首页 > 最新文献

2015 International Workshop on Computational Electronics (IWCE)最新文献

英文 中文
An advanced electro-thermal simulation methodology for nanoscale device 一种先进的纳米器件电热模拟方法
Pub Date : 2015-09-01 DOI: 10.1109/IWCE.2015.7301989
L. Wang, T. Sadi, M. Nedjalkov, A. Brown, C. Alexander, B. Cheng, C. Millar, A. Asenov
In this work we propose an advanced electrothermal simulation methodology for nanoscale devices based on a macroscopic model for acoustic and optical phonon energy transfer. This is coupled with the Poisson equation and Current Continuity Equations (CCE) and solved self-consistently. This has been implemented in the GSS `atomistic' simulator GARAND, and the coupled 3D electro-thermal simulation using this methodology is demonstrated on an SOI FinFET example.
在这项工作中,我们提出了一种基于声学和光学声子能量传递宏观模型的纳米级器件的先进电热模拟方法。将其与泊松方程和电流连续性方程(CCE)耦合,自洽求解。这已经在GSS“原子”模拟器GARAND中实现,并在SOI FinFET示例上演示了使用该方法的耦合3D电热模拟。
{"title":"An advanced electro-thermal simulation methodology for nanoscale device","authors":"L. Wang, T. Sadi, M. Nedjalkov, A. Brown, C. Alexander, B. Cheng, C. Millar, A. Asenov","doi":"10.1109/IWCE.2015.7301989","DOIUrl":"https://doi.org/10.1109/IWCE.2015.7301989","url":null,"abstract":"In this work we propose an advanced electrothermal simulation methodology for nanoscale devices based on a macroscopic model for acoustic and optical phonon energy transfer. This is coupled with the Poisson equation and Current Continuity Equations (CCE) and solved self-consistently. This has been implemented in the GSS `atomistic' simulator GARAND, and the coupled 3D electro-thermal simulation using this methodology is demonstrated on an SOI FinFET example.","PeriodicalId":165023,"journal":{"name":"2015 International Workshop on Computational Electronics (IWCE)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114165554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
15-band spectral envelope function formalism applied to broken gap tunnel field-effect transistors 应用于破隙隧道场效应晶体管的15波段谱包络函数形式化
Pub Date : 2015-09-01 DOI: 10.1109/IWCE.2015.7301988
D. Verreck, M. V. D. Put, A. Verhulst, B. Sorée, Wim Magnus, A. Dabral, Aaron Thean, Guido Groeseneken
A carefully chosen heterostructure can significantly boost the performance of tunnel field-effect transistors (TFET). Modelling of these hetero- TFETs requires a quantum mechanical (QM) approach with an accurate band structure to allow for a correct description of band-to-band-tunneling. We have therefore developed a fully QM 2D solver, combining for the first time a full zone 15-band envelope function formalism with a spectral approach, including a heterostructure basis set transformation. Simulations of GaSb/InAs broken gap TFETs illustrate the wide body capabilities and transparant transmission analysis of the formalism.
精心选择的异质结构可以显著提高隧道场效应晶体管(ttfet)的性能。这些异质tfet的建模需要量子力学(QM)方法,具有精确的带结构,以允许正确描述带到带隧道。因此,我们开发了一个完整的QM二维求解器,首次将完整的15波段包络函数形式与光谱方法相结合,包括异质结构基集变换。对GaSb/InAs断隙tfet的仿真验证了其宽体性能和透明传输分析的形式。
{"title":"15-band spectral envelope function formalism applied to broken gap tunnel field-effect transistors","authors":"D. Verreck, M. V. D. Put, A. Verhulst, B. Sorée, Wim Magnus, A. Dabral, Aaron Thean, Guido Groeseneken","doi":"10.1109/IWCE.2015.7301988","DOIUrl":"https://doi.org/10.1109/IWCE.2015.7301988","url":null,"abstract":"A carefully chosen heterostructure can significantly boost the performance of tunnel field-effect transistors (TFET). Modelling of these hetero- TFETs requires a quantum mechanical (QM) approach with an accurate band structure to allow for a correct description of band-to-band-tunneling. We have therefore developed a fully QM 2D solver, combining for the first time a full zone 15-band envelope function formalism with a spectral approach, including a heterostructure basis set transformation. Simulations of GaSb/InAs broken gap TFETs illustrate the wide body capabilities and transparant transmission analysis of the formalism.","PeriodicalId":165023,"journal":{"name":"2015 International Workshop on Computational Electronics (IWCE)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126501090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Thermoelectric power factor optimization in nanocomposites by energy filtering using NEGF 利用NEGF能量滤波优化纳米复合材料热电功率因数
Pub Date : 2015-09-01 DOI: 10.1109/IWCE.2015.7301986
M. Thesberg, M. Pourfath, H. Kosina, N. Neophytou
InIn this work, we use the Non-Equilibrium Greens Function (NEGF) method to illustrate the design details under which improvements in σS2 can be achieved by energy filtering. We further demonstrate that variation of the design parameters, and most importantly in the barrier heights is a strong detrimental mechanism which can take away most of the energy filtering benefits.
在这项工作中,我们使用非平衡格林函数(Non-Equilibrium Greens Function, NEGF)方法来说明通过能量滤波可以实现σS2改进的设计细节。我们进一步证明了设计参数的变化,最重要的是势垒高度的变化是一个强大的有害机制,它可以带走大部分能量过滤的好处。
{"title":"Thermoelectric power factor optimization in nanocomposites by energy filtering using NEGF","authors":"M. Thesberg, M. Pourfath, H. Kosina, N. Neophytou","doi":"10.1109/IWCE.2015.7301986","DOIUrl":"https://doi.org/10.1109/IWCE.2015.7301986","url":null,"abstract":"InIn this work, we use the Non-Equilibrium Greens Function (NEGF) method to illustrate the design details under which improvements in σS2 can be achieved by energy filtering. We further demonstrate that variation of the design parameters, and most importantly in the barrier heights is a strong detrimental mechanism which can take away most of the energy filtering benefits.","PeriodicalId":165023,"journal":{"name":"2015 International Workshop on Computational Electronics (IWCE)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121822114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Analyzing variability in short-channel quantum transport from atomistic first principles 从原子第一性原理分析短通道量子输运的可变性
Pub Date : 2015-06-12 DOI: 10.1109/IWCE.2015.7301983
Q. Shi, Hong Guo, Yin Wang, Eric Zhu, Leo Liu
Due to random impurity fluctuations, the device-to-device variability is a serious challenge to emerging nanoelectronics. In this work we present a theoretical formalism and its numerical realization to predict quantum-transport variability from atomistic first principles. Our approach is named the non-equilibrium coherent-potential approximation (NECPA) which can be applied to predict both the average and the variance of the transmission coefficients such that fluctuations due to random impurities can be predicted without lengthy brute force computations of ensemble of disordered configurations. As an example, we quantitatively analyzed the off-state tunnel conductance variability in Si nanosized fieldeffect transistor channels with channel lengths ranging from 6.5 to 15.2 nm doped with different concentrations of boron impurity atoms. The variability is predicted as a function of the doping concentration, channel length, and the doping positions. The device physics is understood from the microscopic details of the potential profile in the tunnel barrier. Other systems will also be presented as examples.
由于随机杂质波动,器件间的可变性是新兴纳米电子学面临的严峻挑战。在这项工作中,我们提出了从原子第一原理预测量子输运变异性的理论形式及其数值实现。我们的方法被命名为非平衡相干势近似(NECPA),它可以应用于预测传输系数的平均值和方差,从而可以预测由于随机杂质引起的波动,而无需冗长的无序组态系综的蛮力计算。作为一个例子,我们定量分析了掺入不同浓度的硼杂质原子后,硅纳米场缺陷晶体管通道在6.5 ~ 15.2 nm范围内的脱态隧道电导变化。可变性被预测为掺杂浓度、通道长度和掺杂位置的函数。从隧道势垒中势分布的微观细节来理解器件的物理特性。其他系统也将作为例子提出。
{"title":"Analyzing variability in short-channel quantum transport from atomistic first principles","authors":"Q. Shi, Hong Guo, Yin Wang, Eric Zhu, Leo Liu","doi":"10.1109/IWCE.2015.7301983","DOIUrl":"https://doi.org/10.1109/IWCE.2015.7301983","url":null,"abstract":"Due to random impurity fluctuations, the device-to-device variability is a serious challenge to emerging nanoelectronics. In this work we present a theoretical formalism and its numerical realization to predict quantum-transport variability from atomistic first principles. Our approach is named the non-equilibrium coherent-potential approximation (NECPA) which can be applied to predict both the average and the variance of the transmission coefficients such that fluctuations due to random impurities can be predicted without lengthy brute force computations of ensemble of disordered configurations. As an example, we quantitatively analyzed the off-state tunnel conductance variability in Si nanosized fieldeffect transistor channels with channel lengths ranging from 6.5 to 15.2 nm doped with different concentrations of boron impurity atoms. The variability is predicted as a function of the doping concentration, channel length, and the doping positions. The device physics is understood from the microscopic details of the potential profile in the tunnel barrier. Other systems will also be presented as examples.","PeriodicalId":165023,"journal":{"name":"2015 International Workshop on Computational Electronics (IWCE)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116024863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
期刊
2015 International Workshop on Computational Electronics (IWCE)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1