Anett Jannasch, Silke Tulok, Chukwuebuka William Okafornta, Thomas Kugel, Michele Bortolomeazzi, Tom Boissonnet, Christian Schmidt, Andy Vogelsang, Claudia Dittfeld, Sems-Malte Tugtekin, Klaus Matschke, Leocadia Paliulis, Carola Thomas, Dirk Lindemann, Gunar Fabig, Thomas Müller-Reichert
Modern bioimaging core facilities at research institutions are essential for managing and maintaining high-end instruments, providing training and support for researchers in experimental design, image acquisition and data analysis. An important task for these facilities is the professional management of complex multidimensional bioimaging data, which are often produced in large quantity and very different file formats. This article details the process that led to successfully implementing the OME Remote Objects system (OMERO) for bioimage-specific research data management (RDM) at the Core Facility Cellular Imaging (CFCI) at the Technische Universität Dresden (TU Dresden). Ensuring compliance with the FAIR (findable, accessible, interoperable, reusable) principles, we outline here the challenges that we faced in adapting data handling and storage to a new RDM system. These challenges included the introduction of a standardised group-specific naming convention, metadata curation with tagging and Key–Value pairs, and integration of existing image processing workflows. By sharing our experiences, this article aims to provide insights and recommendations for both individual researchers and educational institutions intending to implement OMERO as a management system for bioimaging data. We showcase how tailored decisions and structured approaches lead to successful outcomes in RDM practices.
Lay description: Modern bioimaging facilities at research institutions are crucial for managing advanced equipment and supporting scientists in their research. These facilities help with designing experiments, capturing images, and analyzing data. One of their key tasks is organizing and managing large amounts of complex image data, which often comes in various file formats and are difficult to handle.
This article explains how the Core Facility Cellular Imaging (CFCI) at Technische Universität Dresden successfully implemented a specialized system called OMERO. With this system it is possible to manage and organize bioimaging data sustainably in a way that they are findable, accessible, interoperable and reusable according the FAIR principles. We describe the practical implementation process on exemplary projects within scientific research and medical education. We discuss the challenges we faced, such as creating a standard way to name files, organizing important information about the images (known as metadata), and ensuring that existing image processing methods could work with the new system.
By sharing our experience, we aim to offer practical advice and recommendations for other researchers and institutions interested in using OMERO for managing their bioimaging data. We highlight how careful planning and structured approaches can lead to successful data management practices, making it easier for researchers to store, access, and reuse their valuable data.
{"title":"Setting up an institutional OMERO environment for bioimage data: Perspectives from both facility staff and users","authors":"Anett Jannasch, Silke Tulok, Chukwuebuka William Okafornta, Thomas Kugel, Michele Bortolomeazzi, Tom Boissonnet, Christian Schmidt, Andy Vogelsang, Claudia Dittfeld, Sems-Malte Tugtekin, Klaus Matschke, Leocadia Paliulis, Carola Thomas, Dirk Lindemann, Gunar Fabig, Thomas Müller-Reichert","doi":"10.1111/jmi.13360","DOIUrl":"10.1111/jmi.13360","url":null,"abstract":"<p>Modern bioimaging core facilities at research institutions are essential for managing and maintaining high-end instruments, providing training and support for researchers in experimental design, image acquisition and data analysis. An important task for these facilities is the professional management of complex multidimensional bioimaging data, which are often produced in large quantity and very different file formats. This article details the process that led to successfully implementing the OME Remote Objects system (OMERO) for bioimage-specific research data management (RDM) at the Core Facility Cellular Imaging (CFCI) at the Technische Universität Dresden (TU Dresden). Ensuring compliance with the FAIR (findable, accessible, interoperable, reusable) principles, we outline here the challenges that we faced in adapting data handling and storage to a new RDM system. These challenges included the introduction of a standardised group-specific naming convention, metadata curation with tagging and Key–Value pairs, and integration of existing image processing workflows. By sharing our experiences, this article aims to provide insights and recommendations for both individual researchers and educational institutions intending to implement OMERO as a management system for bioimaging data. We showcase how tailored decisions and structured approaches lead to successful outcomes in RDM practices.</p><p><b>Lay description</b>: Modern bioimaging facilities at research institutions are crucial for managing advanced equipment and supporting scientists in their research. These facilities help with designing experiments, capturing images, and analyzing data. One of their key tasks is organizing and managing large amounts of complex image data, which often comes in various file formats and are difficult to handle.</p><p>This article explains how the Core Facility Cellular Imaging (CFCI) at Technische Universität Dresden successfully implemented a specialized system called OMERO. With this system it is possible to manage and organize bioimaging data sustainably in a way that they are findable, accessible, interoperable and reusable according the FAIR principles. We describe the practical implementation process on exemplary projects within scientific research and medical education. We discuss the challenges we faced, such as creating a standard way to name files, organizing important information about the images (known as metadata), and ensuring that existing image processing methods could work with the new system.</p><p>By sharing our experience, we aim to offer practical advice and recommendations for other researchers and institutions interested in using OMERO for managing their bioimaging data. We highlight how careful planning and structured approaches can lead to successful data management practices, making it easier for researchers to store, access, and reuse their valuable data.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"297 1","pages":"105-119"},"PeriodicalIF":1.5,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.13360","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lalita Pal, Eduard Belausov, Vikas Dwivedi, Sela Yechezkel, Einat Sadot
The endoplasmic reticulum (ER) is the largest organelle in terms of membrane content, occupying the entire cytoplasmic volume. It is tethered to the cell cortex through ER-plasma membrane contact sites (EPCS). Previous studies have shown that EPCSs labelled by VAP27 align with cortical microtubules, and that ER tubules elongate along microtubules. Here, we addressed the question whether this relationship is bidirectional, with EPCSs influencing microtubule organisation. Using TIRF microscopy to track EPCSs and microtubule dynamics simultaneously, we demonstrate that while EPCSs remain stable, microtubules are highly dynamic and can adjust their positioning based on nearby EPCS in Arabidopsis cotyledon epidermis. In lobes of epidermal cells enclosed by two indentations, where microtubules bundle together, EPCSs flank the bundles and exhibit a distinctive arrangement, forming symmetric arcs in relation to the lobe axis. In guard cells, transversely oriented ER tubules co-align with microtubules. Disrupting microtubules with the drug oryzalin leads to transient guard cells-ER remodelling, followed by its reorganisation into transverse tubules before microtubule recovery. Taken together our observations suggest, that the positioning of EPCSs and cortical microtubules, can affect each other and the organisation of cortical ER.
{"title":"The mutual influence of microtubules and the cortical ER on their coordinated organisation","authors":"Lalita Pal, Eduard Belausov, Vikas Dwivedi, Sela Yechezkel, Einat Sadot","doi":"10.1111/jmi.13356","DOIUrl":"10.1111/jmi.13356","url":null,"abstract":"<p>The endoplasmic reticulum (ER) is the largest organelle in terms of membrane content, occupying the entire cytoplasmic volume. It is tethered to the cell cortex through ER-plasma membrane contact sites (EPCS). Previous studies have shown that EPCSs labelled by VAP27 align with cortical microtubules, and that ER tubules elongate along microtubules. Here, we addressed the question whether this relationship is bidirectional, with EPCSs influencing microtubule organisation. Using TIRF microscopy to track EPCSs and microtubule dynamics simultaneously, we demonstrate that while EPCSs remain stable, microtubules are highly dynamic and can adjust their positioning based on nearby EPCS in Arabidopsis cotyledon epidermis. In lobes of epidermal cells enclosed by two indentations, where microtubules bundle together, EPCSs flank the bundles and exhibit a distinctive arrangement, forming symmetric arcs in relation to the lobe axis. In guard cells, transversely oriented ER tubules co-align with microtubules. Disrupting microtubules with the drug oryzalin leads to transient guard cells-ER remodelling, followed by its reorganisation into transverse tubules before microtubule recovery. Taken together our observations suggest, that the positioning of EPCSs and cortical microtubules, can affect each other and the organisation of cortical ER.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"297 1","pages":"96-104"},"PeriodicalIF":1.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629934/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roldan, D., Redenbach, C., Schladitz, K., Kübel, C., & Schlabach, S. (2024). Image quality evaluation for FIB-SEM images. Journal of Microscopy, 293(2), 98-117. https://onlinelibrary.wiley.com/doi/10.1111/jmi.13254
Diego Roldan's affiliation appears as “National University, Bogotá, Colombia”
The correct affiliation is “Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá, Colombia”
We apologise for this error.
Roldan, D., Redenbach, C., Schladitz, K., Kübel, C., & Schlabach, S. (2024)。FIB-SEM 图像的质量评估。Journal of Microscopy, 293(2), 98-117。https://onlinelibrary.wiley.com/doi/10.1111/jmi.13254Diego Roldan 的单位显示为 "National University, Bogotá, Colombia",正确的单位是 "Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá, Colombia",我们对这一错误表示歉意。
{"title":"Correction to “Image quality evaluation for FIB-SEM images”","authors":"","doi":"10.1111/jmi.13355","DOIUrl":"10.1111/jmi.13355","url":null,"abstract":"<p>Roldan, D., Redenbach, C., Schladitz, K., Kübel, C., & Schlabach, S. (2024). Image quality evaluation for FIB-SEM images. <i>Journal of Microscopy</i>, <i>293</i>(2), 98-117. https://onlinelibrary.wiley.com/doi/10.1111/jmi.13254</p><p>Diego Roldan's affiliation appears as “National University, Bogotá, Colombia”</p><p>The correct affiliation is “Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá, Colombia”</p><p>We apologise for this error.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"296 1","pages":"108"},"PeriodicalIF":1.5,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.13355","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vivien Walter, Christopher Parperis, Yujie Guo, Mark Ian Wallace
Interferometric scattering (iSCAT) microscopy enables high-speed and label-free detection of individual molecules and small nanoparticles. Here we apply point spread function engineering to provide adaptive control of iSCAT images using spatial light modulation. With this approach, we demonstrate improved dynamic spatial filtering, real-time background subtraction, focus control, and signal modulation based on sample orientation.
{"title":"Spatial light modulation for interferometric scattering microscopy","authors":"Vivien Walter, Christopher Parperis, Yujie Guo, Mark Ian Wallace","doi":"10.1111/jmi.13347","DOIUrl":"10.1111/jmi.13347","url":null,"abstract":"<p>Interferometric scattering (iSCAT) microscopy enables high-speed and label-free detection of individual molecules and small nanoparticles. Here we apply point spread function engineering to provide adaptive control of iSCAT images using spatial light modulation. With this approach, we demonstrate improved dynamic spatial filtering, real-time background subtraction, focus control, and signal modulation based on sample orientation.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"297 1","pages":"88-95"},"PeriodicalIF":1.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629933/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amirafshar Moshtaghpour, Abner Velazco-Torrejon, Daniel Nicholls, Alex W. Robinson, Angus I. Kirkland, Nigel D. Browning
Despite the widespread use of Scanning Transmission Electron Microscopy (STEM) for observing the structure of materials at the atomic scale, a detailed understanding of some relevant electron beam damage mechanisms is limited. Recent reports suggest that certain types of damage can be modelled as a diffusion process and that the accumulation effects of this process must be kept low in order to reduce damage. We therefore develop an explicit mathematical formulation of spatiotemporal diffusion processes in STEM that take into account both instrument and sample parameters. Furthermore, our framework can aid the design of Diffusion Controlled Sampling (DCS) strategies using optimally selected probe positions in STEM, that constrain the cumulative diffusion distribution. Numerical simulations highlight the variability of the cumulative diffusion distribution for different experimental STEM configurations. These analytical and numerical frameworks can subsequently be used for careful design of 2- and 4-dimensional STEM experiments where beam damage is minimised.
{"title":"Diffusion distribution model for damage mitigation in scanning transmission electron microscopy","authors":"Amirafshar Moshtaghpour, Abner Velazco-Torrejon, Daniel Nicholls, Alex W. Robinson, Angus I. Kirkland, Nigel D. Browning","doi":"10.1111/jmi.13351","DOIUrl":"10.1111/jmi.13351","url":null,"abstract":"<p>Despite the widespread use of Scanning Transmission Electron Microscopy (STEM) for observing the structure of materials at the atomic scale, a detailed understanding of some relevant electron beam damage mechanisms is limited. Recent reports suggest that certain types of damage can be modelled as a diffusion process and that the accumulation effects of this process must be kept low in order to reduce damage. We therefore develop an explicit mathematical formulation of spatiotemporal diffusion processes in STEM that take into account both instrument and sample parameters. Furthermore, our framework can aid the design of Diffusion Controlled Sampling (DCS) strategies using optimally selected probe positions in STEM, that constrain the cumulative diffusion distribution. Numerical simulations highlight the variability of the cumulative diffusion distribution for different experimental STEM configurations. These analytical and numerical frameworks can subsequently be used for careful design of 2- and 4-dimensional STEM experiments where beam damage is minimised.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"297 1","pages":"57-77"},"PeriodicalIF":1.5,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629935/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rafael Álvarez-Chimal, César Rodríguez-Cruz, Carlos Alvarez-Gayosso, Jesús A. Arenas-Alatorre
<p>This study aimed to evaluate dental adhesives containing different concentrations of zinc oxide nanoparticles (ZnO-NPs) for their use in the treatment of dental fluorosis, observe the interaction of the adhesive on healthy enamel surfaces and with mild and moderate fluorosis, measure the adhesive strength and fluorosis, and determine the phosphorus (P) and calcium (Ca) content on these surfaces, as a reference for the potential use of this adhesive with ZnO-NPs for dental fluorosis treatment.</p><p>Transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM) were used to characterise the ZnO-NPs and analyse the weight percentages of P and Ca in the enamel using X-ray energy dispersive spectroscopy (EDS) and the adhesive strength using a universal mechanical testing machine.</p><p>FESEM characterisation revealed that the ZnO-NPs were less than 100 nm in size, with quasi-spherical and hexagonal prism shapes. The synthesis of the ZnO-NPs was confirmed by TEM, revealing their hexagonal crystalline structure. The adhesive strength by the universal mechanical testing machine showed that the adhesive with a 3% wt. concentration of ZnO-NPs was better in the three groups of teeth, showing higher adhesive strength in teeth with mild (15.15 MPa) and moderate (12.76 MPa) fluorosis surfaces, and was even higher than that in healthy teeth (9.65 MPa).</p><p>EDS analysis showed that teeth with mild and moderate fluorosis had the highest weight percentages of P and Ca, but there were no statistically significant differences compared to healthy teeth and teeth treated with adhesives.</p><p><b>Lay description</b>: This study focused on testing a new dental adhesive containing small particles called ZnO nanoparticles (ZnO-NPs). This study aimed to demonstrate whether this adhesive with ZnO-NPs could be useful for treating dental fluorosis by improving its adhesion to teeth.</p><p>One of the first objectives was to determine whether the dental adhesive could adhere better to teeth affected by mild or moderate fluorosis than to healthy teeth by measuring whether the levels of two important elements for healthy teeth, calcium (Ca) and phosphorus (P), were affected by the adhesive.</p><p>The size and shape of the small particles and teeth with mild or moderate fluorosis were observed using scanning electron microscopy. The nanoparticles were small (< 100 nm) and had specific quasi-spherical and hexagonal prismatic shapes. More damage to the enamel was observed in teeth with mild or moderate fluorosis than in healthy teeth.</p><p>The adhesive strength test demonstrated that the dental adhesive with 3% ZnO-NPs had the best adhesion on all healthy conditions of teeth. It was particularly effective in teeth with mild or moderate fluorosis.</p><p>Finally, the evaluation of the levels of P and Ca on the enamel showed that teeth with fluorosis had higher levels of these elements, but using the dental adhesive with ZnO-NPs did not change
本研究旨在评估含有不同浓度氧化锌纳米粒子(ZnO-NPs)的牙科粘合剂在氟斑牙治疗中的应用,观察粘合剂与健康珐琅质表面以及轻度和中度氟斑牙表面的相互作用,测量粘合剂的强度和氟斑牙,并测定这些表面的磷(P)和钙(Ca)含量,为这种含有 ZnO-NPs 的粘合剂在氟斑牙治疗中的潜在应用提供参考。使用透射电子显微镜(TEM)和场发射扫描电子显微镜(FESEM)对 ZnO-NPs 进行表征,并使用 X 射线能量色散光谱(EDS)分析珐琅质中磷(P)和钙(Ca)的重量百分比,以及使用通用机械试验机分析粘合强度。FESEM 表征显示,ZnO-NPs 的尺寸小于 100 nm,形状为准球形和六方棱柱形。ZnO-NPs 的合成得到了 TEM 的证实,显示了其六方晶体结构。万能机械试验机的粘接强度表明,在三组牙齿中,重量浓度为 3% 的 ZnO-NPs 粘合剂的粘接强度更好,在轻度(15.15 兆帕)和中度(12.76 兆帕)氟斑牙表面的粘接强度更高,甚至高于健康牙齿(9.65 兆帕)。EDS 分析表明,轻度和中度氟斑牙中 P 和 Ca 的重量百分比最高,但与健康牙齿和用粘合剂处理过的牙齿相比,没有显著的统计学差异。铺垫说明:本研究重点测试了一种新型牙科粘合剂,该粘合剂含有被称为氧化锌纳米颗粒(ZnO-NPs)的小颗粒。这项研究旨在证明这种含有 ZnO-NPs 的粘合剂是否可以通过提高其对牙齿的粘附力来治疗氟斑牙。研究的首要目标之一是通过测量健康牙齿的两种重要元素--钙(Ca)和磷(P)的含量是否受到粘合剂的影响,确定牙科粘合剂与健康牙齿相比,是否能更好地粘合受轻度或中度氟斑牙影响的牙齿。使用扫描电子显微镜观察了小颗粒和轻度或中度氟斑牙的大小和形状。纳米颗粒很小(< 100 nm),具有特定的准球形和六角棱柱形。与健康牙齿相比,轻度或中度氟斑牙的珐琅质受到的损害更大。粘接强度测试表明,含 3% ZnO-NPs 的牙科粘合剂在所有健康牙齿上的粘接效果最好。它对轻度或中度氟斑牙尤其有效。最后,对牙釉质上 P 和 Ca 含量的评估表明,氟斑牙中这些元素的含量较高,但使用含 ZnO-NPs 的牙科粘合剂并没有显著改变这些元素的含量,因为粘合剂对这些表面的粘附力更强,从而避免了更大程度的脱落。总之,在牙科粘合剂中添加这些小颗粒可能是治疗氟斑牙的一种选择。它的粘附性很好,而且不会影响牙齿中重要元素的含量。
{"title":"Study of ZnO nanoparticle-doped dental adhesives on enamels with fluorosis: Electron microscopy, elemental composition and shear bond strength analysis","authors":"Rafael Álvarez-Chimal, César Rodríguez-Cruz, Carlos Alvarez-Gayosso, Jesús A. Arenas-Alatorre","doi":"10.1111/jmi.13353","DOIUrl":"10.1111/jmi.13353","url":null,"abstract":"<p>This study aimed to evaluate dental adhesives containing different concentrations of zinc oxide nanoparticles (ZnO-NPs) for their use in the treatment of dental fluorosis, observe the interaction of the adhesive on healthy enamel surfaces and with mild and moderate fluorosis, measure the adhesive strength and fluorosis, and determine the phosphorus (P) and calcium (Ca) content on these surfaces, as a reference for the potential use of this adhesive with ZnO-NPs for dental fluorosis treatment.</p><p>Transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM) were used to characterise the ZnO-NPs and analyse the weight percentages of P and Ca in the enamel using X-ray energy dispersive spectroscopy (EDS) and the adhesive strength using a universal mechanical testing machine.</p><p>FESEM characterisation revealed that the ZnO-NPs were less than 100 nm in size, with quasi-spherical and hexagonal prism shapes. The synthesis of the ZnO-NPs was confirmed by TEM, revealing their hexagonal crystalline structure. The adhesive strength by the universal mechanical testing machine showed that the adhesive with a 3% wt. concentration of ZnO-NPs was better in the three groups of teeth, showing higher adhesive strength in teeth with mild (15.15 MPa) and moderate (12.76 MPa) fluorosis surfaces, and was even higher than that in healthy teeth (9.65 MPa).</p><p>EDS analysis showed that teeth with mild and moderate fluorosis had the highest weight percentages of P and Ca, but there were no statistically significant differences compared to healthy teeth and teeth treated with adhesives.</p><p><b>Lay description</b>: This study focused on testing a new dental adhesive containing small particles called ZnO nanoparticles (ZnO-NPs). This study aimed to demonstrate whether this adhesive with ZnO-NPs could be useful for treating dental fluorosis by improving its adhesion to teeth.</p><p>One of the first objectives was to determine whether the dental adhesive could adhere better to teeth affected by mild or moderate fluorosis than to healthy teeth by measuring whether the levels of two important elements for healthy teeth, calcium (Ca) and phosphorus (P), were affected by the adhesive.</p><p>The size and shape of the small particles and teeth with mild or moderate fluorosis were observed using scanning electron microscopy. The nanoparticles were small (< 100 nm) and had specific quasi-spherical and hexagonal prismatic shapes. More damage to the enamel was observed in teeth with mild or moderate fluorosis than in healthy teeth.</p><p>The adhesive strength test demonstrated that the dental adhesive with 3% ZnO-NPs had the best adhesion on all healthy conditions of teeth. It was particularly effective in teeth with mild or moderate fluorosis.</p><p>Finally, the evaluation of the levels of P and Ca on the enamel showed that teeth with fluorosis had higher levels of these elements, but using the dental adhesive with ZnO-NPs did not change ","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"297 1","pages":"78-87"},"PeriodicalIF":1.5,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629932/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chvalova, V., Vomastek, T., & Grousl, T. (2024). Comparison of holotomographic microscopy and coherence-controlled holographic microscopy. Journal of Microscopy, 294(1), 5–13. https://onlinelibrary.wiley.com/doi/10.1111/jmi.13260
In the Acknowledgements, the grant number “Ministry of Health project NU22-03-00197 (to TV)” was incorrect. This should have read: “Ministry of Health project NU23-03-00557 (to TV)”.
{"title":"Correction to “Comparison of holotomographic microscopy and coherence-controlled holographic microscopy”","authors":"","doi":"10.1111/jmi.13354","DOIUrl":"10.1111/jmi.13354","url":null,"abstract":"<p>Chvalova, V., Vomastek, T., & Grousl, T. (2024). Comparison of holotomographic microscopy and coherence-controlled holographic microscopy. <i>Journal of Microscopy</i>, <i>294</i>(1), 5–13. https://onlinelibrary.wiley.com/doi/10.1111/jmi.13260</p><p>In the Acknowledgements, the grant number “Ministry of Health project NU22-03-00197 (to TV)” was incorrect. This should have read: “Ministry of Health project NU23-03-00557 (to TV)”.</p><p>We apologise for this error.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"296 1","pages":"107"},"PeriodicalIF":1.5,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.13354","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A three-dimensional (3D) microstructural volume is reconstructed from a stack of two-dimensional sections which was obtained by serial sectioning coupled with electron back scattering diffraction (EBSD) mapping of a 316L austenitic stainless steel. A new alignment algorithm named linear translation by minimising the indicator (LTMI) is proposed to reduce the translational misalignments between adjacent sections by referencing to coherent twin boundaries which are flat and lying on {111} planes. The angular difference between the measured orientation of a flat twin boundary and that of the {111} plane is used as an indicator of the accuracy of the alignment operations. This indicator is minimised through linear translations of the centroids of triangular facets, which constitute grain boundaries at a distance not restricted by the in-plane step size of the EBSD maps. And hence the systematic trend in the translational misalignments can be effectively reduced. The LTMI alignment procedure proposed herein effectively corrects the misalignments remained by other methods on a 3D-EBSD data prepared using serial sectioning methods. The accuracy in distinguishing between coherent and incoherent twin boundaries is significantly improved.
{"title":"An alignment algorithm using coherent twin boundaries as internal reference in 3D-EBSD","authors":"Heng Li, Shuang Xia, Qin Bai, Tingguang Liu, Yong Zhang","doi":"10.1111/jmi.13352","DOIUrl":"10.1111/jmi.13352","url":null,"abstract":"<p>A three-dimensional (3D) microstructural volume is reconstructed from a stack of two-dimensional sections which was obtained by serial sectioning coupled with electron back scattering diffraction (EBSD) mapping of a 316L austenitic stainless steel. A new alignment algorithm named linear translation by minimising the indicator (LTMI) is proposed to reduce the translational misalignments between adjacent sections by referencing to coherent twin boundaries which are flat and lying on {111} planes. The angular difference between the measured orientation of a flat twin boundary and that of the {111} plane is used as an indicator of the accuracy of the alignment operations. This indicator is minimised through linear translations of the centroids of triangular facets, which constitute grain boundaries at a distance not restricted by the in-plane step size of the EBSD maps. And hence the systematic trend in the translational misalignments can be effectively reduced. The LTMI alignment procedure proposed herein effectively corrects the misalignments remained by other methods on a 3D-EBSD data prepared using serial sectioning methods. The accuracy in distinguishing between coherent and incoherent twin boundaries is significantly improved.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"297 1","pages":"43-56"},"PeriodicalIF":1.5,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Electron energy loss spectra collected from fresh and corroded silver nanoparticles are compared with those from a number of reference materials, focusing on the M4,5 edge. Chemical shifts and changes in the energy loss near edge structure (ELNES) are described and found to be sufficient to distinguish metallic silver from chemically oxidised silver. The measurements, in conjunction with electron energy loss spectrum imaging, are used to assess the mechanisms for atmospheric corrosion of silver nanoparticles. We unambiguously assign the corrosion product under atmospheric conditions to be silver sulphide, but show the reaction process to be distinctly inhomogeneous, producing a variety of types of corroded particles.
LAY DESCRIPTION: >Here, we use analytical electron microscopy to track the corrosion of silver nanoparticles and present chemical maps of the corrosion products. We show clear spectroscopic differences between metallic and corroded silver using the M4,5 electron energy loss spectral feature, which is not commonly studied. Our study shows that corrosion is due to interactions with sulphur in the atmosphere; and the corrosion is not uniform, but appears to develop from specific points on the surface of the nanoparticles.
{"title":"Analysis of the Ag M4,5 EELS edge to study silver nanoparticle corrosion","authors":"JC Brennan, DA MacLaren","doi":"10.1111/jmi.13348","DOIUrl":"10.1111/jmi.13348","url":null,"abstract":"<p>Electron energy loss spectra collected from fresh and corroded silver nanoparticles are compared with those from a number of reference materials, focusing on the M<sub>4,5</sub> edge. Chemical shifts and changes in the energy loss near edge structure (ELNES) are described and found to be sufficient to distinguish metallic silver from chemically oxidised silver. The measurements, in conjunction with electron energy loss spectrum imaging, are used to assess the mechanisms for atmospheric corrosion of silver nanoparticles. We unambiguously assign the corrosion product under atmospheric conditions to be silver sulphide, but show the reaction process to be distinctly inhomogeneous, producing a variety of types of corroded particles.</p><p><b>LAY DESCRIPTION</b>: >Here, we use analytical electron microscopy to track the corrosion of silver nanoparticles and present chemical maps of the corrosion products. We show clear spectroscopic differences between metallic and corroded silver using the M<sub>4,5</sub> electron energy loss spectral feature, which is not commonly studied. Our study shows that corrosion is due to interactions with sulphur in the atmosphere; and the corrosion is not uniform, but appears to develop from specific points on the surface of the nanoparticles.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"297 1","pages":"35-42"},"PeriodicalIF":1.5,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629928/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}