Leonor Morgado, Estibaliz Gómez-de-Mariscal, Hannah S. Heil, Ricardo Henriques
Optical microscopy is an indispensable tool in life sciences research, but conventional techniques require compromises between imaging parameters like speed, resolution, field of view and phototoxicity. To overcome these limitations, data-driven microscopes incorporate feedback loops between data acquisition and analysis. This review overviews how machine learning enables automated image analysis to optimise microscopy in real time. We first introduce key data-driven microscopy concepts and machine learning methods relevant to microscopy image analysis. Subsequently, we highlight pioneering works and recent advances in integrating machine learning into microscopy acquisition workflows, including optimising illumination, switching modalities and acquisition rates, and triggering targeted experiments. We then discuss the remaining challenges and future outlook. Overall, intelligent microscopes that can sense, analyse and adapt promise to transform optical imaging by opening new experimental possibilities.
{"title":"The rise of data-driven microscopy powered by machine learning","authors":"Leonor Morgado, Estibaliz Gómez-de-Mariscal, Hannah S. Heil, Ricardo Henriques","doi":"10.1111/jmi.13282","DOIUrl":"10.1111/jmi.13282","url":null,"abstract":"<p>Optical microscopy is an indispensable tool in life sciences research, but conventional techniques require compromises between imaging parameters like speed, resolution, field of view and phototoxicity. To overcome these limitations, data-driven microscopes incorporate feedback loops between data acquisition and analysis. This review overviews how machine learning enables automated image analysis to optimise microscopy in real time. We first introduce key data-driven microscopy concepts and machine learning methods relevant to microscopy image analysis. Subsequently, we highlight pioneering works and recent advances in integrating machine learning into microscopy acquisition workflows, including optimising illumination, switching modalities and acquisition rates, and triggering targeted experiments. We then discuss the remaining challenges and future outlook. Overall, intelligent microscopes that can sense, analyse and adapt promise to transform optical imaging by opening new experimental possibilities.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"295 2","pages":"85-92"},"PeriodicalIF":1.5,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.13282","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140039646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marco Andres Acevedo Zamora, Christoph Eckart Schrank, Balz Samuel Kamber
This paper reports on the development of an open-source image analysis software ‘pipeline’ dedicated to petrographic microscopy. Using conventional rock thin sections and images from a standard polarising microscope, the pipeline can classify minerals and subgrains into objects and obtain information about optic-axis orientation. Five metamorphic rocks were chosen to test and illustrate the method. Thin sections were imaged using reflected and cross- and plane-polarised transmitted light. Images were taken at different angles of the polariser and analyser (360° with 10° steps), both with and without the full-lambda plate. The resulting image stacks were analysed with a modular pipeline for optic-axis mapping (POAM). POAM consists of external and internal software packages that register, segment, classify, and interpret the visible light spectra using object-based image analysis (OBIAS). The mapped fields-of-view and grain orientation stereonets of interest are presented in the context of whole-slide images.
Two innovations are reported. First, we used hierarchical tree region merging on blended multimodal images to classify individual grains of rock-forming minerals into objects. Second, we assembled a new optical mineralogy algorithm chain that identifies the mineral slow axis orientation. The c-axis orientation results were verified with scanning electron microscopy electron backscattered diffraction (SEM-EBSD) data. For quartz (uniaxial) in a granite mylonite the test yielded excellent correspondence of c-axis azimuth and good agreement for inclination. For orthorhombic orthopyroxene in a deformed garnet harzburgite, POAM produced acceptable results for slow axis azimuth. In addition, the method identified slight anisotropy in garnet that would not be appreciated by traditional microscopy.
We propose that our method is ideally suited for two commonly performed tasks in mineralogy. First, for mineral grain classification of entire thin sections scans on blended images to provide automated modal abundance estimates and grain size distribution. Second, for prospective fields of view of interest, POAM can rapidly generate slow axis crystal orientation maps from multiangle image stacks on conventionally prepared thin sections for targeting detailed SEM-EBSD studies.
{"title":"Using the traditional microscope for mineral grain orientation determination: A prototype image analysis pipeline for optic-axis mapping (POAM)","authors":"Marco Andres Acevedo Zamora, Christoph Eckart Schrank, Balz Samuel Kamber","doi":"10.1111/jmi.13284","DOIUrl":"10.1111/jmi.13284","url":null,"abstract":"<p>This paper reports on the development of an open-source image analysis software ‘pipeline’ dedicated to petrographic microscopy. Using conventional rock thin sections and images from a standard polarising microscope, the pipeline can classify minerals and subgrains into objects and obtain information about optic-axis orientation. Five metamorphic rocks were chosen to test and illustrate the method. Thin sections were imaged using reflected and cross- and plane-polarised transmitted light. Images were taken at different angles of the polariser and analyser (360° with 10° steps), both with and without the full-lambda plate. The resulting image stacks were analysed with a modular pipeline for optic-axis mapping (POAM). POAM consists of external and internal software packages that register, segment, classify, and interpret the visible light spectra using object-based image analysis (OBIAS). The mapped fields-of-view and grain orientation stereonets of interest are presented in the context of whole-slide images.</p><p>Two innovations are reported. First, we used hierarchical tree region merging on blended multimodal images to classify individual grains of rock-forming minerals into objects. Second, we assembled a new optical mineralogy algorithm chain that identifies the mineral slow axis orientation. The <i>c</i>-axis orientation results were verified with scanning electron microscopy electron backscattered diffraction (SEM-EBSD) data. For quartz (uniaxial) in a granite mylonite the test yielded excellent correspondence of c-axis azimuth and good agreement for inclination. For orthorhombic orthopyroxene in a deformed garnet harzburgite, POAM produced acceptable results for slow axis azimuth. In addition, the method identified slight anisotropy in garnet that would not be appreciated by traditional microscopy.</p><p>We propose that our method is ideally suited for two commonly performed tasks in mineralogy. First, for mineral grain classification of entire thin sections scans on blended images to provide automated modal abundance estimates and grain size distribution. Second, for prospective fields of view of interest, POAM can rapidly generate slow axis crystal orientation maps from multiangle image stacks on conventionally prepared thin sections for targeting detailed SEM-EBSD studies.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"295 2","pages":"147-176"},"PeriodicalIF":1.5,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.13284","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140028248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Migueli Chedrewih, Marta Medala, Christelle Schmid, Emmanuel Garcia, Denis Damidot, Vincent Thiéry
Super sulphated cement (SSC) is a very promising substitute for traditional construction materials (i.e. Portland cement), due to its enhanced durability and particularly low environmental impact. This paper explores the microstructure and certain properties of SSC, focusing on the particular complexities of its microstructure and the difficulties of microanalysis of its hydrates. To do so, SSC paste samples were first cast to identify hydration products using X-ray diffraction, then observed at early age using confocal laser scanning microscopy (CLSM) and at early and late age using scanning electron microscopy. In addition, concrete cores impregnated with fluorescein in order to highlight porosity, cracking and aggregates debonding were observed under UV light using optical microscopy (OM), showing a complete absence of cracking and aggregate debonding. Both microscopy techniques (CLSM and UV light OM) have been applied to this type of binder for the first time. The results show that SSC microstructure is characterised by a sophisticated intergrowth of various phases, including ettringite and amorphous calcium-(alumina)-silicate hydrate gels. Finally, Monte–Carlo simulation of electron-matter has been provided for a better understanding of EDS analysis.
超硫酸盐水泥(SSC)是一种非常有前途的传统建筑材料(即硅酸盐水泥)的替代品,因为它具有更高的耐久性和特别低的环境影响。本文探讨了超硫酸盐水泥的微观结构和某些特性,重点是其微观结构的特殊复杂性以及对其水合物进行微观分析的困难。为此,首先浇注了 SSC 浆料样品,使用 X 射线衍射法确定水化产物,然后使用共焦激光扫描显微镜(CLSM)观察早期龄期,并使用扫描电子显微镜观察早期和晚期龄期。此外,还使用光学显微镜(OM)在紫外光下观察浸有荧光素的混凝土芯,以突出孔隙率、开裂和集料脱落,结果显示完全没有开裂和集料脱落。这两种显微镜技术(CLSM 和紫外光 OM)都是首次应用于这种类型的粘结剂。结果表明,SSC 的微观结构特点是各种相的复杂交错生长,包括乙长石和无定形的水合硅酸钙(氧化铝)凝胶。最后,为了更好地理解 EDS 分析,还提供了电子-物质的蒙特卡洛模拟。
{"title":"Application of various microscopy techniques to study early-age and longer-term behaviour of super sulphated cement microstructure","authors":"Migueli Chedrewih, Marta Medala, Christelle Schmid, Emmanuel Garcia, Denis Damidot, Vincent Thiéry","doi":"10.1111/jmi.13281","DOIUrl":"10.1111/jmi.13281","url":null,"abstract":"<p>Super sulphated cement (SSC) is a very promising substitute for traditional construction materials (i.e. Portland cement), due to its enhanced durability and particularly low environmental impact. This paper explores the microstructure and certain properties of SSC, focusing on the particular complexities of its microstructure and the difficulties of microanalysis of its hydrates. To do so, SSC paste samples were first cast to identify hydration products using X-ray diffraction, then observed at early age using confocal laser scanning microscopy (CLSM) and at early and late age using scanning electron microscopy. In addition, concrete cores impregnated with fluorescein in order to highlight porosity, cracking and aggregates debonding were observed under UV light using optical microscopy (OM), showing a complete absence of cracking and aggregate debonding. Both microscopy techniques (CLSM and UV light OM) have been applied to this type of binder for the first time. The results show that SSC microstructure is characterised by a sophisticated intergrowth of various phases, including ettringite and amorphous calcium-(alumina)-silicate hydrate gels. Finally, Monte–Carlo simulation of electron-matter has been provided for a better understanding of EDS analysis.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"294 2","pages":"155-167"},"PeriodicalIF":2.0,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140012717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Josué David Hernández-Varela, Susana Dianey Gallegos-Cerda, José Jorge Chanona-Pérez, Liliana Edith Rojas Candelas, Eduardo Martínez-Mercado
Nowadays, the use of super-resolution microscopy (SRM) is increasing globally due to its potential application in several fields of life sciences. However, a detailed and comprehensive guide is necessary for understanding a single-frame image's resolution limit. This study was performed to provide information about the structural organisation of isolated cellulose fibres from garlic and agave wastes through fluorophore-based techniques and image analysis algorithms. Confocal microscopy provided overall information on the cellulose fibres’ microstructure, while techniques such as total internal reflection fluorescence microscopy facilitated the study of the plant fibres’ surface structures at a sub-micrometric scale. Furthermore, SIM and single-molecule localisation microscopy (SMLM) using the PALM reconstruction wizard can resolve the network of cellulose fibres at the nanometric level. In contrast, the mean shift super-resolution (MSSR) algorithm successfully determined nanometric structures from confocal microscopy images. Atomic force microscopy was used as a microscopy technique for measuring the size of the fibres. Similar fibre sizes to those evaluated with SIM and SMLM were found using the MSSR algorithm and AFM. However, the MSSR algorithm must be cautiously applied because the selection of thresholding parameters still depends on human visual perception. Therefore, this contribution provides a comparative study of SRM techniques and MSSR algorithm using cellulose fibres as reference material to evaluate the performance of a mathematical algorithm for image processing of bioimages at a nanometric scale. In addition, this work could act as a simple guide for improving the lateral resolution of single-frame fluorescence bioimages when SRM facilities are unavailable.
{"title":"Comparison of the SMLM technique and the MSSR algorithm in confocal microscopy for super-resolved imaging of cellulose fibres","authors":"Josué David Hernández-Varela, Susana Dianey Gallegos-Cerda, José Jorge Chanona-Pérez, Liliana Edith Rojas Candelas, Eduardo Martínez-Mercado","doi":"10.1111/jmi.13287","DOIUrl":"10.1111/jmi.13287","url":null,"abstract":"<p>Nowadays, the use of super-resolution microscopy (SRM) is increasing globally due to its potential application in several fields of life sciences. However, a detailed and comprehensive guide is necessary for understanding a single-frame image's resolution limit. This study was performed to provide information about the structural organisation of isolated cellulose fibres from garlic and agave wastes through fluorophore-based techniques and image analysis algorithms. Confocal microscopy provided overall information on the cellulose fibres’ microstructure, while techniques such as total internal reflection fluorescence microscopy facilitated the study of the plant fibres’ surface structures at a sub-micrometric scale. Furthermore, SIM and single-molecule localisation microscopy (SMLM) using the PALM reconstruction wizard can resolve the network of cellulose fibres at the nanometric level. In contrast, the mean shift super-resolution (MSSR) algorithm successfully determined nanometric structures from confocal microscopy images. Atomic force microscopy was used as a microscopy technique for measuring the size of the fibres. Similar fibre sizes to those evaluated with SIM and SMLM were found using the MSSR algorithm and AFM. However, the MSSR algorithm must be cautiously applied because the selection of thresholding parameters still depends on human visual perception. Therefore, this contribution provides a comparative study of SRM techniques and MSSR algorithm using cellulose fibres as reference material to evaluate the performance of a mathematical algorithm for image processing of bioimages at a nanometric scale. In addition, this work could act as a simple guide for improving the lateral resolution of single-frame fluorescence bioimages when SRM facilities are unavailable.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"296 3","pages":"184-198"},"PeriodicalIF":1.5,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139990341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lukasz Major, D. F. Kopp, R. Major, Jürgen Markus Lackner
Long-term placement of facial implants requires avoiding the formation of fibrous tissue capsules around the artificial material by creating osteoconductive properties of the surface. Most promising approach is the deposition coatings made of materials very similar to bone mineral components, that is, calcium phosphates such as hydroxyapatite (HAp). As part of the research work, an innovative, cost-effective atmospheric pressure plasma deposition (APPD) system was used as a low-temperature coating technology for generating the HAp coatings deposition. Full microstructural characterisation of the coatings using SEM and TEM techniques was carried out in the work. It has been shown that the fully crystalline HAp powder undergoes a transformation during the coatings deposition and the material had a quasi-sintered structure after deposition. The crystalline phase content increased at the coating/substrate interface, while the surface of the HAp was amorphous. This is a very beneficial phenomenon due to the process of bioresorption. The amorphous phase undergoes much faster biodegradation than the crystalline one. In order to increase the bioactivity of the HAp, Zn particles were introduced on the surface of the coating. The TEM microstructural analysis in conjunction with the qualitative analysis of the EDS chemical composition showed that the binding of the Zn particles within the HAp matrix had diffusive character, which is very favourable from the point of view of the quality of the adhesion and the bioactivity of the coating. In the case of such a complex structure and due to its very porous nature, micromechanical analysis was carried out in situ in SEM, that is, by microhardness measurements of both the HAp matrix and the Zn particle. It was shown that the average value of HAp microhardness was 4.395 GPa ± 0.08, while the average value of Zn microhardness was 1.142 GPa ± 0.02
{"title":"Microstructural and micromechanical characteristics of composite osteoconductive coatings deposited by the atmospheric pressure plasma technique","authors":"Lukasz Major, D. F. Kopp, R. Major, Jürgen Markus Lackner","doi":"10.1111/jmi.13285","DOIUrl":"10.1111/jmi.13285","url":null,"abstract":"<p>Long-term placement of facial implants requires avoiding the formation of fibrous tissue capsules around the artificial material by creating osteoconductive properties of the surface. Most promising approach is the deposition coatings made of materials very similar to bone mineral components, that is, calcium phosphates such as hydroxyapatite (HAp). As part of the research work, an innovative, cost-effective atmospheric pressure plasma deposition (APPD) system was used as a low-temperature coating technology for generating the HAp coatings deposition. Full microstructural characterisation of the coatings using SEM and TEM techniques was carried out in the work. It has been shown that the fully crystalline HAp powder undergoes a transformation during the coatings deposition and the material had a quasi-sintered structure after deposition. The crystalline phase content increased at the coating/substrate interface, while the surface of the HAp was amorphous. This is a very beneficial phenomenon due to the process of bioresorption. The amorphous phase undergoes much faster biodegradation than the crystalline one. In order to increase the bioactivity of the HAp, Zn particles were introduced on the surface of the coating. The TEM microstructural analysis in conjunction with the qualitative analysis of the EDS chemical composition showed that the binding of the Zn particles within the HAp matrix had diffusive character, which is very favourable from the point of view of the quality of the adhesion and the bioactivity of the coating. In the case of such a complex structure and due to its very porous nature, micromechanical analysis was carried out in situ in SEM, that is, by microhardness measurements of both the HAp matrix and the Zn particle. It was shown that the average value of HAp microhardness was 4.395 GPa ± 0.08, while the average value of Zn microhardness was 1.142 GPa ± 0.02</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"295 2","pages":"177-190"},"PeriodicalIF":1.5,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139983163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martin Boháč, Anežka Zezulová, Michaela Krejčí Kotlánová, Dana Kubátová, Theodor Staněk, Zdeněk Krejza, Dalibor Všianský, Radek Novotný, Jakub Palovčík, Karel Dvořák
C4AF is considered the least reactive main clinker phase, but its reactivity may be affected by adding supplementary cementitious materials (SCMs). Pure C4AF was synthesised in a laboratory furnace, and the role of silica fume without gypsum on its early hydration properties was monitored. Burning was carried out in four stages to achieve 99% purity of C4AF. Heat flow development was monitored by isothermal calorimetry over 7 days of hydration at 20°C and 40°C. The role of silica fume on hydrogarnet phase katoite (Ca3Al2(SiO4)3 –x(OH)4x x = 1.5–3) formation during early hydration was studied. Rapid dissolution of C4AF, formation of metastable C-(A,F)-H and its conversion to C3(A, F)H6 was evidenced by isothermal calorimetry as a large exotherm. Changes in microstructure during early hydration were documented by SE micrographs, EDS point analyses, X-ray mapping and line scans by SEM-EDS. The phase composition was characterised by DTA-TGA and QXRD after 7 days of hydration. The katoite diffraction pattern is similar for the reference sample and sample with silica fume, but substitution in its structure can be revealed by X-ray microanalyses. The composition of katoite is variable due to the various extent of substitution of 4OH− by SiO44− due to silica fume.
C4 AF 被认为是反应性最低的熟料主相,但其反应性可能会受到添加胶凝辅料(SCM)的影响。在实验室熔炉中合成了纯 C4 AF,并监测了不含石膏的硅灰对其早期水化特性的影响。燃烧分四个阶段进行,使 C4 AF 的纯度达到 99%。在 20°C 和 40°C 水化的 7 天时间里,通过等温量热法对热流发展进行了监测。研究了早期水化过程中硅灰对水榴石相卡托石(Ca3 Al2 (SiO4 )3 - x (OH)4 x x x = 1.5-3)形成的作用。等温量热法显示,C4 AF 快速溶解,形成可转移的 C-(A,F)-H,并转化为 C3 (A,F)H6,产生大量放热。通过 SE 显微照片、EDS 点分析、X 射线制图和 SEM-EDS 线扫描,记录了早期水化过程中微观结构的变化。水化 7 天后,通过 DTA-TGA 和 QXRD 对相组成进行了表征。参考样品和含有硅灰的样品的卡托石衍射图样相似,但通过 X 射线显微分析可以发现其结构中的替代物。由于硅灰对 4OH- 的取代程度不同,卡托石的成分也不同。
{"title":"Early hydration of C4AF with silica fume and its role on katoite composition","authors":"Martin Boháč, Anežka Zezulová, Michaela Krejčí Kotlánová, Dana Kubátová, Theodor Staněk, Zdeněk Krejza, Dalibor Všianský, Radek Novotný, Jakub Palovčík, Karel Dvořák","doi":"10.1111/jmi.13280","DOIUrl":"10.1111/jmi.13280","url":null,"abstract":"<p>C<sub>4</sub>AF is considered the least reactive main clinker phase, but its reactivity may be affected by adding supplementary cementitious materials (SCMs). Pure C<sub>4</sub>AF was synthesised in a laboratory furnace, and the role of silica fume without gypsum on its early hydration properties was monitored. Burning was carried out in four stages to achieve 99% purity of C<sub>4</sub>AF. Heat flow development was monitored by isothermal calorimetry over 7 days of hydration at 20°C and 40°C. The role of silica fume on hydrogarnet phase katoite (Ca<sub>3</sub>Al<sub>2</sub>(SiO<sub>4</sub>)<sub>3 –</sub> <i><sub>x</sub></i>(OH)<sub>4</sub><i><sub>x</sub> x</i> = 1.5–3) formation during early hydration was studied. Rapid dissolution of C<sub>4</sub>AF, formation of metastable C-(A,F)-H and its conversion to C<sub>3</sub>(A, F)H<sub>6</sub> was evidenced by isothermal calorimetry as a large exotherm. Changes in microstructure during early hydration were documented by SE micrographs, EDS point analyses, X-ray mapping and line scans by SEM-EDS. The phase composition was characterised by DTA-TGA and QXRD after 7 days of hydration. The katoite diffraction pattern is similar for the reference sample and sample with silica fume, but substitution in its structure can be revealed by X-ray microanalyses. The composition of katoite is variable due to the various extent of substitution of 4OH<sup>−</sup> by SiO<sub>4</sub><sup>4−</sup> due to silica fume.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"294 2","pages":"168-176"},"PeriodicalIF":2.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139990342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Florian Kleiner, Franz Becker, Christiane Rößler, Horst-Michael Ludwig
To accurately simulate the hydration process of cementitious materials, understanding the growth rate of C-S-H layers around clinker grains is crucial. Nonetheless, the thickness of the hydrate layer shows substantial variation around individual grains, depending on their surrounding. Consequently, it is not feasible to measure hydrate layers manually in a reliable and reproducible manner. To address this challenge, a software has been developed to statistically determine the C-S-H thickness, requiring minimal manual interventions for thresholding and for setting limits like particle size or circularity.
This study presents a tool, which automatically identifies suitable clinker grains and and perform statistical measurements of their hydrate layer up to a specimen age of 28 days. The findings reveal a significant increase in the C-S-H layer, starting from 0.45