing metamorphic crystallization mechanisms and the extent of equilibration of garnet-forming components during prograde metamorphism. Moreover, our results provide means for reducing the uncertainty on metamorphic durations obtained via diffusion geospeedometry and, so, contributing to our understanding of geological timescales and processes.
{"title":"Mechanisms and durations of metamorphic garnet crystallization in the lower nappes of the Caledonian Kalak Nappe Complex, Arctic Norway","authors":"Maria Thereza A. G. Yogi, Fred Gaidies, Olivier K. A. Heldwein, A. Hugh N. Rice","doi":"10.1111/jmg.12766","DOIUrl":"10.1111/jmg.12766","url":null,"abstract":"<p>The 3D microstructure and compositional zoning of garnet populations in micaschists from the Kolvik and Bekkarfjord nappes indicate the quasi-equilibration of their major components across the rock matrices during interface-controlled, size-independent garnet growth. There is microstructural evidence for foliation-parallel, small-scale resorption of garnet rims in the Kolvik Nappe, influencing the metamorphic peak conditions obtained from thermodynamic modelling. The local chemical compositions of rims less affected by resorption indicate a peak temperature of ~630°C, which is ~40°C higher than the temperature obtained from resorbed rims of the largest garnet crystal. Using a diffusion geospeedometry approach that considers the geometry of the compositional zoning of the garnet population, as well as the higher, more realistic peak temperature, a duration of 1 to 4.9 Myr is obtained for garnet growth in the Kolvik Nappe. This is approximately 1 order of magnitude faster than duration estimates obtained when using the apparent, lower temperature estimated from the resorbed garnet rims. Concomitantly to garnet growth in the Kolvik Nappe, garnet overgrowths formed in the Bekkarfjord Nappe for circa 2.5 Myr at metamorphic peak temperatures of ~560°C. The garnet growth durations obtained here are comparable with the uncertainty on the Lu–Hf garnet–whole rock isochron ages of 419.9 ± 2.4 Ma and 423.0 ± 1.9 Ma, previously obtained for these rocks. These results provide new insight into the timescales of repeated Barrovian-type metamorphic events experienced by the lower nappes of the Kalak Nappe Complex during the Caledonian Orogeny in Arctic Norway. This study emphasizes the importance of microstructural and chemical characterization of garnet populations in assessing metamorphic crystallization mechanisms and the extent of equilibration of garnet-forming components during prograde metamorphism. Moreover, our results provide means for reducing the uncertainty on metamorphic durations obtained via diffusion geospeedometry and, so, contributing to our understanding of geological timescales and processes.</p>","PeriodicalId":16472,"journal":{"name":"Journal of Metamorphic Geology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmg.12766","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140107985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Granulites and eclogites are useful for revealing the thermal and tectonic evolution of orogens. Early Palaeozoic granulites and associated eclogites in the East Kunlun Orogenic Belt (EKOB) display contrasting metamorphic age. Such asynchronous granulite–eclogite associations have rarely been reported, and the geological significance of their existence remains to be further explored. In this study, petrological and geochronological techniques were used to investigate two felsic and two mafic granulites collected from the Qingshuiquan area in the eastern section of the EKOB. These rocks record similar P–T paths, which are characterized by a peak stage within suprasolidus and high-pressure (HP) granulite facies conditions (750–832°C and 10.1–12.0 kbar), followed by an initial decompression and cooling stage to subsolidus conditions (600–748°C and 6.5–8.6 kbar), and then a stage of further retrogression under greenschist facies conditions. The protoliths to these granulites are of volcanic and sedimentary origin and suggested to be a component of the continental basement unit. Metamorphic P–T paths indicate that these rocks experienced peak metamorphism at a depth of ~40 km, then cooling and uplift to a depth of ~25 km, and eventually experienced low-grade retrogression at shallow crustal levels. Cathodoluminescence images and compositional data demonstrate that the zircons in these rocks are of metamorphic origin and they crystallized at or near peak conditions. SIMS U–Pb dating of representative zircon grains yield concordant metamorphic ages of c. 490–520 Ma, with a peak value of 505 Ma on the probability density curve. These ages are similar to other 480–530 Ma ages typically retrieved from EKOB granulites and associated rocks, and are markedly older than the 400–450 Ma ages retrieved from eclogites and their host rocks. The HP granulites and eclogites of the EKOB do not show overprinting relationships. Such asynchronous characteristics imply that the two rock types formed in distinct tectonic settings and at different stages of a protracted subduction–collision process. The studied granulites are suggested to have formed in the root of a continental arc during a stage of Proto-Tethys Ocean subduction. The formation of the eclogites could be attributed to subsequent deep continental subduction.
花岗岩和蚀变岩有助于揭示造山带的热演化和构造演化。东昆仑造山带(EKOB)早古生代花岗岩和相关的斜长岩显示出截然不同的变质年龄。这种不同步的花岗岩-斜长岩关联很少见报道,其存在的地质意义仍有待进一步探讨。本研究采用岩石学和地质年代学技术,对采集自东高加索山脉东段清水泉地区的两块长粒花岗岩和两块黑云母花岗岩进行了研究。这些岩石记录了相似的P-T路径,其特征是在超固结和高压(HP)花岗岩面条件下(750-832°C和10.1-12.0千巴)的峰值阶段,随后是减压和冷却至亚固结条件(600-748°C和6.5-8.6千巴)的初始阶段,然后是在绿泥石面条件下的进一步逆退阶段。这些花岗岩的原岩来源于火山和沉积,被认为是大陆基底单元的组成部分。变质P-T路径表明,这些岩石在约40千米深处经历了峰值变质,然后冷却并隆升至约25千米深处,最终在浅地壳层面经历了低级逆退。阴极荧光图像和成分数据表明,这些岩石中的锆石属于变质岩,它们是在峰值或接近峰值的条件下结晶的。对具有代表性的锆石颗粒进行 SIMS U-Pb 测定,得出的变质年龄约为 490-520 Ma,概率密度曲线的峰值为 505 Ma。这些年龄与从 EKOB 花岗岩及其相关岩石中通常获取的其他 480-530 Ma 年龄相似,明显早于从斜长岩及其母岩中获取的 400-450 Ma 年龄。EKOB的HP花岗岩和斜长岩没有显示出叠加关系。这种不同步的特征意味着这两种岩石是在不同的构造环境中和漫长的俯冲碰撞过程的不同阶段形成的。据推测,所研究的花岗岩形成于原特提斯洋俯冲阶段的大陆弧根部。蚀变岩的形成可归因于随后的深大陆俯冲。
{"title":"Metamorphic evolution and geological significance of Early Palaeozoic high-pressure granulites from the East Kunlun (NW China)","authors":"An-Ping Chen, Hong-Fu Zhang, Ming-Jie Zhang, Xiao-Qi Zhang","doi":"10.1111/jmg.12767","DOIUrl":"10.1111/jmg.12767","url":null,"abstract":"<p>Granulites and eclogites are useful for revealing the thermal and tectonic evolution of orogens. Early Palaeozoic granulites and associated eclogites in the East Kunlun Orogenic Belt (EKOB) display contrasting metamorphic age. Such asynchronous granulite–eclogite associations have rarely been reported, and the geological significance of their existence remains to be further explored. In this study, petrological and geochronological techniques were used to investigate two felsic and two mafic granulites collected from the Qingshuiquan area in the eastern section of the EKOB. These rocks record similar <i>P–T</i> paths, which are characterized by a peak stage within suprasolidus and high-pressure (HP) granulite facies conditions (750–832°C and 10.1–12.0 kbar), followed by an initial decompression and cooling stage to subsolidus conditions (600–748°C and 6.5–8.6 kbar), and then a stage of further retrogression under greenschist facies conditions. The protoliths to these granulites are of volcanic and sedimentary origin and suggested to be a component of the continental basement unit. Metamorphic <i>P–T</i> paths indicate that these rocks experienced peak metamorphism at a depth of ~40 km, then cooling and uplift to a depth of ~25 km, and eventually experienced low-grade retrogression at shallow crustal levels. Cathodoluminescence images and compositional data demonstrate that the zircons in these rocks are of metamorphic origin and they crystallized at or near peak conditions. SIMS U–Pb dating of representative zircon grains yield concordant metamorphic ages of c. 490–520 Ma, with a peak value of 505 Ma on the probability density curve. These ages are similar to other 480–530 Ma ages typically retrieved from EKOB granulites and associated rocks, and are markedly older than the 400–450 Ma ages retrieved from eclogites and their host rocks. The HP granulites and eclogites of the EKOB do not show overprinting relationships. Such asynchronous characteristics imply that the two rock types formed in distinct tectonic settings and at different stages of a protracted subduction–collision process. The studied granulites are suggested to have formed in the root of a continental arc during a stage of Proto-Tethys Ocean subduction. The formation of the eclogites could be attributed to subsequent deep continental subduction.</p>","PeriodicalId":16472,"journal":{"name":"Journal of Metamorphic Geology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140070084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naomi M. Tucker, Johannes Hammerli, Anthony I. S. Kemp, Matthew L. Rowe, Chris M. Gray, Heejin Jeon, Martin J. Whitehouse, Malcolm P. Roberts
Granulites from the Narryer Terrane in the northern Yilgarn Craton, Australia, record evidence for high to ultrahigh thermal gradients during the Meso–Neoarchean. U–Pb zircon ages reflect a complex history of high-grade, prolonged and poly-phase metamorphism, with evidence for several thermal pulses at ca. 2745–2725, ca. 2690–2660, and ca. 2650–2610 Ma. Forward phase equilibrium modeling on rocks with varying bulk compositions and mineral assemblages suggests that peak temperatures reached 880–920°C at pressures of 5.5–6 kbar at ca. 2690–2665 Ma, followed by near-isobaric cooling. These new P–T results also indicate that these rocks experienced some of the hottest thermal gradient regimes in the metamorphic record (≥150°C/kbar). Based on P–T models, U–Pb ages, and geochemical constraints, our data suggest that the geodynamic setting for the formation of this unusual thermal regime is ultimately tied to cratonization of the Yilgarn Craton. Previous models have inferred that ultrahigh thermal gradients and coeval large-scale anatexis in the Narryer Terrane were primarily generated by mantle-driven processes, despite most of the lithological, isotopic, and geochemical observations being at odds with the expected geological expression of large-scale mantle upwelling. We re-evaluate the mechanisms for high-grade metamorphism in the Narryer terrane and propose that long-lived high crustal temperatures between ca. 2690 Ma and 2610 Ma were instead facilitated by elevated radiogenic heat production in thickened, highly differentiated ancient crust. Mantle-derived magma input and new crustal addition may not be the only drivers for high- to ultrahigh-temperature metamorphism and stabilization of ancient crustal blocks.
澳大利亚伊尔加恩克拉通北部 Narryer Terrane 的花岗岩记录了中新元古代高热梯度到超高热梯度的证据。锆石U-Pb年龄反映了复杂的高品位、长时间和多相变质作用的历史,有证据表明在约2745-2725 Ma、约2690-2660 Ma和约2650-2610 Ma出现过几次热脉冲。对具有不同块体成分和矿物组合的岩石进行的前向相平衡建模表明,在约 2690-2665 Ma 时,压力为 5.5-6 kbar 时的峰值温度达到了 880-920°C,随后是接近等压的冷却。这些新的 P-T 结果还表明,这些岩石经历了变质记录中一些最热的热梯度(≥150°C/千巴)。根据P-T模型、U-Pb年龄和地球化学制约因素,我们的数据表明,形成这种不寻常热力机制的地球动力环境最终与伊尔加恩克拉通的克拉通化有关。尽管大多数岩石学、同位素和地球化学观测结果都与预期的大规模地幔上涌的地质表现不符,但以前的模型推断纳里尔地层中的超高热梯度和共生的大规模缺氧主要是由地幔驱动过程产生的。我们重新评估了纳里尔阶地的高品位变质作用机制,并提出在约2690 Ma至2610 Ma之间的长效地壳高温是由增厚、高度分化的古地壳中的放射性产热所促成的。来自地幔的岩浆输入和新地壳的增加可能不是高温至超高温变质作用和古地壳区块稳定化的唯一驱动力。
{"title":"Ultrahigh thermal gradient granulites in the Narryer Terrane, Yilgarn Craton, Western Australia, provide a window into the composition and formation of Archean lower crust","authors":"Naomi M. Tucker, Johannes Hammerli, Anthony I. S. Kemp, Matthew L. Rowe, Chris M. Gray, Heejin Jeon, Martin J. Whitehouse, Malcolm P. Roberts","doi":"10.1111/jmg.12752","DOIUrl":"10.1111/jmg.12752","url":null,"abstract":"<p>Granulites from the Narryer Terrane in the northern Yilgarn Craton, Australia, record evidence for high to ultrahigh thermal gradients during the Meso–Neoarchean. U–Pb zircon ages reflect a complex history of high-grade, prolonged and poly-phase metamorphism, with evidence for several thermal pulses at ca. 2745–2725, ca. 2690–2660, and ca. 2650–2610 Ma. Forward phase equilibrium modeling on rocks with varying bulk compositions and mineral assemblages suggests that peak temperatures reached 880–920°C at pressures of 5.5–6 kbar at ca. 2690–2665 Ma, followed by near-isobaric cooling. These new <i>P</i>–<i>T</i> results also indicate that these rocks experienced some of the hottest thermal gradient regimes in the metamorphic record (≥150°C/kbar). Based on <i>P</i>–<i>T</i> models, U–Pb ages, and geochemical constraints, our data suggest that the geodynamic setting for the formation of this unusual thermal regime is ultimately tied to cratonization of the Yilgarn Craton. Previous models have inferred that ultrahigh thermal gradients and coeval large-scale anatexis in the Narryer Terrane were primarily generated by mantle-driven processes, despite most of the lithological, isotopic, and geochemical observations being at odds with the expected geological expression of large-scale mantle upwelling. We re-evaluate the mechanisms for high-grade metamorphism in the Narryer terrane and propose that long-lived high crustal temperatures between ca. 2690 Ma and 2610 Ma were instead facilitated by elevated radiogenic heat production in thickened, highly differentiated ancient crust. Mantle-derived magma input and new crustal addition may not be the only drivers for high- to ultrahigh-temperature metamorphism and stabilization of ancient crustal blocks.</p>","PeriodicalId":16472,"journal":{"name":"Journal of Metamorphic Geology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmg.12752","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139950361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Rebecca Stokes, Aaron M. Jubb, Ryan J. McAleer, David L. Bish, Robert P. Wintsch
A suite of slate samples collected along a 2 km transect crossing the Lishan fault in central Taiwan were evaluated to assess the role of ductile deformation in natural graphitization at lower greenschist facies metamorphic conditions. The process of natural aromatization, or graphitization, of an organic precursor is well established as a thermally driven process; however, experimental studies have shown that the energy provided by deformation can substantially reduce the activation energy required for graphitization. This study provides a natural example of deformation-induced graphitization. A strain gradient approaching the Lishan fault was established by scanning electron microscope imaging and X-ray diffraction analysis of phyllosilicates and quartz that showed an increase in the strength of slaty cleavage development via dissolution-precipitation processes. Thermal conditions were constrained to be near isothermal using calcite-dolomite geothermometry. Raman spectroscopic results from carbonaceous material, including D1-full width-at-half-maximum (FWHM), G-FWHM, Raman band separation (RBS), and a lesser-known vibrational mode B2g-FWHM, showed robust linear trends across the same sampling transect. However, the G-FWHM parameter showed a trend opposite of that expected from thermally driven graphitization. The Raman results are interpreted to reflect a strain-driven reduction in graphite crystallite size (decrease in G-FWHM) but improvement in structural ordering in individual coherent domains. A multiple linear regression with an R2 value of 0.92 predicts the graphite D1-FWHM values from the XRD-derived ratio of muscovite populations and muscovite microstrain, demonstrating the concomitant recrystallization of silicates and carbonaceous material across the strain gradient, despite the disparate processes accommodating the deformation. This study demonstrates the role of deformation in natural graphitization and provides a new perspective on the use of graphite as a geothermometer in strongly deformed greenschist facies rocks.
{"title":"Deformation-induced graphitization and muscovite recrystallization in a ductile fault zone","authors":"M. Rebecca Stokes, Aaron M. Jubb, Ryan J. McAleer, David L. Bish, Robert P. Wintsch","doi":"10.1111/jmg.12763","DOIUrl":"10.1111/jmg.12763","url":null,"abstract":"<p>A suite of slate samples collected along a 2 km transect crossing the Lishan fault in central Taiwan were evaluated to assess the role of ductile deformation in natural graphitization at lower greenschist facies metamorphic conditions. The process of natural aromatization, or graphitization, of an organic precursor is well established as a thermally driven process; however, experimental studies have shown that the energy provided by deformation can substantially reduce the activation energy required for graphitization. This study provides a natural example of deformation-induced graphitization. A strain gradient approaching the Lishan fault was established by scanning electron microscope imaging and X-ray diffraction analysis of phyllosilicates and quartz that showed an increase in the strength of slaty cleavage development via dissolution-precipitation processes. Thermal conditions were constrained to be near isothermal using calcite-dolomite geothermometry. Raman spectroscopic results from carbonaceous material, including D1-full width-at-half-maximum (FWHM), G-FWHM, Raman band separation (RBS), and a lesser-known vibrational mode B<sub>2g</sub>-FWHM, showed robust linear trends across the same sampling transect. However, the G-FWHM parameter showed a trend opposite of that expected from thermally driven graphitization. The Raman results are interpreted to reflect a strain-driven reduction in graphite crystallite size (decrease in G-FWHM) but improvement in structural ordering in individual coherent domains. A multiple linear regression with an <i>R</i><sup>2</sup> value of 0.92 predicts the graphite D1-FWHM values from the XRD-derived ratio of muscovite populations and muscovite microstrain, demonstrating the concomitant recrystallization of silicates and carbonaceous material across the strain gradient, despite the disparate processes accommodating the deformation. This study demonstrates the role of deformation in natural graphitization and provides a new perspective on the use of graphite as a geothermometer in strongly deformed greenschist facies rocks.</p>","PeriodicalId":16472,"journal":{"name":"Journal of Metamorphic Geology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmg.12763","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139778017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. R. Stokes, Aaron M. Jubb, Ryan J. McAleer, David L. Bish, R. Wintsch
A suite of slate samples collected along a 2 km transect crossing the Lishan fault in central Taiwan were evaluated to assess the role of ductile deformation in natural graphitization at lower greenschist facies metamorphic conditions. The process of natural aromatization, or graphitization, of an organic precursor is well established as a thermally driven process; however, experimental studies have shown that the energy provided by deformation can substantially reduce the activation energy required for graphitization. This study provides a natural example of deformation‐induced graphitization. A strain gradient approaching the Lishan fault was established by scanning electron microscope imaging and X‐ray diffraction analysis of phyllosilicates and quartz that showed an increase in the strength of slaty cleavage development via dissolution‐precipitation processes. Thermal conditions were constrained to be near isothermal using calcite‐dolomite geothermometry. Raman spectroscopic results from carbonaceous material, including D1‐full width‐at‐half‐maximum (FWHM), G‐FWHM, Raman band separation (RBS), and a lesser‐known vibrational mode B2g‐FWHM, showed robust linear trends across the same sampling transect. However, the G‐FWHM parameter showed a trend opposite of that expected from thermally driven graphitization. The Raman results are interpreted to reflect a strain‐driven reduction in graphite crystallite size (decrease in G‐FWHM) but improvement in structural ordering in individual coherent domains. A multiple linear regression with an R2 value of 0.92 predicts the graphite D1‐FWHM values from the XRD‐derived ratio of muscovite populations and muscovite microstrain, demonstrating the concomitant recrystallization of silicates and carbonaceous material across the strain gradient, despite the disparate processes accommodating the deformation. This study demonstrates the role of deformation in natural graphitization and provides a new perspective on the use of graphite as a geothermometer in strongly deformed greenschist facies rocks.
{"title":"Deformation‐induced graphitization and muscovite recrystallization in a ductile fault zone","authors":"M. R. Stokes, Aaron M. Jubb, Ryan J. McAleer, David L. Bish, R. Wintsch","doi":"10.1111/jmg.12763","DOIUrl":"https://doi.org/10.1111/jmg.12763","url":null,"abstract":"A suite of slate samples collected along a 2 km transect crossing the Lishan fault in central Taiwan were evaluated to assess the role of ductile deformation in natural graphitization at lower greenschist facies metamorphic conditions. The process of natural aromatization, or graphitization, of an organic precursor is well established as a thermally driven process; however, experimental studies have shown that the energy provided by deformation can substantially reduce the activation energy required for graphitization. This study provides a natural example of deformation‐induced graphitization. A strain gradient approaching the Lishan fault was established by scanning electron microscope imaging and X‐ray diffraction analysis of phyllosilicates and quartz that showed an increase in the strength of slaty cleavage development via dissolution‐precipitation processes. Thermal conditions were constrained to be near isothermal using calcite‐dolomite geothermometry. Raman spectroscopic results from carbonaceous material, including D1‐full width‐at‐half‐maximum (FWHM), G‐FWHM, Raman band separation (RBS), and a lesser‐known vibrational mode B2g‐FWHM, showed robust linear trends across the same sampling transect. However, the G‐FWHM parameter showed a trend opposite of that expected from thermally driven graphitization. The Raman results are interpreted to reflect a strain‐driven reduction in graphite crystallite size (decrease in G‐FWHM) but improvement in structural ordering in individual coherent domains. A multiple linear regression with an R2 value of 0.92 predicts the graphite D1‐FWHM values from the XRD‐derived ratio of muscovite populations and muscovite microstrain, demonstrating the concomitant recrystallization of silicates and carbonaceous material across the strain gradient, despite the disparate processes accommodating the deformation. This study demonstrates the role of deformation in natural graphitization and provides a new perspective on the use of graphite as a geothermometer in strongly deformed greenschist facies rocks.","PeriodicalId":16472,"journal":{"name":"Journal of Metamorphic Geology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139837813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Yu, Martin Hand, L. Morrissey, Justin L. Payne
Mabel Creek Ridge, in the northern Gawler Craton, is a granulite‐facies domain recording early Mesoproterozoic metamorphism, flanked by less metamorphosed rocks and dissected by crustal‐scale divergent structures. The nature of early Mesoproterozoic events is poorly understood due to the lack of basement outcrop. Calculated metamorphic phase diagrams and geochronology are used to decipher the tectonic regime of a potential gneiss dome. Pressure–temperature (P–T) modelling of metapelites from five drill holes across Mabel Creek Ridge suggests it has experienced conditions of ~6.4–7.4 kbar and 800–850°C and the growth of suprasolidus cordierite after garnet indicates subsequent decompression. In situ U–Pb monazite and Lu–Hf garnet geochronology constrains the granulite‐facies metamorphism of Mabel Creek Ridge to ca. 1600–1560 Ma. In contrast, drill hole GOMA DH4 located to the north of Mabel Creek Ridge records conditions of 2.2–5.4 kbar and 710–740°C at ca. 1520 Ma, with no evidence for 1600–1560 Ma metamorphism. Our new P–T pseudosection results and geochronology data from Mabel Creek Ridge and adjacent crust, coupled with the regional seismic and airborne magnetic data, reveal that Mabel Creek Ridge represents a record of early Mesoproterozoic extension in the Gawler Craton, during which thermally perturbed lower crustal rocks were exhumed within a gneiss dome. Early Mesoproterozoic extension took place within a complex geodynamic regime resulting from the interplay between final Nuna convergence along the margin of northeast Australia at ca. 1600 Ma and subduction to the southwest at ca. 1630–1610 Ma.
位于高勒克拉通北部的梅布尔溪山脊是一个花岗岩成因区,记录了中新生代早期的变质作用,两侧是变质程度较低的岩石,并被地壳规模的分异构造所分割。由于缺乏基底露头,人们对中新生代早期事件的性质知之甚少。计算的变质相图和地质年代学被用来解读潜在片麻岩穹隆的构造体系。对来自梅布尔溪山脊五个钻孔的玄武岩进行的压力-温度(P-T)建模表明,它经历了大约 6.4-7.4 千巴和 800-850°C 的条件,石榴石之后的超固结堇青石的生长表明了随后的减压。原位U-Pb独居石和Lu-Hf石榴石地质年代学将马贝尔溪山脊的花岗岩成因变质作用推定为约1600-1560Ma。与此相反,位于马贝尔溪山脊北部的 GOMA DH4 号钻孔记录了约 1520 Ma 时的 2.2-5.4 kbar 和 710-740°C 的条件,没有证据表明该地区发生了变质作用。1520Ma,没有1600-1560Ma变质作用的证据。我们从梅布尔溪山脊和邻近地壳获得的新的P-T假吸积结果和地质年代数据,以及区域地震和机载磁性数据,揭示了梅布尔溪山脊代表了高勒克拉通中新生代早期延伸的记录,在这一时期,受到热扰动的下地壳岩石在片麻岩穹隆内被掘出。中新生代早期的延伸发生在一个复杂的地球动力机制中,该机制是由澳大利亚东北部边缘的努纳最终辐合(约1600Ma)与澳大利亚东北部边缘的俯冲相互作用而形成的。1600 Ma时沿澳大利亚东北部边缘的最终努纳辐合和约1630-1610 Ma时向西南部的俯冲的相互作用。1630-1610 Ma.
{"title":"A buried gneiss dome in the northern Gawler Craton: The record of early Mesoproterozoic (ca. 1600–1560 Ma) extension in southern Proterozoic Australia","authors":"Jie Yu, Martin Hand, L. Morrissey, Justin L. Payne","doi":"10.1111/jmg.12762","DOIUrl":"https://doi.org/10.1111/jmg.12762","url":null,"abstract":"Mabel Creek Ridge, in the northern Gawler Craton, is a granulite‐facies domain recording early Mesoproterozoic metamorphism, flanked by less metamorphosed rocks and dissected by crustal‐scale divergent structures. The nature of early Mesoproterozoic events is poorly understood due to the lack of basement outcrop. Calculated metamorphic phase diagrams and geochronology are used to decipher the tectonic regime of a potential gneiss dome. Pressure–temperature (P–T) modelling of metapelites from five drill holes across Mabel Creek Ridge suggests it has experienced conditions of ~6.4–7.4 kbar and 800–850°C and the growth of suprasolidus cordierite after garnet indicates subsequent decompression. In situ U–Pb monazite and Lu–Hf garnet geochronology constrains the granulite‐facies metamorphism of Mabel Creek Ridge to ca. 1600–1560 Ma. In contrast, drill hole GOMA DH4 located to the north of Mabel Creek Ridge records conditions of 2.2–5.4 kbar and 710–740°C at ca. 1520 Ma, with no evidence for 1600–1560 Ma metamorphism. Our new P–T pseudosection results and geochronology data from Mabel Creek Ridge and adjacent crust, coupled with the regional seismic and airborne magnetic data, reveal that Mabel Creek Ridge represents a record of early Mesoproterozoic extension in the Gawler Craton, during which thermally perturbed lower crustal rocks were exhumed within a gneiss dome. Early Mesoproterozoic extension took place within a complex geodynamic regime resulting from the interplay between final Nuna convergence along the margin of northeast Australia at ca. 1600 Ma and subduction to the southwest at ca. 1630–1610 Ma.","PeriodicalId":16472,"journal":{"name":"Journal of Metamorphic Geology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139840873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Yu, Martin Hand, Laura J. Morrissey, Justin L. Payne
Mabel Creek Ridge, in the northern Gawler Craton, is a granulite-facies domain recording early Mesoproterozoic metamorphism, flanked by less metamorphosed rocks and dissected by crustal-scale divergent structures. The nature of early Mesoproterozoic events is poorly understood due to the lack of basement outcrop. Calculated metamorphic phase diagrams and geochronology are used to decipher the tectonic regime of a potential gneiss dome. Pressure–temperature (P–T) modelling of metapelites from five drill holes across Mabel Creek Ridge suggests it has experienced conditions of ~6.4–7.4 kbar and 800–850°C and the growth of suprasolidus cordierite after garnet indicates subsequent decompression. In situ U–Pb monazite and Lu–Hf garnet geochronology constrains the granulite-facies metamorphism of Mabel Creek Ridge to ca. 1600–1560 Ma. In contrast, drill hole GOMA DH4 located to the north of Mabel Creek Ridge records conditions of 2.2–5.4 kbar and 710–740°C at ca. 1520 Ma, with no evidence for 1600–1560 Ma metamorphism. Our new P–T pseudosection results and geochronology data from Mabel Creek Ridge and adjacent crust, coupled with the regional seismic and airborne magnetic data, reveal that Mabel Creek Ridge represents a record of early Mesoproterozoic extension in the Gawler Craton, during which thermally perturbed lower crustal rocks were exhumed within a gneiss dome. Early Mesoproterozoic extension took place within a complex geodynamic regime resulting from the interplay between final Nuna convergence along the margin of northeast Australia at ca. 1600 Ma and subduction to the southwest at ca. 1630–1610 Ma.
位于高勒克拉通北部的梅布尔溪山脊是一个花岗岩成因区,记录了中新生代早期的变质作用,两侧是变质程度较低的岩石,并被地壳规模的分异构造所分割。由于缺乏基底露头,人们对中新生代早期事件的性质知之甚少。计算的变质相图和地质年代学被用来解读潜在片麻岩穹隆的构造体系。对来自梅布尔溪山脊五个钻孔的玄武岩进行的压力-温度(P-T)建模表明,它经历了大约 6.4-7.4 千巴和 800-850°C 的条件,石榴石之后的超固结堇青石的生长表明了随后的减压。原位U-Pb独居石和Lu-Hf石榴石地质年代学将马贝尔溪山脊的花岗岩成因变质作用推定为约1600-1560Ma。与此相反,位于马贝尔溪山脊北部的 GOMA DH4 号钻孔记录了约 1520 Ma 时的 2.2-5.4 kbar 和 710-740°C 的条件,没有证据表明该地区发生了变质作用。1520Ma,没有1600-1560Ma变质作用的证据。我们从梅布尔溪山脊和邻近地壳获得的新的P-T假吸积结果和地质年代数据,以及区域地震和机载磁性数据,揭示了梅布尔溪山脊代表了高勒克拉通中新生代早期延伸的记录,在这一时期,受到热扰动的下地壳岩石在片麻岩穹隆内被掘出。中新生代早期的延伸发生在一个复杂的地球动力机制中,该机制是由澳大利亚东北部边缘的努纳最终辐合(约1600Ma)与澳大利亚东北部边缘的俯冲相互作用而形成的。1600 Ma时沿澳大利亚东北部边缘的最终努纳辐合和约1630-1610 Ma时向西南部的俯冲的相互作用。1630-1610 Ma.
{"title":"A buried gneiss dome in the northern Gawler Craton: The record of early Mesoproterozoic (ca. 1600–1560 Ma) extension in southern Proterozoic Australia","authors":"Jie Yu, Martin Hand, Laura J. Morrissey, Justin L. Payne","doi":"10.1111/jmg.12762","DOIUrl":"10.1111/jmg.12762","url":null,"abstract":"<p>Mabel Creek Ridge, in the northern Gawler Craton, is a granulite-facies domain recording early Mesoproterozoic metamorphism, flanked by less metamorphosed rocks and dissected by crustal-scale divergent structures. The nature of early Mesoproterozoic events is poorly understood due to the lack of basement outcrop. Calculated metamorphic phase diagrams and geochronology are used to decipher the tectonic regime of a potential gneiss dome. Pressure–temperature (<i>P–T</i>) modelling of metapelites from five drill holes across Mabel Creek Ridge suggests it has experienced conditions of ~6.4–7.4 kbar and 800–850°C and the growth of suprasolidus cordierite after garnet indicates subsequent decompression. In situ U–Pb monazite and Lu–Hf garnet geochronology constrains the granulite-facies metamorphism of Mabel Creek Ridge to <i>ca</i>. 1600–1560 Ma. In contrast, drill hole GOMA DH4 located to the north of Mabel Creek Ridge records conditions of 2.2–5.4 kbar and 710–740°C at <i>ca</i>. 1520 Ma, with no evidence for 1600–1560 Ma metamorphism. Our new <i>P–T</i> pseudosection results and geochronology data from Mabel Creek Ridge and adjacent crust, coupled with the regional seismic and airborne magnetic data, reveal that Mabel Creek Ridge represents a record of early Mesoproterozoic extension in the Gawler Craton, during which thermally perturbed lower crustal rocks were exhumed within a gneiss dome. Early Mesoproterozoic extension took place within a complex geodynamic regime resulting from the interplay between final Nuna convergence along the margin of northeast Australia at <i>ca</i>. 1600 Ma and subduction to the southwest at <i>ca</i>. 1630–1610 Ma.</p>","PeriodicalId":16472,"journal":{"name":"Journal of Metamorphic Geology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmg.12762","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139780939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lei Zou, Jing-Hui Guo, Li-Fei Zhang, Guang-Yu Huang, Shu-Juan Jiao, Zhong-Hua Tian, Da Wang, Ping-Hua Liu
Ultrahigh-temperature (UHT) granulites, a prominent feature of Paleoproterozoic orogenic belts, preserve a record of geodynamic processes during the Precambrian (Archean–Paleoproterozoic). Quantitative pressure–temperature–time (P–T–t) paths of these UHT granulites can constrain the tectonic processes and metamorphic evolution in such a tectonic regime. Here, UHT mafic granulites with a high-pressure (HP) prograde path are first reported in the Diebusige Complex in the Alxa Block, western part of the Khondalite Belt (KB), North China Craton (NCC). The detailed petrographic studies show that two mafic granulite samples preserve corona textures around relict garnet or garnet pseudomorphs (completely replaced by plagioclase), and a third mafic granulite sample has a relatively simple mineralogy with a granoblastic-polygonal texture. These mafic granulites have similar peak (Tmax) assemblages of clinopyroxene + orthopyroxene + plagioclase + ilmenite ± garnet ± amphibole ± quartz + melt. Phase equilibrium modelling and Ti-in-amphibole and rare earth element (REE)-based thermometries all constrain similar peak conditions of ~880–950°C/~8.5–10 kbar implying an ~100°C/kbar apparent geothermal gradient for these mafic granulites. Based on the corona textures or pseudomorphs of garnet and mineral assemblages, we identified a Pmax (~14 kbar) prograde stage before the Tmax stage. Thus, a clockwise P–T path with heating and decompression followed by near-isobaric cooling (IBC) is recorded from these UHT mafic granulites. In addition, zircon and apatite SHRIMP or LA–ICP–MS U–Pb dating yields an age interval of ~1.81–1.7 Ga, which is interpreted as representing the cooling time from ~900–800°C to ~575°C at the middle-upper crustal levels (<25 km deep) for these mafic granulites, with an ~1.5–2.5°C/Myr cooling rate. The new P–T–t path of these rocks includes high-pressure prograde, UHT peak, and slow cooling retrograde processes, which implicates a post-collisional tectonic setting for UHT metamorphism in the KB and the processes of collision, exhumation, and cooling of the KB.
{"title":"Paleoproterozoic ultrahigh-temperature mafic granulites with a high-pressure prograde path from the Alxa Block: Implications on the tectonic evolution of the Khondalite Belt, North China Craton","authors":"Lei Zou, Jing-Hui Guo, Li-Fei Zhang, Guang-Yu Huang, Shu-Juan Jiao, Zhong-Hua Tian, Da Wang, Ping-Hua Liu","doi":"10.1111/jmg.12764","DOIUrl":"10.1111/jmg.12764","url":null,"abstract":"<p>Ultrahigh-temperature (UHT) granulites, a prominent feature of Paleoproterozoic orogenic belts, preserve a record of geodynamic processes during the Precambrian (Archean–Paleoproterozoic). Quantitative pressure–temperature–time (<i>P</i>–<i>T</i>–<i>t</i>) paths of these UHT granulites can constrain the tectonic processes and metamorphic evolution in such a tectonic regime. Here, UHT mafic granulites with a high-pressure (HP) prograde path are first reported in the Diebusige Complex in the Alxa Block, western part of the Khondalite Belt (KB), North China Craton (NCC). The detailed petrographic studies show that two mafic granulite samples preserve corona textures around relict garnet or garnet pseudomorphs (completely replaced by plagioclase), and a third mafic granulite sample has a relatively simple mineralogy with a granoblastic-polygonal texture. These mafic granulites have similar peak (<i>T</i><sub>max</sub>) assemblages of clinopyroxene + orthopyroxene + plagioclase + ilmenite ± garnet ± amphibole ± quartz + melt. Phase equilibrium modelling and Ti-in-amphibole and rare earth element (REE)-based thermometries all constrain similar peak conditions of ~880–950°C/~8.5–10 kbar implying an ~100°C/kbar apparent geothermal gradient for these mafic granulites. Based on the corona textures or pseudomorphs of garnet and mineral assemblages, we identified a <i>P</i><sub>max</sub> (~14 kbar) prograde stage before the <i>T</i><sub>max</sub> stage. Thus, a clockwise <i>P</i>–<i>T</i> path with heating and decompression followed by near-isobaric cooling (IBC) is recorded from these UHT mafic granulites. In addition, zircon and apatite SHRIMP or LA–ICP–MS U–Pb dating yields an age interval of ~1.81–1.7 Ga, which is interpreted as representing the cooling time from ~900–800°C to ~575°C at the middle-upper crustal levels (<25 km deep) for these mafic granulites, with an ~1.5–2.5°C/Myr cooling rate. The new <i>P</i>–<i>T</i>–<i>t</i> path of these rocks includes high-pressure prograde, UHT peak, and slow cooling retrograde processes, which implicates a post-collisional tectonic setting for UHT metamorphism in the KB and the processes of collision, exhumation, and cooling of the KB.</p>","PeriodicalId":16472,"journal":{"name":"Journal of Metamorphic Geology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139752239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shun Guo, Anping Chen, Xirun Cai, Yi Chen, Pan Tang, Qiuli Li
The ultrahigh-pressure (UHP) eclogites from the Kaghan Valley in Pakistan, which formed by the deep subduction of the Indian plate beneath the Asian plate in the Eocene, contain complex metamorphic vein systems (including both isolated veins and vein networks), with mineral assemblages of epidote + quartz + kyanite + phengite ± omphacite ± garnet. The investigations on the Kaghan UHP eclogite-vein systems provide important insights into the mechanism and timing of metamorphic dehydration, fluid flow, and fluid–rock interaction in the deeply subducted Indian continental slab as well as the chemical characteristics of slab-derived, aqueous fluids. Abundant lawsonite pseudomorphs, characterized by prismatic aggregates of epidote, kyanite, and quartz porphyroblasts, are first recognized in the Kaghan eclogites. This observation, in combination with the occurrence of coesite pseudomorphs in epidote porphyroblasts as well as the coexistence of epidote and coesite in the eclogite zircon, indicates the previous existence of UHP lawsonite in these eclogites. Petrological studies and phase equilibrium modelling reveal clockwise P–T trajectories for the Kaghan eclogites that are featured by prograde vectors in lawsonite-stability regions with peak conditions of 3.0–3.4 GPa/650–690°C, followed by isothermal decompression and lawsonite breakdown under UHP conditions during the initial exhumation stage. The results of metamorphic evolution, together with in situ epidote and bulk Sr isotopic analyses, indicate that the fluids responsible for vein systems are most likely derived from the breakdown of UHP lawsonite in the eclogites. SIMS U–Pb dating of metamorphic zircons from the eclogites, integrated with the Raman analysis of inclusions in zircons, indicates that the UHP dehydration of eclogites occurred at 46.4 ± 1.2 and 46.8 ± 0.9 Ma. Analyses of hydrothermal zircons from the veins yielded slightly younger ages of 44.7 ± 1.0 and 44.9 ± 1.4 Ma, which represent the timing of fluid flow and/or vein crystallization during exhumation of the UHP rocks. Mass-balance calculation results, in combination with the vein compositions, show that the fluid flow and fluid-eclogite interaction led to the transfer of Si, Al, Ca, K, and incompatible trace elements from the eclogites into the fluids, from which the vein systems crystallized. This study indicates cold deep subduction of Indian continental crust along low geothermal gradients (6–7°C/km). The UHP fluid liberation and channelized fluid flow occurred during the initial exhumation of the cold Indian slab and are expected to induce the transfer of H2O and incompatible trace elements from the Indian slab to the Asian lithosphere, which potentially contributes to the formation of post-collisional magmas. Moreover, we suggest that metamorphic vein systems in UHP lawsonite eclogites offer important constraints on the occurrence and timing of fast slab exhumation in continental subduction-collis
{"title":"Cold deep subduction of Indian continental crust and release of ultrahigh-pressure fluid during initial exhumation: Insights from coesite-bearing eclogite-vein systems in Kaghan Valley, Pakistan","authors":"Shun Guo, Anping Chen, Xirun Cai, Yi Chen, Pan Tang, Qiuli Li","doi":"10.1111/jmg.12760","DOIUrl":"10.1111/jmg.12760","url":null,"abstract":"<p>The ultrahigh-pressure (UHP) eclogites from the Kaghan Valley in Pakistan, which formed by the deep subduction of the Indian plate beneath the Asian plate in the Eocene, contain complex metamorphic vein systems (including both isolated veins and vein networks), with mineral assemblages of epidote + quartz + kyanite + phengite ± omphacite ± garnet. The investigations on the Kaghan UHP eclogite-vein systems provide important insights into the mechanism and timing of metamorphic dehydration, fluid flow, and fluid–rock interaction in the deeply subducted Indian continental slab as well as the chemical characteristics of slab-derived, aqueous fluids. Abundant lawsonite pseudomorphs, characterized by prismatic aggregates of epidote, kyanite, and quartz porphyroblasts, are first recognized in the Kaghan eclogites. This observation, in combination with the occurrence of coesite pseudomorphs in epidote porphyroblasts as well as the coexistence of epidote and coesite in the eclogite zircon, indicates the previous existence of UHP lawsonite in these eclogites. Petrological studies and phase equilibrium modelling reveal clockwise <i>P</i>–<i>T</i> trajectories for the Kaghan eclogites that are featured by prograde vectors in lawsonite-stability regions with peak conditions of 3.0–3.4 GPa/650–690°C, followed by isothermal decompression and lawsonite breakdown under UHP conditions during the initial exhumation stage. The results of metamorphic evolution, together with in situ epidote and bulk Sr isotopic analyses, indicate that the fluids responsible for vein systems are most likely derived from the breakdown of UHP lawsonite in the eclogites. SIMS U–Pb dating of metamorphic zircons from the eclogites, integrated with the Raman analysis of inclusions in zircons, indicates that the UHP dehydration of eclogites occurred at 46.4 ± 1.2 and 46.8 ± 0.9 Ma. Analyses of hydrothermal zircons from the veins yielded slightly younger ages of 44.7 ± 1.0 and 44.9 ± 1.4 Ma, which represent the timing of fluid flow and/or vein crystallization during exhumation of the UHP rocks. Mass-balance calculation results, in combination with the vein compositions, show that the fluid flow and fluid-eclogite interaction led to the transfer of Si, Al, Ca, K, and incompatible trace elements from the eclogites into the fluids, from which the vein systems crystallized. This study indicates cold deep subduction of Indian continental crust along low geothermal gradients (6–7°C/km). The UHP fluid liberation and channelized fluid flow occurred during the initial exhumation of the cold Indian slab and are expected to induce the transfer of H<sub>2</sub>O and incompatible trace elements from the Indian slab to the Asian lithosphere, which potentially contributes to the formation of post-collisional magmas. Moreover, we suggest that metamorphic vein systems in UHP lawsonite eclogites offer important constraints on the occurrence and timing of fast slab exhumation in continental subduction-collis","PeriodicalId":16472,"journal":{"name":"Journal of Metamorphic Geology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139752320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paola Manzotti, Daniele Regis, Duane Petts, Riccardo Graziani, Matthew Polivchuk
Garnet is an exceptionally useful mineral for reconstructing the evolution of metamorphic rocks that have experienced multiple tectonic or thermal events. Understanding how garnet crystallizes and its mechanical behaviour is important for establishing a petrological and temporal record of metamorphism and deformation and for recognizing multiple geologic stages within the growth history of an individual crystal. Here, we integrate fine‐scale microstructural (electron backscatter diffraction [EBSD]) and microchemical (Laser Ablation Inductively Coupled Plasma Mass Spectrometry [LA‐ICP‐MS] mapping) data obtained on a polycyclic garnet‐bearing micaschist from the Alpine belt. Results suggest that fragmentation of pre‐Alpine garnet porphyroblasts occurred during the late pre‐Alpine exhumation and/or the onset of the Alpine burial, such that the older pre‐Alpine garnet fragments were transported/redistributed during Alpine deformation and acted as nucleation sites for Alpine garnet growth. These processes produced a bimodal garnet size distribution (millimetre‐ and micrometre‐sized grains). Thermodynamic modelling indicates that Alpine garnet grew during the final stage of burial (from 1.9 GPa 480°C to 2.0 GPa 520°C) and early exhumation (down to 1.6 GPa 540°C) forming continuous idioblastic rims on and sealing fractures in pre‐Alpine garnet grains. We propose that fragmentation–overgrowth processes in polycyclic rocks, coupled with ductile deformation, may produce a bimodal garnet size distribution in response to fragmentation and re‐distribution of pre‐existing grains; these clasts can act as new nucleation sites during a subsequent orogenic cycle.
{"title":"Formation of multistage garnet grains by fragmentation and overgrowth constrained by microchemical and microstructural mapping","authors":"Paola Manzotti, Daniele Regis, Duane Petts, Riccardo Graziani, Matthew Polivchuk","doi":"10.1111/jmg.12761","DOIUrl":"https://doi.org/10.1111/jmg.12761","url":null,"abstract":"Garnet is an exceptionally useful mineral for reconstructing the evolution of metamorphic rocks that have experienced multiple tectonic or thermal events. Understanding how garnet crystallizes and its mechanical behaviour is important for establishing a petrological and temporal record of metamorphism and deformation and for recognizing multiple geologic stages within the growth history of an individual crystal. Here, we integrate fine‐scale microstructural (electron backscatter diffraction [EBSD]) and microchemical (Laser Ablation Inductively Coupled Plasma Mass Spectrometry [LA‐ICP‐MS] mapping) data obtained on a polycyclic garnet‐bearing micaschist from the Alpine belt. Results suggest that fragmentation of pre‐Alpine garnet porphyroblasts occurred during the late pre‐Alpine exhumation and/or the onset of the Alpine burial, such that the older pre‐Alpine garnet fragments were transported/redistributed during Alpine deformation and acted as nucleation sites for Alpine garnet growth. These processes produced a bimodal garnet size distribution (millimetre‐ and micrometre‐sized grains). Thermodynamic modelling indicates that Alpine garnet grew during the final stage of burial (from 1.9 GPa 480°C to 2.0 GPa 520°C) and early exhumation (down to 1.6 GPa 540°C) forming continuous idioblastic rims on and sealing fractures in pre‐Alpine garnet grains. We propose that fragmentation–overgrowth processes in polycyclic rocks, coupled with ductile deformation, may produce a bimodal garnet size distribution in response to fragmentation and re‐distribution of pre‐existing grains; these clasts can act as new nucleation sites during a subsequent orogenic cycle.","PeriodicalId":16472,"journal":{"name":"Journal of Metamorphic Geology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139825302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}