首页 > 最新文献

Journal of microscopy最新文献

英文 中文
Exploring collagen fibrillogenesis at the nanoscale: Tip-enhanced Raman imaging of protofibrils 在纳米尺度上探索胶原纤维的形成:原纤维的尖端增强拉曼成像。
IF 1.9 4区 工程技术 Q3 MICROSCOPY Pub Date : 2025-08-29 DOI: 10.1111/jmi.70029
Maria A. Paularie, Emerson A. Fonseca, Vitor Monken, André G. Pereira, Rafael P. Vieira, Ado Jorio

Collagen, a key structural component of the extracellular matrix, assembles through a hierarchical process of fibrillogenesis. Despite extensive studies on mature collagen fibrils, intermediates such as protofibrils remain underexplored, particularly at the nanoscale. This study presents hyperspectral tip-enhanced Raman spectroscopy (TERS) imaging of collagen protofibrils, offering chemical and structural insights into early fibrillogenesis by acquiring nanoscale molecular profiles of collagen intermediates. TERS spectra, complemented by atomic force microscopy (AFM) images, reveal characteristic molecular vibrational modes, including the phenylalanine ring breathing mode, amide II and CH2${rm CH}_2$/CH3${rm CH}_3$ stretching vibrations, with distinct spectral signatures compared to mature fibrils.

胶原蛋白是细胞外基质的关键结构成分,通过纤维形成的分层过程进行组装。尽管对成熟胶原原纤维进行了广泛的研究,但中间产物如原原纤维仍未得到充分的探索,特别是在纳米尺度上。本研究展示了胶原原纤维的高光谱尖端增强拉曼光谱(TERS)成像,通过获得胶原中间体的纳米级分子图谱,为早期纤维形成提供了化学和结构方面的见解。在原子力显微镜(AFM)图像的辅助下,TERS光谱揭示了分子的典型振动模式,包括苯丙氨酸环呼吸模式、酰胺II和ch2 ${rm CH}_2$ / ch3 ${rm CH}_3$拉伸振动,与成熟纤维相比具有明显的光谱特征。
{"title":"Exploring collagen fibrillogenesis at the nanoscale: Tip-enhanced Raman imaging of protofibrils","authors":"Maria A. Paularie,&nbsp;Emerson A. Fonseca,&nbsp;Vitor Monken,&nbsp;André G. Pereira,&nbsp;Rafael P. Vieira,&nbsp;Ado Jorio","doi":"10.1111/jmi.70029","DOIUrl":"10.1111/jmi.70029","url":null,"abstract":"<p>Collagen, a key structural component of the extracellular matrix, assembles through a hierarchical process of fibrillogenesis. Despite extensive studies on mature collagen fibrils, intermediates such as protofibrils remain underexplored, particularly at the nanoscale. This study presents hyperspectral tip-enhanced Raman spectroscopy (TERS) imaging of collagen protofibrils, offering chemical and structural insights into early fibrillogenesis by acquiring nanoscale molecular profiles of collagen intermediates. TERS spectra, complemented by atomic force microscopy (AFM) images, reveal characteristic molecular vibrational modes, including the phenylalanine ring breathing mode, amide II and <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>CH</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <annotation>${rm CH}_2$</annotation>\u0000 </semantics></math>/<span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>CH</mi>\u0000 <mn>3</mn>\u0000 </msub>\u0000 <annotation>${rm CH}_3$</annotation>\u0000 </semantics></math> stretching vibrations, with distinct spectral signatures compared to mature fibrils.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"301 1","pages":"12-19"},"PeriodicalIF":1.9,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12746377/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144957785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From cells to pixels: A decision tree for designing bioimage analysis pipelines 从细胞到像素:设计生物图像分析管道的决策树。
IF 1.9 4区 工程技术 Q3 MICROSCOPY Pub Date : 2025-08-29 DOI: 10.1111/jmi.70021
Elnaz Fazeli, Robert Haase, Michael Doube, Kota Miura, David Legland

Bioimaging has transformed our understanding of biological processes, yet extracting meaningful information from complex datasets remains a challenge, particularly for biologists without computational expertise. This paper proposes a simple general approach, to help identify which image analysis methods could be relevant for a given image dataset. We first categorise structures commonly observed in bioimage data into different types related to image analysis domains. Based on these types, we provide a list of methods adapted to the quantification of images from each category. Our approach includes illustrative examples and a visual flowchart, to help researchers define analysis objectives clearly. By understanding the diversity of bioimage structures and linking them with appropriate analysis approaches, the framework empowers researchers to navigate bioimage datasets more efficiently. It also aims to foster a common language between researchers and analysts, thereby enhancing mutual understanding and facilitating effective communication.

生物成像已经改变了我们对生物过程的理解,但从复杂的数据集中提取有意义的信息仍然是一个挑战,特别是对于没有计算专业知识的生物学家。本文提出了一个简单的通用方法,以帮助识别哪些图像分析方法可能与给定的图像数据集相关。我们首先将生物图像数据中常见的结构分类为与图像分析领域相关的不同类型。基于这些类型,我们提供了适合于每个类别的图像量化的方法列表。我们的方法包括说明性示例和可视化流程图,以帮助研究人员清楚地定义分析目标。通过理解生物图像结构的多样性,并将它们与适当的分析方法联系起来,该框架使研究人员能够更有效地浏览生物图像数据集。它还旨在培养研究人员和分析人员之间的共同语言,从而增进相互了解,促进有效沟通。
{"title":"From cells to pixels: A decision tree for designing bioimage analysis pipelines","authors":"Elnaz Fazeli,&nbsp;Robert Haase,&nbsp;Michael Doube,&nbsp;Kota Miura,&nbsp;David Legland","doi":"10.1111/jmi.70021","DOIUrl":"10.1111/jmi.70021","url":null,"abstract":"<p>Bioimaging has transformed our understanding of biological processes, yet extracting meaningful information from complex datasets remains a challenge, particularly for biologists without computational expertise. This paper proposes a simple general approach, to help identify which image analysis methods could be relevant for a given image dataset. We first categorise structures commonly observed in bioimage data into different types related to image analysis domains. Based on these types, we provide a list of methods adapted to the quantification of images from each category. Our approach includes illustrative examples and a visual flowchart, to help researchers define analysis objectives clearly. By understanding the diversity of bioimage structures and linking them with appropriate analysis approaches, the framework empowers researchers to navigate bioimage datasets more efficiently. It also aims to foster a common language between researchers and analysts, thereby enhancing mutual understanding and facilitating effective communication.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"300 3","pages":"384-408"},"PeriodicalIF":1.9,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.70021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144957807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contrast by electron microscopy in thick biological specimens 厚生物标本的电镜对比。
IF 1.9 4区 工程技术 Q3 MICROSCOPY Pub Date : 2025-08-26 DOI: 10.1111/jmi.70026
Peter Rez, Lothar Houben, Shahar Seifer, Michael Elbaum

The contributions of coherent bright-field phase and incoherent dark-field amplitude contrast are investigated for thick biological specimens. A model for a T4 phage is constructed and images simulated for both TEM and STEM phase contrast using a multislice code. For TEM, the fraction of the illumination intensity available for phase contrast imaging is limited by the fraction of electrons in the zero loss peak, the plasmon peak, or the Landau distribution peak for very thick specimens. These were measured from electron energy loss spectra recorded from various thicknesses of vitreous ice. The incoherent amplitude contrast is simulated using the Penelope Monte Carlo code. Noise limits the features that can be distinguished under the low-dose conditions required for cryo-EM, even for high electron exposures of 100 electrons/Å2. Since in STEM post specimen optics are not used to form the image inelastically scattered electrons contribute to the recorded intensity. In principle STEM should have an advantage over TEM not just for incoherent amplitude contrast but also for coherent phase contrast beyond the limit of weak phase. The simulations suggest that it should be possible to image features in the phage embedded in 1 µm of vitreous ice when collection angles are optimised for bright or dark-field signals, with best contrast achieved for accelerating voltages of about 700 keV.

研究了厚生物标本中相干明场相位和非相干暗场振幅对比的贡献。构建了T4噬菌体的模型,并使用多片码对TEM和STEM相对比进行了图像模拟。对于TEM,相位对比成像可用的照明强度分数受限于零损耗峰、等离子体峰或非常厚的样品的朗道分布峰中的电子分数。这些是通过记录不同厚度玻璃冰的电子能量损失谱来测量的。用Penelope蒙特卡罗代码模拟了非相干振幅对比。噪声限制了在低温电镜所需的低剂量条件下可以区分的特征,即使是100个电子/Å2的高电子暴露。由于在STEM后标本光学不用于形成图像非弹性散射电子有助于记录的强度。原则上,STEM不仅在非相干振幅对比方面比TEM有优势,而且在超过弱相位限制的相干相位对比方面也比TEM有优势。模拟表明,当采集角度针对亮场或暗场信号进行优化时,嵌入在1 μ m玻璃冰中的噬菌体应该可以成像特征,在约700 keV的加速电压下实现最佳对比度。
{"title":"Contrast by electron microscopy in thick biological specimens","authors":"Peter Rez,&nbsp;Lothar Houben,&nbsp;Shahar Seifer,&nbsp;Michael Elbaum","doi":"10.1111/jmi.70026","DOIUrl":"10.1111/jmi.70026","url":null,"abstract":"<p>The contributions of coherent bright-field phase and incoherent dark-field amplitude contrast are investigated for thick biological specimens. A model for a T4 phage is constructed and images simulated for both TEM and STEM phase contrast using a multislice code. For TEM, the fraction of the illumination intensity available for phase contrast imaging is limited by the fraction of electrons in the zero loss peak, the plasmon peak, or the Landau distribution peak for very thick specimens. These were measured from electron energy loss spectra recorded from various thicknesses of vitreous ice. The incoherent amplitude contrast is simulated using the Penelope Monte Carlo code. Noise limits the features that can be distinguished under the low-dose conditions required for cryo-EM, even for high electron exposures of 100 electrons/Å<sup>2</sup>. Since in STEM post specimen optics are not used to form the image inelastically scattered electrons contribute to the recorded intensity. In principle STEM should have an advantage over TEM not just for incoherent amplitude contrast but also for coherent phase contrast beyond the limit of weak phase. The simulations suggest that it should be possible to image features in the phage embedded in 1 µm of vitreous ice when collection angles are optimised for bright or dark-field signals, with best contrast achieved for accelerating voltages of about 700 keV.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"300 3","pages":"341-355"},"PeriodicalIF":1.9,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.70026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144957837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative corrections for fluctuation electron microscopy 波动电子显微镜的定量校正。
IF 1.9 4区 工程技术 Q3 MICROSCOPY Pub Date : 2025-08-26 DOI: 10.1111/jmi.70027
J. M. Gibson, M. M. J. Treacy

Anomalously low values of the normalised variance in fluctuation electron microscopy (FEM) have been frequently reported. We present three experimental corrections for quantitative interpretation that significantly modify conventional approaches. FEM relies on measurements of intensity statistics in coherent nanodiffraction patterns. We demonstrate that sampling the nanodiffraction patterns with a pixelated detector removes high-frequency signals and reduces statistical variance. The most significant impact is on the background normalised variance, which arises from random atomic alignments and is distinct from the normalised variance peaks associated with the correlated alignments of medium-range order. Indeed, we show that if the peaks are background-subtracted, their height is much less affected by the detector effect, provided the experimental conditions are optimised. We show that shot noise correction must also be adjusted to account for the camera Modulation Transfer Function (MTF) effects. Additionally, we demonstrate through experiment that the traditional method of thickness correction for a-Si is inadequate and propose an alternative approach to address thickness variations. We speculate on the origin of the anomalous thickness effect in terms of displacement decoherence due to sample ‘fluttering’ under irradiation.

波动电子显微镜(FEM)中异常低的归一化方差经常被报道。我们提出了三个实验修正的定量解释,显著修改传统的方法。有限元法依赖于相干纳米衍射模式的强度统计测量。我们证明了用像素化检测器对纳米衍射图进行采样可以去除高频信号并减少统计方差。最显著的影响是背景归一化方差,它来自随机原子排列,不同于与中范围顺序相关排列相关的归一化方差峰。事实上,我们表明,如果峰是背景减去,它们的高度受探测器效应的影响要小得多,只要实验条件是优化的。我们表明,镜头噪声校正也必须调整,以说明相机调制传递函数(MTF)的影响。此外,我们通过实验证明了传统的a-Si厚度校正方法是不够的,并提出了一种替代方法来解决厚度变化。我们从辐射下样品“飘动”引起的位移退相干的角度推测了异常厚度效应的起源。
{"title":"Quantitative corrections for fluctuation electron microscopy","authors":"J. M. Gibson,&nbsp;M. M. J. Treacy","doi":"10.1111/jmi.70027","DOIUrl":"10.1111/jmi.70027","url":null,"abstract":"<p>Anomalously low values of the normalised variance in fluctuation electron microscopy (FEM) have been frequently reported. We present three experimental corrections for quantitative interpretation that significantly modify conventional approaches. FEM relies on measurements of intensity statistics in coherent nanodiffraction patterns. We demonstrate that sampling the nanodiffraction patterns with a pixelated detector removes high-frequency signals and reduces statistical variance. The most significant impact is on the background normalised variance, which arises from random atomic alignments and is distinct from the normalised variance peaks associated with the correlated alignments of medium-range order. Indeed, we show that if the peaks are background-subtracted, their height is much less affected by the detector effect, provided the experimental conditions are optimised. We show that shot noise correction must also be adjusted to account for the camera Modulation Transfer Function (MTF) effects. Additionally, we demonstrate through experiment that the traditional method of thickness correction for a-Si is inadequate and propose an alternative approach to address thickness variations. We speculate on the origin of the anomalous thickness effect in terms of displacement decoherence due to sample ‘fluttering’ under irradiation.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"300 3","pages":"356-365"},"PeriodicalIF":1.9,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144957859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automatic identification and quantification of surface nanoscale pore morphology in coals of different ranks based on AFM, SEM and LP-N2GA 基于原子力显微镜(AFM)、扫描电镜(SEM)和LP-N2GA的不同等级煤表面纳米级孔隙形态自动识别与定量
IF 1.9 4区 工程技术 Q3 MICROSCOPY Pub Date : 2025-08-26 DOI: 10.1111/jmi.70028
Dun Wu, Jianghao Wei, Shoule Zhao, Lin Sun, Yunfeng Li

The pore structure characteristics of coal are crucial for coalbed methane adsorption and migration, carbon storage, and safety in deep coal mining. Although traditional methods can detect pore volume and distribution, they are limited in analysing pore morphology and surface properties. This study employs multiscale techniques including AFM (Atomic force microscopy), SEM (Scanning electron microscopy), and LP-N2GA (Low-Pressure nitrogen gas adsorption) to systematically analyse the impact of coal rank changes on pore structure and its evolutionary process, covering coals from medium-volatile to low-volatile bituminous and anthracite coals. AFM reveals the three-dimensional morphology and quantitative parameters of nanopores, SEM observes meso- and micropore structures, and LP-N2GA verifies pore size distribution. As coal rank increases, surface roughness decreases significantly, the number of pores increases, the average pore diameter decreases, pore morphology transforms from irregular to circular, and porosity increases. Specifically, as the rank of coal increases, the number of nanoring structures rises, while their diameters decrease. Changes in coal rank profoundly affect the nanoring structure, consistent with the evolutionary trend of surface morphology. The combination of AFM and LP-N2GA reveals the role of micropores in gas adsorption. This research not only provides a new perspective for understanding the influence of coal rank changes on pore structure characteristics but also offers a theoretical foundation for coalbed methane development, geological sequestration of carbon dioxide, design of coal-based functional materials, and coal mine safety prevention and control.

煤的孔隙结构特征对煤层气吸附迁移、储碳及深部开采安全至关重要。虽然传统的方法可以检测孔隙体积和分布,但它们在分析孔隙形态和表面性质方面受到限制。本研究采用原子力显微镜(AFM)、扫描电镜(SEM)、低压氮气吸附(LP-N2GA)等多尺度技术,系统分析了煤阶变化对孔隙结构的影响及其演化过程,研究对象包括中挥发分至低挥发分的烟煤和无烟煤。AFM揭示了纳米孔的三维形态和定量参数,SEM观察了介孔和微孔结构,LP-N2GA验证了孔径分布。随着煤阶的增加,表面粗糙度显著降低,孔隙数量增加,平均孔径减小,孔隙形态由不规则向圆形转变,孔隙率增大。具体来说,随着煤阶的增加,纳米环结构的数量增加,而其直径减小。煤阶的变化深刻影响纳米环结构,与表面形貌的演化趋势一致。AFM和LP-N2GA的结合揭示了微孔在气体吸附中的作用。本研究不仅为认识煤阶变化对孔隙结构特征的影响提供了新的视角,而且为煤层气开发、二氧化碳地质封存、煤基功能材料设计、煤矿安全防治等提供了理论依据。
{"title":"Automatic identification and quantification of surface nanoscale pore morphology in coals of different ranks based on AFM, SEM and LP-N2GA","authors":"Dun Wu,&nbsp;Jianghao Wei,&nbsp;Shoule Zhao,&nbsp;Lin Sun,&nbsp;Yunfeng Li","doi":"10.1111/jmi.70028","DOIUrl":"10.1111/jmi.70028","url":null,"abstract":"<p>The pore structure characteristics of coal are crucial for coalbed methane adsorption and migration, carbon storage, and safety in deep coal mining. Although traditional methods can detect pore volume and distribution, they are limited in analysing pore morphology and surface properties. This study employs multiscale techniques including AFM (Atomic force microscopy), SEM (Scanning electron microscopy), and LP-N<sub>2</sub>GA (Low-Pressure nitrogen gas adsorption) to systematically analyse the impact of coal rank changes on pore structure and its evolutionary process, covering coals from medium-volatile to low-volatile bituminous and anthracite coals. AFM reveals the three-dimensional morphology and quantitative parameters of nanopores, SEM observes meso- and micropore structures, and LP-N<sub>2</sub>GA verifies pore size distribution. As coal rank increases, surface roughness decreases significantly, the number of pores increases, the average pore diameter decreases, pore morphology transforms from irregular to circular, and porosity increases. Specifically, as the rank of coal increases, the number of nanoring structures rises, while their diameters decrease. Changes in coal rank profoundly affect the nanoring structure, consistent with the evolutionary trend of surface morphology. The combination of AFM and LP-N<sub>2</sub>GA reveals the role of micropores in gas adsorption. This research not only provides a new perspective for understanding the influence of coal rank changes on pore structure characteristics but also offers a theoretical foundation for coalbed methane development, geological sequestration of carbon dioxide, design of coal-based functional materials, and coal mine safety prevention and control.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"300 3","pages":"366-383"},"PeriodicalIF":1.9,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144957840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reconstruction of structured illumination microscopy for live imaging in low light with lightweight neural networks 基于轻量级神经网络的结构照明显微镜微光成像重建。
IF 1.9 4区 工程技术 Q3 MICROSCOPY Pub Date : 2025-08-22 DOI: 10.1111/jmi.70009
Hesong Jiang, Peihong Wu, Juan Zhang, Xueyuan Wang, Jinkun Zhan, Hexuan Tang

Structured illumination microscopy (SIM) as a type of super-resolution optical microscopy technique has been widely used in the fields of biophysics, neuroscience, and cell biology research. However, this technique often requires high-intensity illumination and multiple image acquisitions to generate a single high-resolution image. This process not only significantly reduces the imaging speed, but also increases the exposure time of samples to intense light, leading to increased phototoxicity and photobleaching issues, especially prominent in live cell imaging. Here, we propose a lightweight Multi-Convolutional UNet (MCU-Net) aiming to maintain efficient super-resolution reconstruction performance by reducing the model parameter quantity. The algorithm integrates multiple convolutional techniques with multi-scale attention mechanisms, enhancing the model's sensitivity to information at different scales and improving its precise recognition ability for image textures and structures, thus enabling high-quality super-resolution reconstruction even under low-light conditions. The overall performance of the model is evaluated in terms of efficiency and accuracy, comparing MCU-Net with deep neural network models (UNet, ScUNet, EDSR, DFCAN) and traditional reconstruction algorithms (Wiener, HiFi, TV) across different cell types, lighting intensities, and various test sets. Experimental results show that compared to other deep learning models, MCU-Net achieves a 12.66% improvement in MS-SSIM and a 50.79% increase in NRMSE index. Its prediction accuracy remains stable even in the presence of low signal-to-noise ratio inputs. Furthermore, it strikes an optimal balance between reconstruction speed and model accuracy, with a 76.10% improvement in inference speed compared to the DFCAN model.

结构照明显微镜作为一种超分辨率光学显微镜技术,已广泛应用于生物物理学、神经科学和细胞生物学等领域的研究。然而,这种技术通常需要高强度照明和多个图像采集来生成单个高分辨率图像。这一过程不仅显著降低了成像速度,而且增加了样品在强光下的曝光时间,导致光毒性和光漂白问题增加,在活细胞成像中尤其突出。在此,我们提出了一种轻量级的多卷积UNet (MCU-Net),旨在通过减少模型参数数量来保持高效的超分辨率重建性能。该算法将多种卷积技术与多尺度注意机制相结合,增强了模型对不同尺度信息的敏感性,提高了模型对图像纹理和结构的精确识别能力,在弱光条件下也能实现高质量的超分辨率重建。在不同细胞类型、光照强度和各种测试集上,将MCU-Net与深度神经网络模型(UNet、ScUNet、EDSR、DFCAN)和传统重建算法(Wiener、HiFi、TV)进行比较,从效率和准确性方面对模型的整体性能进行了评估。实验结果表明,与其他深度学习模型相比,MCU-Net在MS-SSIM上提高了12.66%,在NRMSE指数上提高了50.79%。即使在低信噪比输入的情况下,其预测精度也保持稳定。此外,它在重建速度和模型精度之间取得了最佳平衡,与DFCAN模型相比,推理速度提高了76.10%。
{"title":"Reconstruction of structured illumination microscopy for live imaging in low light with lightweight neural networks","authors":"Hesong Jiang,&nbsp;Peihong Wu,&nbsp;Juan Zhang,&nbsp;Xueyuan Wang,&nbsp;Jinkun Zhan,&nbsp;Hexuan Tang","doi":"10.1111/jmi.70009","DOIUrl":"10.1111/jmi.70009","url":null,"abstract":"<p>Structured illumination microscopy (SIM) as a type of super-resolution optical microscopy technique has been widely used in the fields of biophysics, neuroscience, and cell biology research. However, this technique often requires high-intensity illumination and multiple image acquisitions to generate a single high-resolution image. This process not only significantly reduces the imaging speed, but also increases the exposure time of samples to intense light, leading to increased phototoxicity and photobleaching issues, especially prominent in live cell imaging. Here, we propose a lightweight Multi-Convolutional UNet (MCU-Net) aiming to maintain efficient super-resolution reconstruction performance by reducing the model parameter quantity. The algorithm integrates multiple convolutional techniques with multi-scale attention mechanisms, enhancing the model's sensitivity to information at different scales and improving its precise recognition ability for image textures and structures, thus enabling high-quality super-resolution reconstruction even under low-light conditions. The overall performance of the model is evaluated in terms of efficiency and accuracy, comparing MCU-Net with deep neural network models (UNet, ScUNet, EDSR, DFCAN) and traditional reconstruction algorithms (Wiener, HiFi, TV) across different cell types, lighting intensities, and various test sets. Experimental results show that compared to other deep learning models, MCU-Net achieves a 12.66% improvement in MS-SSIM and a 50.79% increase in NRMSE index. Its prediction accuracy remains stable even in the presence of low signal-to-noise ratio inputs. Furthermore, it strikes an optimal balance between reconstruction speed and model accuracy, with a 76.10% improvement in inference speed compared to the DFCAN model.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"300 3","pages":"325-340"},"PeriodicalIF":1.9,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144957875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defocus correction and noise reduction using a hybrid ptychography and Centre-of-Mass algorithm 使用混合投影和质心算法进行离焦校正和降噪。
IF 1.9 4区 工程技术 Q3 MICROSCOPY Pub Date : 2025-08-21 DOI: 10.1111/jmi.70010
Zhiyuan Ding, Chen Huang, Adrián Pedrazo-Tardajos, Angus I Kirkland, Peter D Nellist

Integrated Centre-of-Mass (iCOM) is a widely used phase-contrast imaging method based on Centre-of-Mass (COM), which makes use of a 4D Scanning Transmission Electron Microscopy (STEM) dataset using an in-focus probe. In this paper, we introduce a novel approach that combines Single-Side Band (SSB) ptychography with COM and iCOM, termed Side Band masked Centre-of-Mass (SBm-COM) and integrated Centre-of-Mass (SBm-iCOM) which is applicable to weak-phase objects. This method compensates for residual aberrations in 4DSTEM datasets while also reducing the noise contribution up to the 2α$2alpha $ resolution limit. The aberration compensation and noise filtering features make the SBm-(i)COM suitable for samples that are difficult to focus or those that require minimal electron fluence. SBm-iCOM transfers the same information as SSB ptychography but results in an intrinsic transfer function that enhances low-frequency information.

集成质心(iCOM)是一种广泛使用的基于质心(COM)的相对比成像方法,它利用了一个聚焦探针的四维扫描透射电子显微镜(STEM)数据集。本文介绍了一种将单侧带(SSB)平面成像与COM和iCOM相结合的新方法,称为单侧带屏蔽质心(SBm-COM)和集成质心(SBm-iCOM),适用于弱相位目标。该方法补偿了4DSTEM数据集中的残余像差,同时还将噪声贡献降低到2 α $2alpha $分辨率限制。像差补偿和噪声滤波特性使SBm-(i)COM适用于难以聚焦或需要最小电子影响的样品。SBm-iCOM传递与SSB型图相同的信息,但产生一个增强低频信息的内在传递函数。
{"title":"Defocus correction and noise reduction using a hybrid ptychography and Centre-of-Mass algorithm","authors":"Zhiyuan Ding,&nbsp;Chen Huang,&nbsp;Adrián Pedrazo-Tardajos,&nbsp;Angus I Kirkland,&nbsp;Peter D Nellist","doi":"10.1111/jmi.70010","DOIUrl":"10.1111/jmi.70010","url":null,"abstract":"<p>Integrated Centre-of-Mass (iCOM) is a widely used phase-contrast imaging method based on Centre-of-Mass (COM), which makes use of a 4D Scanning Transmission Electron Microscopy (STEM) dataset using an in-focus probe. In this paper, we introduce a novel approach that combines Single-Side Band (SSB) ptychography with COM and iCOM, termed Side Band masked Centre-of-Mass (SBm-COM) and integrated Centre-of-Mass (SBm-iCOM) which is applicable to weak-phase objects. This method compensates for residual aberrations in 4DSTEM datasets while also reducing the noise contribution up to the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>α</mi>\u0000 </mrow>\u0000 <annotation>$2alpha $</annotation>\u0000 </semantics></math> resolution limit. The aberration compensation and noise filtering features make the SBm-(i)COM suitable for samples that are difficult to focus or those that require minimal electron fluence. SBm-iCOM transfers the same information as SSB ptychography but results in an intrinsic transfer function that enhances low-frequency information.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"300 2","pages":"167-179"},"PeriodicalIF":1.9,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.70010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144957872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ptychography: A brief introduction 平面印刷术:简介。
IF 1.9 4区 工程技术 Q3 MICROSCOPY Pub Date : 2025-08-20 DOI: 10.1111/jmi.70025
John Rodenburg
<p>For anyone new to ptychography, the first obstacle to overcome is how to pronounce its name. The author has heard many tortured attempts trying to simultaneously incorporate the ‘p’ with the ‘t’—an impossible task. The answer is very simple: forget the ‘p’—in English it is silent, just as in ‘psychology’. Pronounce it as ‘tykography’.</p><p>Ptychography overcomes the two most enduring historical weaknesses of conventional transmission (and reflection) microscopy. It can in principle obtain wavelength limited resolution, unaffected by lens aberration or the maximum scattering angle imposed by the numerical aperture of the lens. This is especially important for X-ray and electron imaging where, for various intractable reasons, the useable numerical aperture of the available lenses is so small. It can also record the image phase near perfectly, meaning that otherwise transparent objects can be imaged with very high contrast.</p><p>Unlike conventional microscopy with lenses, ptychography does not provide a real or virtual image that can be seen directly. Instead, it uses a computer to process a very large quantity of data that bear no relationship to the final image that it ‘reconstructs’. Ordinary microscopists—that is, those who simply want to see a magnified image of their specimen and do not want to understand exactly how the image is computed—can find this circuitous process all rather alienating. First results from the author's group in the early 1990s were widely dismissed by the community. A leading microscopist at the time asserted that he would never believe in an image that came out of a computer. A further problem was that the pictures we could obtain in those days were so small and totally unconvincing. Ptychography had to wait for Moore's Law to catch up with its greedy data requirements.</p><p>However, in the last 10–15 years, ptychography has become the technique of choice for very high-resolution X-ray imaging and tomography. In the last 5 years or so, some extraordinary electron ptychography results have been reported, far surpassing the resolution limit that for so many years had seemed insurmountable using magnetic lenses and aberration correction. Optical microscopy is already wavelength limited, but the very sensitive phase image that ptychography supplies has removed the need for staining or labelling, thus allowing live imaging of biological cells.</p><p>The experimental method is deceptively simple. We have a source of radiation which shines upon the specimen. The wavefield at the exit surface of this specimen is then allowed to propagate some distance downstream of the object where the pattern of scattered intensity is recorded on a two-dimensional detector. It is important to understand that this detector can be as large as we like. It can capture scattering up to large angles, where high-resolution information is expressed. Electron and X-ray lenses can only capture and focus reliably small angles of scatter, which seve
对于任何一个刚接触印刷术的人来说,要克服的第一个障碍是如何发音。作者听说过许多人试图同时把“p”和“t”结合起来——这是一项不可能完成的任务。答案很简单:忘记“p”——在英语中它是不发音的,就像在“心理学”中一样。读作“tykography”。印刷术克服了传统透射(和反射)显微镜的两个最持久的历史弱点。原则上,它可以获得波长有限的分辨率,不受透镜像差或透镜数值孔径施加的最大散射角的影响。这对于x射线和电子成像尤其重要,因为各种棘手的原因,可用透镜的可用数值孔径太小了。它还可以近乎完美地记录图像相位,这意味着其他透明物体可以以非常高的对比度成像。与传统的透镜显微镜不同,全息照相不能提供可以直接看到的真实或虚拟图像。相反,它使用计算机来处理大量的数据,这些数据与它“重建”的最终图像没有任何关系。普通的显微镜学家——也就是说,那些只想看到他们的标本的放大图像,而不想确切了解图像是如何计算出来的人——会发现这种迂回的过程相当疏远。作者小组在20世纪90年代初的第一批结果被学术界广泛忽视。当时一位著名的显微镜学家断言,他永远不会相信从电脑里出来的图像。另一个问题是,在那个时代,我们所能获得的照片太小,完全没有说服力。印刷术不得不等待摩尔定律来满足其贪婪的数据需求。然而,在过去的10-15年里,平面照相术已经成为高分辨率x射线成像和断层扫描的首选技术。在过去的5年左右的时间里,一些非凡的电子压型图结果被报道出来,远远超过了多年来使用磁透镜和像差校正似乎无法克服的分辨率限制。光学显微镜已经受到波长的限制,但是显微照相提供的非常敏感的相位图像已经不需要染色或标记,从而允许对生物细胞进行实时成像。实验方法看似简单。我们有一个辐射源照射在标本上。然后允许在该样品的出口表面的波场向物体下游传播一段距离,在那里散射强度的模式被记录在二维探测器上。重要的是要明白,这个探测器可以像我们喜欢的那样大。它可以捕捉到大角度的散射,从而表达出高分辨率的信息。电子和x射线透镜只能捕获和聚焦小角度的散射,这严重限制了它们的分辨率。然后,我们安排样品和照明相对于另一个横向移动,然后再次记录散射强度。该过程重复几次(在实践中,这可以多达100或1000次),以这样一种方式,每个感兴趣的区域的样品被照亮至少一次。计算图像的必要条件是,在任何一个位置照射的试样的面积也必须与也已照射的试样的至少一个其他区域重叠。这种重叠很重要,因为它意味着样本的相同元素(像素)以不止一种散射模式表示,这意味着我们在数据中有冗余:我们记录的数据比计算最终图像所需的数据数量要多。这些“额外的”数据在型相学中是至关重要的。首先,要制作图像,我们必须解决“相位问题”。我们所做的每一次测量——每一个散射模式(通常是衍射模式)中的每一个像素——只能用强度来记录。然而,撞击到探测器上的底层波有两个与之相关的数字:一个模量和一个相位,或者等价地,一个复数的实分量和虚分量。在一些成像技术中,如射电天文学,波干扰的频率足够低,因此我们可以直接测量它的振幅和到达时间(这是在相位中编码的),比如在阴极射线管上绘制信号。这是我们所能测量到的关于传播波的信息。如果我们把来自许多探测器的所有数据集合起来,那么我们就可以反向计算出波源的形状:也就是说,一个物体的图像。然而,为了观察非常小的物体,我们需要使用波长与物体大小相匹配的辐射,这本身就意味着一种非常高频的波。 对于微观辐射(光,x射线和电子),没有探测器可以直接记录这些波的相位:只能测量强度(模量的平方)。所有相位信息丢失。印刷术的天才之处在于,它通过利用照明/样品的横向位移对记录数据的影响来恢复这种“丢失的相位”。一旦我们解决了整个探测器上的波的相位,我们就可以用它来生成一个计算透镜,它具有更大的数值孔径(因此可以获得更高的分辨率),而不是短波长(x射线和电子)透镜所获得的非常小的数值孔径。一个基本的数学约束是,在实验过程中,两个相互移动的函数保持不变。然而,功能本身的物理性质具有很大的灵活性。例如,在傅里叶平面摄影中,一个函数是位于低分辨率显微镜的后焦平面的波场,而另一个函数是位于同一平面的物镜孔径。倾斜照明具有在光圈上移动波场模式的效果。在这种情况下,数据采集发生在位于孔径傅里叶域中的成像平面上。虽然现在被认为是理所当然的,但在平面照相术中使用的照明/试样位移应该允许相位问题的解决,这一点并不明显。我们可以说,由于照明位置之间的重叠,我们记录的数据集受到高度约束。那么,是不是所有衍射图的相对相位都能得到明确的解呢?当作者在20世纪80年代末第一次考虑这个问题时,答案远没有明确。就在那个时候,欧文·萨克斯顿(Gerchberg和Saxton相位检索算法的作者)建议他可以考虑一下沃尔特·霍普在20世纪60年代末和70年代初的一些工作。这表明,在晶体样品上移动一个精心设计的相干照明场,理论上可以解决相邻晶体反射之间的相位差。利用光和一维光栅对该方法进行了验证。黑格尔和霍普后来把这个方案称为“压型图”,因为它要求衍射光束相互卷积或“折叠”。“Ptych”在古希腊是“折叠”的意思。(顺便说一句,它也指动物的内脏和起伏的山丘上的褶皱。)对于作者来说,这是一个关键的见解。如果能找到衍射光束对的相对相位,那么这个相同的概念——移动一个照明场——肯定可以推广到一般的、非晶体的物体上,从而解决所有这些光束对之间的相位?对于扩展的非晶体样品,衍射图样涉及数百万衍射光束之间的干涉。尽管如此,有一个简单的模型来解释为什么压型术原则上应该能够解决相位问题是有用的。不幸的是,因为Hoppe写的原始论文很难理解(而且是用德语写的),那些刚进入这个领域的人经常发现“ptych”这个概念相当令人困惑和不相关。今天,没有人按照最初设想的方式来做印刷术。它最初的适用范围非常狭窄:完美的晶体结构可以很容易地用x射线方法解决,所以没有真正的科学需要晶体的平面摄影。然而,在20世纪90年代中期,原始形式的电子晶体平面摄影(扫描透射电子显微镜(STEM)结构中的干涉光束对)确实显示出了作用。一个更加困难的问题是为一些一般的物理数据集重建样本函数,也就是说,数据是从一个无限的(可能是3D的)具有复杂的非晶体结构的物体中分散出来的,并且照明的形式是未知的。目前,几乎所有的重构算法都是迭代地收敛于一个解。我们假设我们知道照明与样品相互作用的方式,以及由此产生的散射波如何传播到探测器。这可能必须包括从厚样品的多层散射建模。事实上,意识到它的数据可以用来解决三维结构,这是印刷术的一个重大进步。在任何特定的迭代,我们有一个持续的估计样本函数和照明函数。然后我们计算我们期望这些函数产生的衍射图案的强度。当然,如果我们估计的函数与实际对应的函数不相同,则建模数据将与实际数据不相同。 我们使用这种差异来指导我们对标本和照明函数进行新的估计,然后迭代地重复这个过程,直到实际数据和估计数据相互匹配。在实践中,有很多方法可以实现这种方案。我们还提到了20世纪90年代发展起来的两种非迭代“直接”反演方法:Wigner分布反褶积(WDD)和单边带方法(SSB)。一些工人仍在使用这些设备。它们有一些明显的优点(也有一些限制),但我们在这里没有篇幅来描述它们。重建问题的第一个迭代方法(称为ptych
{"title":"Ptychography: A brief introduction","authors":"John Rodenburg","doi":"10.1111/jmi.70025","DOIUrl":"10.1111/jmi.70025","url":null,"abstract":"&lt;p&gt;For anyone new to ptychography, the first obstacle to overcome is how to pronounce its name. The author has heard many tortured attempts trying to simultaneously incorporate the ‘p’ with the ‘t’—an impossible task. The answer is very simple: forget the ‘p’—in English it is silent, just as in ‘psychology’. Pronounce it as ‘tykography’.&lt;/p&gt;&lt;p&gt;Ptychography overcomes the two most enduring historical weaknesses of conventional transmission (and reflection) microscopy. It can in principle obtain wavelength limited resolution, unaffected by lens aberration or the maximum scattering angle imposed by the numerical aperture of the lens. This is especially important for X-ray and electron imaging where, for various intractable reasons, the useable numerical aperture of the available lenses is so small. It can also record the image phase near perfectly, meaning that otherwise transparent objects can be imaged with very high contrast.&lt;/p&gt;&lt;p&gt;Unlike conventional microscopy with lenses, ptychography does not provide a real or virtual image that can be seen directly. Instead, it uses a computer to process a very large quantity of data that bear no relationship to the final image that it ‘reconstructs’. Ordinary microscopists—that is, those who simply want to see a magnified image of their specimen and do not want to understand exactly how the image is computed—can find this circuitous process all rather alienating. First results from the author's group in the early 1990s were widely dismissed by the community. A leading microscopist at the time asserted that he would never believe in an image that came out of a computer. A further problem was that the pictures we could obtain in those days were so small and totally unconvincing. Ptychography had to wait for Moore's Law to catch up with its greedy data requirements.&lt;/p&gt;&lt;p&gt;However, in the last 10–15 years, ptychography has become the technique of choice for very high-resolution X-ray imaging and tomography. In the last 5 years or so, some extraordinary electron ptychography results have been reported, far surpassing the resolution limit that for so many years had seemed insurmountable using magnetic lenses and aberration correction. Optical microscopy is already wavelength limited, but the very sensitive phase image that ptychography supplies has removed the need for staining or labelling, thus allowing live imaging of biological cells.&lt;/p&gt;&lt;p&gt;The experimental method is deceptively simple. We have a source of radiation which shines upon the specimen. The wavefield at the exit surface of this specimen is then allowed to propagate some distance downstream of the object where the pattern of scattered intensity is recorded on a two-dimensional detector. It is important to understand that this detector can be as large as we like. It can capture scattering up to large angles, where high-resolution information is expressed. Electron and X-ray lenses can only capture and focus reliably small angles of scatter, which seve","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"300 2","pages":"153-155"},"PeriodicalIF":1.9,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.70025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144957862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TOC - Issue Information TOC -发布信息
IF 1.9 4区 工程技术 Q3 MICROSCOPY Pub Date : 2025-08-14 DOI: 10.1111/jmi.13330
{"title":"TOC - Issue Information","authors":"","doi":"10.1111/jmi.13330","DOIUrl":"https://doi.org/10.1111/jmi.13330","url":null,"abstract":"","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"299 3","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.13330","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144833137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of STEM tomography to investigate smooth ER morphology under stress conditions 应用STEM断层扫描研究应力条件下的平滑内质网形态
IF 1.9 4区 工程技术 Q3 MICROSCOPY Pub Date : 2025-08-12 DOI: 10.1111/jmi.70020
V. Heinz, R. Rachel, C. Ziegler

The endoplasmic reticulum (ER) is a highly dynamic organelle that undergoes significant morphological alterations in response to cellular stress. While conventional transmission electron microscopy (TEM) has provided valuable insights into these changes, such as the formation of crystalloid-ER and ER whorls, obtaining comprehensive three-dimensional (3D) information on these large structures within their cellular context has remained a challenge. To overcome these limitations, this study introduces an innovative application of dual-axis scanning transmission electron microscopy (STEM) tomography to investigate ER morphology under stress conditions in human embryonic kidney (HEK) cells overexpressing the cation channel polycystin-2 (PC-2). Benefitting from high-resolution, increased depth-of-focus, and reduced aberrations, STEM tomography enabled the detailed 3D reconstruction of large cellular subvolumes, providing unprecedented views of stress-induced ER structures. Our findings reveal distinct ultrastructural details of both crystalloid-ER and ER whorls. Crystalloid-ER exhibited a tubular architecture with potential interconnectedness, while ER whorls displayed a lamellar organisation and distinct membrane curvature. We observed the co-occurrence of these distinct smooth ER (sER) morphotypes within the same cell, yet they remained spatially separated, suggesting potential functional specialisation. Furthermore, we identified direct membrane contacts in mixed morphotypes, hinting at a shared origin or dynamic relationship between these structures. The study also elucidated the interactions of these organised smooth ER (OSER) structures with other organelles, such as mitochondria (MAM sites) and vesicles. In summary, the presented ultra-structural insights have a significant impact on our understanding of stress-related ER morphology changes. The ability to visualise the intricate 3D architecture and spatial relationships of these structures provides novel perspectives on the ER's adaptive responses to stress, including potential roles in lipid and protein biosynthesis and intracellular communication. These findings underscore the power of dual-axis STEM tomography for elucidating complex organellar organisation and dynamics in their native cellular context.

内质网(ER)是一个高度动态的细胞器,在细胞应激反应中经历了显著的形态学改变。虽然传统的透射电子显微镜(TEM)已经为这些变化提供了有价值的见解,例如晶体内质网和内质网螺旋的形成,但在细胞背景下获得这些大型结构的全面三维(3D)信息仍然是一个挑战。为了克服这些限制,本研究引入了一种创新的双轴扫描透射电子显微镜(STEM)断层扫描技术,研究应激条件下过度表达阳离子通道多囊素-2 (PC-2)的人胚胎肾(HEK)细胞的内质网形态学。得益于高分辨率、更大的聚焦深度和更少的像差,STEM断层扫描能够对大细胞亚体积进行详细的3D重建,提供前所未有的应力诱导内质网结构视图。我们的发现揭示了晶体内质网和内质网螺旋的不同超微结构细节。晶体内质网呈管状结构,具有潜在的互联性,而内质网螺旋呈片层状组织,具有明显的膜曲率。我们观察到这些不同的光滑内质网(sER)形态在同一细胞内共同出现,但它们在空间上保持分离,这表明可能存在功能特化。此外,我们在混合形态中发现了直接的膜接触,暗示了这些结构之间的共同起源或动态关系。该研究还阐明了这些有组织的光滑内质网(OSER)结构与其他细胞器(如线粒体(MAM位点)和囊泡)的相互作用。总之,所提出的超结构见解对我们理解应力相关的内质网形态变化具有重要影响。可视化这些结构的复杂3D结构和空间关系的能力为内质网对应激的适应性反应提供了新的视角,包括在脂质和蛋白质生物合成以及细胞内通讯中的潜在作用。这些发现强调了双轴STEM断层扫描在阐明其原生细胞背景下复杂的细胞器组织和动力学方面的力量。
{"title":"Application of STEM tomography to investigate smooth ER morphology under stress conditions","authors":"V. Heinz,&nbsp;R. Rachel,&nbsp;C. Ziegler","doi":"10.1111/jmi.70020","DOIUrl":"https://doi.org/10.1111/jmi.70020","url":null,"abstract":"<p>The endoplasmic reticulum (ER) is a highly dynamic organelle that undergoes significant morphological alterations in response to cellular stress. While conventional transmission electron microscopy (TEM) has provided valuable insights into these changes, such as the formation of crystalloid-ER and ER whorls, obtaining comprehensive three-dimensional (3D) information on these large structures within their cellular context has remained a challenge. To overcome these limitations, this study introduces an innovative application of dual-axis scanning transmission electron microscopy (STEM) tomography to investigate ER morphology under stress conditions in human embryonic kidney (HEK) cells overexpressing the cation channel polycystin-2 (PC-2). Benefitting from high-resolution, increased depth-of-focus, and reduced aberrations, STEM tomography enabled the detailed 3D reconstruction of large cellular subvolumes, providing unprecedented views of stress-induced ER structures. Our findings reveal distinct ultrastructural details of both crystalloid-ER and ER whorls. Crystalloid-ER exhibited a tubular architecture with potential interconnectedness, while ER whorls displayed a lamellar organisation and distinct membrane curvature. We observed the co-occurrence of these distinct smooth ER (sER) morphotypes within the same cell, yet they remained spatially separated, suggesting potential functional specialisation. Furthermore, we identified direct membrane contacts in mixed morphotypes, hinting at a shared origin or dynamic relationship between these structures. The study also elucidated the interactions of these organised smooth ER (OSER) structures with other organelles, such as mitochondria (MAM sites) and vesicles. In summary, the presented ultra-structural insights have a significant impact on our understanding of stress-related ER morphology changes. The ability to visualise the intricate 3D architecture and spatial relationships of these structures provides novel perspectives on the ER's adaptive responses to stress, including potential roles in lipid and protein biosynthesis and intracellular communication. These findings underscore the power of dual-axis STEM tomography for elucidating complex organellar organisation and dynamics in their native cellular context.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"299 3","pages":"228-241"},"PeriodicalIF":1.9,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.70020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144832891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of microscopy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1